TSYSSettle Class

Properties   Methods   Events   Config Settings   Errors  

The TSYSSettle class is used to do a Batch Settlement on all transactions that were successfully authorized with the TSYSECOMMERCE or TSYSRETAIL classes. This class may also send Level II and Level III Corporate Purchasing Card data for better interchange rates.

Syntax

dpaymentssdk.Tsyssettle

Remarks

This class allows for a direct, secure connection to the Vital/TSYS gateway through a standard Internet connection. This class can be integrated into web pages or stand-alone Point Of Sale applications. Because all TLS/SSL communications are handled inside the class, any application or web page can be deployed without the need for expensive dedicated TLS/SSL servers. The TSYSSettle class is used to settle all transactions previously authorized by the TSYSECommerce or TSYSRetail class. When a transaction is authorized, money in the customer's account is blocked and tagged for the merchant. However, funds do not actually change hands at this point. When transactions are settled with the TSYSSettle class the funds are deducted from the customer's account and added to the merchant's. It is essential that the authorized transactions are properly recorded and resent later in a Batch Settlement.

To send a Batch Settlement, first the user must fill out the Merchant properties with the same information contained in the authorizing class's Merchant properties.

TSYSSettle.Merchant.BankId = "999995" TSYSSettle.Merchant.CategoryCode = "5999" TSYSSettle.Merchant.Name = "test merchant" TSYSSettle.Merchant.Number = "123456789012" TSYSSettle.Merchant.City = "Beverly Hills" TSYSSettle.Merchant.State = "CA" TSYSSettle.Merchant.StoreNumber = "5999" TSYSSettle.Merchant.TerminalNumber = "1515" TSYSSettle.Merchant.Zip = "90210"

Additionally, the AgentBankNumber, AgentChainNumber, TerminalId, BatchNumber, and IndustryType must be set. Note that the TerminalId is fundamentally different from the TerminalNumber. The TerminalNumber is used to identify a unique terminal (PC, server, whatever) within a merchant location. The TerminalId, also known as the "V Number", is used for point-of-sale tracking. TSYSSettle.AgentBankNumber = "000000" TSYSSettle.AgentChainNumber = "111111" TSYSSettle.TerminalId = "00000001" TSYSSettle.BatchNumber = 15 TSYSSettle.IndustryType = itRetail

At this point, you are ready to add transactions to the batch settlement. Each successfully authorized transaction to be settled must be added to the DetailRecords collection. The DetailRecords collection contains TSYSRecordType types, which consist of a a DetailAggregate and AddendumAggregate field. The DetailAggregate field should be set with the XML aggregate returned from the TSYSRetail, TSYSECommerce, or TSYSDetailRecord class's GetDetailAggregate method. The AddendumAggregate is used when passing additional commercial card addendum data with the settlement, and is not used for regular credit card transactions. TSYSSettle.DetailRecords.Add(new TSYSRecordType(TSYSRetail.GetDetailAggregate())); or TSYSSettle.DetailRecords.Add(new TSYSRecordType()); TSYSSettle.DetailRecords[0].DetailAggregate = TSYSRetail.GetDetailAggregate();

Finally, call the SendSettlement method.

TSYSSettle.SendSettlement()

If the transaction is successful, the Code will contain "GB", which indicates a "Good Batch". You should check that the NetDeposit and RecordCount match the NetDeposit and RecordCount fields.

If the transaction is not successful and you receive an "RB" Code (indicating a "Rejected Batch") the class throws an exception. You may inspect the Data. DataFieldNumber, RecordType, SequenceNumber, and ErrorType properties for more information concerning why the batch was rejected. After either fixing this record to resolve the error, or removing the record from the batch, the entire batch must be resubmitted. When resubmitting a batch that was previously rejected, the BatchNumber must be set to the same value that was originally used. It is critical that the same BatchNumber value is used to avoid duplicate charges.

Thousands of detail records may be settled in the above manner, just by adding transactions to the DetailRecords collection. However it is recommended that Batch Settlements be kept relatively small - around 100 transactions or so - to decrease the number of records that must be resent in the event of an error.

To Void a transaction that has been authorized but has not yet been settled, simply do not include it in the batch settlement. The block on the cardholder's account will clear automatically. Credits and forced transactions may be created using the TSYSDetailRecord class and settled in the same manner.

To add Level II or Level III data to the settled transactions, use the AddendumAggregate field and the TSYSLevel2 or TSYSLevel3 classs.

Note that the IndustryType from the TSYSSettle class MUST match the detail record aggregate of EACH transaction that is added to the settlement. You cannot mix industry types in a batch - you must settle a separate batch for each industry type.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

AgentBankNumberIdentifies a specific agent entity of the member bank or processor.
AgentChainNumberIdentifies a specific chain of an agent organization.
BatchContains information about the batch settlement, as computed by the class.
BatchNumberSequence number of this batch transaction.
DetailRecordsCollection of detail records to send in the settlement.
ErrorContains information about settlement errors.
IndustryTypeCode which indicates the industry the merchant is engaged in.
MerchantContains the merchant's setup information.
MerchantLocalPhoneMerchant's local phone number. Used in settlement only.
ResponseContains the response to a batch settlement.
SSLAcceptServerCertInstructs the class to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThe certificate to be used during SSL negotiation.
SSLProviderThis specifies the SSL/TLS implementation to use.
SSLServerCertThe server certificate for the last established connection.
TerminalIdContains number to accommodate a POS device tracking number.
TimeoutA timeout for the class.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
InterruptInterrupts the current action.
ResetResets all the properties of the entire settlement to their default values.
SendSettlementBegins a Batch Settlement transaction with the transaction server.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ConnectedFired immediately after a connection completes (or fails).
DataPacketInFired when receiving a data packet from the transaction server.
DataPacketOutFired when sending a data packet to the transaction server.
DisconnectedFired when a connection is closed.
ErrorInformation about errors during data delivery.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AmexAggregatorNameContains the name of the Payment Service Provider/Aggregator or Facilitator participating in Amex OptBlue program.
CombineRecordsWhether settlement records are being concatenated into a single settlement block.
DeviceCodeA 1-character value used to identify the device and type of the merchant submitting the settlement batch.
GenKeyA randomly generated string of alphanumeric characters identifying the terminal.
HeartlandDeviceIdSpecifies a device ID to uniquely identify each terminal (card data entry device).
HeartlandEncryptionModeSpecifies the encryption mode to use in Heartland transactions.
HeartlandKeyBlockSpecifies the key block used to encrypt the data.
LocationNumberProvides additional information on the location of the merchant.
PortThe port to which transactions are posted.
ProcessorSpecifies the Processor you are connecting to.
ServerThe server to which transactions are posted.
TravelAgencyCodeContains the Travel Agency IATA Code if the ticket was issued by a travel agency.
TravelAgencyNameContains the Travel Agency Name if the ticket was issued by a travel agency.
UseHTTPPOSTTells the class whether or not to use HTTP POST when transmitting the Batch for Settlement.
CloseStreamAfterTransferIf true, the class will close the upload or download stream after the transfer.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallListenerIf true, the class binds to a SOCKS firewall as a server (TCPClient only).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseNTLMv2Whether to use NTLM V2.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLContextProtocolThe protocol used when getting an SSLContext instance.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
SSLTrustManagerFactoryAlgorithmThe algorithm to be used to create a TrustManager through TrustManagerFactory.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
GUIAvailableWhether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
UseDaemonThreadsWhether threads created by the class are daemon threads.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AgentBankNumber Property (TSYSSettle Class)

Identifies a specific agent entity of the member bank or processor.

Syntax


public String getAgentBankNumber();


public void setAgentBankNumber(String agentBankNumber);

Default Value

"000000"

Remarks

This field contains a six digit number assigned by the merchant's bank or processor. This field is issued by the merchant's member bank or processor for purposes of identifying a specific agent entity of the member bank or processor.

This is a Header Property, and needs to be set once for a single Batch Settlement transaction.

AgentChainNumber Property (TSYSSettle Class)

Identifies a specific chain of an agent organization.

Syntax


public String getAgentChainNumber();


public void setAgentChainNumber(String agentChainNumber);

Default Value

"000000"

Remarks

This field contains a six digit number assigned by the merchant's bank or processor. This field is issued by the merchant's member bank or processor for purpose of identifying a specific chain of an agent organization.

This is a Header Property, and needs to be set once for a single Batch Settlement transaction.

Batch Property (TSYSSettle Class)

Contains information about the batch settlement, as computed by the class.

Syntax


public TSYSBatchInfo getBatch();


Remarks

When building a settlement, the class will calculate the fields in the table below.

CashBackTotal Total amount of cash back for all transactions in the batch.
HashingTotal Total of purchases plus refunds.
NetDeposit Total of purchases minus refunds.
RecordCount Total number of records sent including Header, Parameter, and Trailer. Should be compared to the response RecordCount.

This property is read-only.

Please refer to the TSYSBatchInfo type for a complete list of fields.

BatchNumber Property (TSYSSettle Class)

Sequence number of this batch transaction.

Syntax


public int getBatchNumber();


public void setBatchNumber(int batchNumber);

Default Value

0

Remarks

This property contains a three digit batch sequence number generated by the Point of Sale (POS) device. The batch number must be within the range "001" to "999". If the POS device is automatically incrementing the batch number, it should automatically advance the number from "999" to "001"("000" is invalid). Batch numbers must not be reused or repeated within 5 consecutive days.

This is a Header Property, and needs to be set once for a single Batch Settlement transaction.

If the transaction is successful, the Code will contain "GB", which indicates a "Good Batch". You should check that the NetDeposit and RecordCount match the NetDeposit and RecordCount fields.

If the transaction is not successful and you receive an "RB" Code (indicating a "Rejected Batch") the class throws an exception. You may inspect the Data. DataFieldNumber, RecordType, SequenceNumber, and ErrorType properties for more information concerning why the batch was rejected. After either fixing this record to resolve the error, or removing the record from the batch, the entire batch must be resubmitted. When resubmitting a batch that was previously rejected, the BatchNumber must be set to the same value that was originally used. It is critical that the same BatchNumber value is used to avoid duplicate charges.

DetailRecords Property (TSYSSettle Class)

Collection of detail records to send in the settlement.

Syntax


public TSYSRecordTypeList getDetailRecords();


public void setDetailRecords(TSYSRecordTypeList detailRecords);

Remarks

Each TSYSRecordType object in the collection specifies an xml aggregate representing the transaction to be settled. The TSYSRecordType may also specify an addenda aggregate for sending Level2 or Level2 and Level3 data. The XML aggregate to be settled is generated from the TSYSRetail, TSYSECommerce, TSYSGiftCard, TSYSBenefit, or TSYSDetailRecord class.

The following example shows how to add a detail record to the collection. TSYSEcommerce1.Authorize(); TSYSSettle.DetailRecords.Add(new TSYSRecordType(TSYSEcommerce1.GetDetailAggregate()));

Xml aggregates are used instead of directly passing Objects because it is easy to store XML aggregates in a database after authorization, and then retrieve them for settlement at the end of the business day.

Thousands of detail records may be settled in the above manner, just by adding transactions to the DetailRecords collection. However it is recommended that Batch Settlements be kept relatively small - around 100 transactions or so - to decrease the number of records that must be resent in the event of an error.

Please refer to the TSYSRecordType type for a complete list of fields.

Error Property (TSYSSettle Class)

Contains information about settlement errors.

Syntax


public TSYSBatchErrorInfo getError();


Remarks

If there is an error in the settlement that results in a rejected batch, this type will contain information that can help you determine what has caused the settlement to fail. The following fields are available:

Data This contains the actual data which caused the error.
DataFieldNumber Field within an individual record that contains the error. The class will attempt to determine the property in error based on the contents of this field. However, you may need to consult TSYS support and/or the current EIS-1081 documentation for more information.
DetailRecordIndex Provides the index of the DetailRecord that caused the batch error.
ErrorType Type of batch error.
RecordType Type of record in which an error occurred (header record, detail record, etc).
SequenceNumber Sequence number of the record that caused an error.

This property is read-only.

Please refer to the TSYSBatchErrorInfo type for a complete list of fields.

IndustryType Property (TSYSSettle Class)

Code which indicates the industry the merchant is engaged in.

Syntax


public int getIndustryType();


public void setIndustryType(int industryType);


Enumerated values:
  public final static int sitUnknown = 0;
  public final static int sitRetail = 1;
  public final static int sitRestaurant = 2;
  public final static int sitGroceryStore = 3;
  public final static int sitDirectMarketing = 4;
  public final static int sitHotel = 5;
  public final static int sitAutoRental = 6;
  public final static int sitPassengerTransport = 7;

Default Value

1

Remarks

This property is used to identify the industry type of the merchant submitting the authorization request. The following table lists the industry types supported by this class.

sitUnknown (0)Unknown or unsure.
sitRetail (1)Retail store.
sitRestaurant (2)Food / Restaurant.
sitGroceryStore (3)Grocery store or supermarket.
sitDirectMarketing (4)eCommerce or Direct Marketing
sitHotel (5)Hotel / Lodging
sitAutoRental (6)Auto Rental
sitPassengerTransport (7)Passenger Transport

Note: American Express cards are NOT currently supported in the sitAutoRental industry.

Merchant Property (TSYSSettle Class)

Contains the merchant's setup information.

Syntax


public TSYSMerchant getMerchant();


public void setMerchant(TSYSMerchant merchant);

Remarks

This property must be set to an instance of the TSYSMerchant type, which will contain information to identify the merchant to the TSYS processing server. Please see the TSYSMerchant type for a list of available fields.

Please refer to the TSYSMerchant type for a complete list of fields.

MerchantLocalPhone Property (TSYSSettle Class)

Merchant's local phone number. Used in settlement only.

Syntax


public String getMerchantLocalPhone();


public void setMerchantLocalPhone(String merchantLocalPhone);

Default Value

""

Remarks

This property should contain an 11-character merchant phone number in XXX-XXXXXXX format. The initial "1" for long-distance or toll-free calls should be omitted. For instance, "800-1234567" is acceptable, while "1-800-1234567" is not. The fourth character position MUST contain a hyphen. Hyphens may not be used anywhere else.

This phone number should be the number for the local merchant establishment. For the Hotel IndustryType, it should contain the phone number for the actual hotel at which the customer is staying. Likewise, for the Auto Rental IndustryType this property must contain the phone number for the location from which the car is actually rented.

This property is used for Hotel, Auto Rental, and Direct Marketing IndustryTypes.

This field is only used in the settlement, and will be ignored for all authorizations.

Response Property (TSYSSettle Class)

Contains the response to a batch settlement.

Syntax


public TSYSSettleResponse getResponse();


Remarks

This property will contain the response returned from the TSYS transaction server after calling SendSettlement. This property should be inspected (and logged) after a settlement. The TSYSSettleResponse type contains the following fields:

Code Indicates the status of the batch transmission.
NetDeposit Total of purchases minus credits and voids.
Number Batch number that belongs to this response.
RecordCount Number of records received by the server for this batch.
Text Textual description of the Code.
TransmissionDate Date that the batch was settled.

This property is read-only.

Please refer to the TSYSSettleResponse type for a complete list of fields.

SSLAcceptServerCert Property (TSYSSettle Class)

Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.

Syntax


public Certificate getSSLAcceptServerCert();


public void setSSLAcceptServerCert(Certificate SSLAcceptServerCert);

Remarks

If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Please note that this functionality is provided only for cases where you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

Please refer to the Certificate type for a complete list of fields.

SSLCert Property (TSYSSettle Class)

The certificate to be used during SSL negotiation.

Syntax


public Certificate getSSLCert();


public void setSSLCert(Certificate SSLCert);

Remarks

The digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

Please refer to the Certificate type for a complete list of fields.

SSLProvider Property (TSYSSettle Class)

This specifies the SSL/TLS implementation to use.

Syntax


public int getSSLProvider();


public void setSSLProvider(int SSLProvider);


Enumerated values:
  public final static int sslpAutomatic = 0;
  public final static int sslpPlatform = 1;
  public final static int sslpInternal = 2;

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used.

SSLServerCert Property (TSYSSettle Class)

The server certificate for the last established connection.

Syntax


public Certificate getSSLServerCert();


Remarks

SSLServerCert contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

Please refer to the Certificate type for a complete list of fields.

TerminalId Property (TSYSSettle Class)

Contains number to accommodate a POS device tracking number.

Syntax


public String getTerminalId();


public void setTerminalId(String terminalId);

Default Value

"00000001"

Remarks

This eight digit field contains the number to accommodate a Point Of Sale (POS) device tracking number. This field is also known as the "V" number. Unless otherwise specified by the merchant's bank or processor, this field should be defaulted to "00000001".

Note: If specified, the "V" alpha character must be changed to a numeric 7 when setting this property.

This is a Parameter Property, and need only be set once for a single Batch Settlement transaction.

Timeout Property (TSYSSettle Class)

A timeout for the class.

Syntax


public int getTimeout();


public void setTimeout(int timeout);

Default Value

30

Remarks

If Timeout is set to a positive value, and an operation cannot be completed immediately, the class will retry the operation for a maximum of Timeout seconds.

The default value for Timeout is 30 (seconds).

Config Method (Tsyssettle Class)

Sets or retrieves a configuration setting.

Syntax

public String config(String configurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Interrupt Method (Tsyssettle Class)

Interrupts the current action.

Syntax

public void interrupt();

Remarks

This method interrupts any processing that the class is currently executing.

Reset Method (Tsyssettle Class)

Resets all the properties of the entire settlement to their default values.

Syntax

public void reset();

Remarks

This method resets the Header and Parameter Record properties to default values, and clears all Detail Records. To clear only the Detail Records (leaving Header and Parameter records intact) clear the DetailRecords collection.

SendSettlement Method (Tsyssettle Class)

Begins a Batch Settlement transaction with the transaction server.

Syntax

public void sendSettlement();

Remarks

This begins a Batch Settlement transaction. The Header Record, Parameter Record, all transaction Detail Records, and the computed Trailer Record are sent sequentially to the Vital/TSYS host.

If the transaction is successful, the Code will contain "GB", which indicates a "Good Batch". You should check that the NetDeposit and RecordCount match the NetDeposit and RecordCount fields.

If the transaction is not successful and you receive an "RB" Code (indicating a "Rejected Batch") the class throws an exception. You may inspect the Data. DataFieldNumber, RecordType, SequenceNumber, and ErrorType properties for more information concerning why the batch was rejected. After either fixing this record to resolve the error, or removing the record from the batch, the entire batch must be resubmitted. When resubmitting a batch that was previously rejected, the BatchNumber must be set to the same value that was originally used. It is critical that the same BatchNumber value is used to avoid duplicate charges.

Connected Event (Tsyssettle Class)

Fired immediately after a connection completes (or fails).

Syntax

public class DefaultTsyssettleEventListener implements TsyssettleEventListener {
  ...
  public void connected(TsyssettleConnectedEvent e) {}
  ...
}

public class TsyssettleConnectedEvent {
  public int statusCode;
  public String description;
}

Remarks

If the connection is made normally, StatusCode is 0, and Description is "OK".

If the connection fails, StatusCode has the error code returned by the TCP/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

DataPacketIn Event (Tsyssettle Class)

Fired when receiving a data packet from the transaction server.

Syntax

public class DefaultTsyssettleEventListener implements TsyssettleEventListener {
  ...
  public void dataPacketIn(TsyssettleDataPacketInEvent e) {}
  ...
}

public class TsyssettleDataPacketInEvent {
  public byte[] dataPacket;
}

Remarks

This event fires when a packet is received. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or to extract additional response properties beyond the scope of this class.

DataPacketOut Event (Tsyssettle Class)

Fired when sending a data packet to the transaction server.

Syntax

public class DefaultTsyssettleEventListener implements TsyssettleEventListener {
  ...
  public void dataPacketOut(TsyssettleDataPacketOutEvent e) {}
  ...
}

public class TsyssettleDataPacketOutEvent {
  public byte[] dataPacket;
}

Remarks

This event fires right before each data packet is sent. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or may be modified to support additional features beyond the scope of this class.

Disconnected Event (Tsyssettle Class)

Fired when a connection is closed.

Syntax

public class DefaultTsyssettleEventListener implements TsyssettleEventListener {
  ...
  public void disconnected(TsyssettleDisconnectedEvent e) {}
  ...
}

public class TsyssettleDisconnectedEvent {
  public int statusCode;
  public String description;
}

Remarks

If the connection is broken normally, StatusCode is 0, and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by Winsock. Description contains a description of this code. The value of StatusCode is equal to the value of the Winsock error.

Please refer to the Error Codes section for more information.

Error Event (Tsyssettle Class)

Information about errors during data delivery.

Syntax

public class DefaultTsyssettleEventListener implements TsyssettleEventListener {
  ...
  public void error(TsyssettleErrorEvent e) {}
  ...
}

public class TsyssettleErrorEvent {
  public int errorCode;
  public String description;
}

Remarks

The Error event is fired in case of exceptional conditions during message processing.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

SSLServerAuthentication Event (Tsyssettle Class)

Fired after the server presents its certificate to the client.

Syntax

public class DefaultTsyssettleEventListener implements TsyssettleEventListener {
  ...
  public void SSLServerAuthentication(TsyssettleSSLServerAuthenticationEvent e) {}
  ...
}

public class TsyssettleSSLServerAuthenticationEvent {
  public byte[] certEncoded;
  public String certSubject;
  public String certIssuer;
  public String status;
  public boolean accept;
}

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (Tsyssettle Class)

Fired when secure connection progress messages are available.

Syntax

public class DefaultTsyssettleEventListener implements TsyssettleEventListener {
  ...
  public void SSLStatus(TsyssettleSSLStatusEvent e) {}
  ...
}

public class TsyssettleSSLStatusEvent {
  public String message;
}

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

Fields

EffectiveDate
String (read-only)

Default Value: ""

This is the date on which this certificate becomes valid. Before this date, it is not valid. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

Encoded
String

Default Value: ""

This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
byte[]

Default Value: ""

This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

ExpirationDate
String (read-only)

Default Value: ""

This is the date the certificate expires. After this date, the certificate will no longer be valid. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
String

Default Value: ""

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
String (read-only)

Default Value: ""

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
String (read-only)

Default Value: ""

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
String (read-only)

Default Value: ""

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
String (read-only)

Default Value: ""

This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

KeyPassword
String

Default Value: ""

This is the password for the certificate's private key (if any).

Some certificate stores may individually protect certificates' private keys, separate from the standard protection offered by the StorePassword. KeyPassword. This field can be used to read such password-protected private keys.

Note: this property defaults to the value of StorePassword. To clear it, you must set the property to the empty string (""). It can be set at any time, but when the private key's password is different from the store's password, then it must be set before calling PrivateKey.

PrivateKey
String (read-only)

Default Value: ""

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
boolean (read-only)

Default Value: False

This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
String (read-only)

Default Value: ""

This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
String (read-only)

Default Value: ""

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
String

Default Value: ""

This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
String (read-only)

Default Value: ""

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
String (read-only)

Default Value: ""

The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
String

Default Value: "MY"

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StoreB
byte[]

Default Value: "MY"

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
String

Default Value: ""

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

StoreType
int

Default Value: 0

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Subject
String

Default Value: ""

This is the subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

SubjectAltNames
String (read-only)

Default Value: ""

This field contains comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
String (read-only)

Default Value: ""

This field contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
String (read-only)

Default Value: ""

This field contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
String (read-only)

Default Value: ""

This field contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
String

Default Value: ""

This field contains the text description of UsageFlags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signatures
  • Key Authentication
  • Key Encryption
  • Data Encryption
  • Key Agreement
  • Certificate Signing
  • Key Signing

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int

Default Value: 0

This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signatures
0x40Key Authentication (Non-Repudiation)
0x20Key Encryption
0x10Data Encryption
0x08Key Agreement
0x04Certificate Signing
0x02Key Signing

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
String (read-only)

Default Value: ""

This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Constructors

public Certificate();

Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.

public Certificate( certificateFile);

Opens CertificateFile and reads out the contents as an X.509 public key.

public Certificate( certificateData);

Parses CertificateData as an X.509 public key.

public Certificate( certStoreType,  store,  storePassword,  subject);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  store,  storePassword,  subject,  configurationString);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to cstUser, cstMachine, cstPublicKeyFile, and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  store,  storePassword,  encoded);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

public Certificate( certStoreType,  storeBlob,  storePassword,  subject);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  storeBlob,  storePassword,  subject,  configurationString);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  storeBlob,  storePassword,  encoded);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or Base64-encoded) containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

TSYSBatchErrorInfo Type

Contains information about settlement errors.

Remarks

If there is an error in the settlement that results in a rejected batch, this type will contain information that can help you determine what has caused the settlement to fail. The following fields are available:

Fields

Data
String (read-only)

Default Value: ""

Erroneous data contained within the field specified by DataFieldNumber.

When you receive a Rejected Batch (Response.Code is "RB"), this 32-character field will contain the data that caused the batch to fail. The record that contains this error is specified by SequenceNumber, and the location of the erroneous data within that record is specified by DataFieldNumber.

DataFieldNumber
int (read-only)

Default Value: 0

Field within an invalid record that contains an error.

When you receive a Rejected Batch (Response.Code is "RB"), this field contains the sequential field number within the data record which caused the batch to be rejected. The erroneous data within this field is returned in Data, and the sequence number of the record that contains this error is specified by SequenceNumber.

DetailRecordIndex
int (read-only)

Default Value: -1

Provides the index of the DetailRecord that caused the batch error.

When you receive a Rejected Batch (Response Code of 'RB'), this field will be populated with the index of the DetailRecord that caused the error (provided that it was a Detail Record that caused it). If no error occurred, this field will return "-1".

ErrorType
String (read-only)

Default Value: ""

Type of batch error.

When you receive a Rejected Batch (Response.Code is "RB"), this one character field will provide additional info as to the nature of the rejected batch. The following table lists the currently defined error types.

BBlocked terminal.
CCard type error.
DDevice error.
EError in Batch.
SSequence error.
TTransmission error.
UUnknown error.
VRouting error.

RecordType
String (read-only)

Default Value: ""

Type of record in which an error occurred.

When you receive a Rejected Batch (Response.Code is "RB"), this one character field defines the type of data record which caused the batch to be rejected. The table below lists all valid responses.

HHeader Record.
PParameter Record.
DDetail Record.
LLine Item Detail Record.
TTrailer Record.

SequenceNumber
int (read-only)

Default Value: 0

Sequence number of the record that caused an error.

When you receive a Rejected Batch (Response.Code is "RB"), this field will contain the sequential number of the data record which caused the rejected batch state. To obtain the index of the DetailRecord in the DetailRecords that contains the erroneous data, please see the DetailRecordIndex. The field within this record that contains erroneous data is specified by DataFieldNumber, and the actual data causing the error will be contained in the Data field.

Constructors

public TSYSBatchErrorInfo();



TSYSBatchInfo Type

Contains information about the batch settlement as computed by the class.

Remarks

When building a settlement, the class will calculate the fields listed below:

Fields

CashBackTotal
String (read-only)

Default Value: "0000000000000000"

Total amount of cash back for all transactions in the batch.

This field contains the total of all cash back amounts reflected in the settlement batch. Note that only Debit Cards, Gift Cards, and EBT cards allow for cash back to be returned to the customer. For normal credit card transactions, this field will be defaulted to zeros.

This is a Trailer field, and is automatically computed by the class.

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The allowable number of significant digits as well as the positioning of any implied decimal point is dictated by the designated CurrencyCode configuration setting. In the United States (default), the number of allowable significant digits is seven. Thus the maximum TransactionAmount is "9999999", yielding a US dollar amount of $99,999.99. This field may not contain a negative number.

HashingTotal
String (read-only)

Default Value: "0000000000000000"

Total of purchases plus credits.

This 16-digit field contains the batch hashing total generated by the terminal. The hashing total is generated by adding the absolute value of all detail record amounts. Void and purchase return settlement amounts are treated as positive and added to the total, not subtracted from it.

This is a Trailer field, and is automatically computed by the class.

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The allowable number of significant digits as well as the positioning of any implied decimal point is dictated by the designated CurrencyCode configuration setting. In the United States (default), the number of allowable significant digits is seven. Thus the maximum TransactionAmount is "9999999", yielding a US dollar amount of $99,999.99. This field may not contain a negative number.

NetDeposit
String (read-only)

Default Value: "0000000000000000"

Total of purchases minus credits.

This 16-digit field contains the net deposit generated by the terminal. The net deposit total is generated by adding the settlement amounts of all detail transaction records and subtracting credit/refund amounts from it.

This is a Trailer field, and is automatically computed by the class.

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The allowable number of significant digits as well as the positioning of any implied decimal point is dictated by the designated CurrencyCode configuration setting. In the United States (default), the number of allowable significant digits is seven. Thus the maximum TransactionAmount is "9999999", yielding a US dollar amount of $99,999.99. This field may not contain a negative number.

RecordCount
int (read-only)

Default Value: 0

Total number of records sent including Header, Parameter, and Trailer.

This field contains a batch (transaction) record count, calculated by the class. This field is supplied in the Batch Trailer Record and contains the total number of transactions in the batch -- including Header, Parameter, Detail(s), and Trailer records. This field reflects the actual number of records that have been sent, and is independent of the number of detail records sent in the settlement.

This is a Trailer field, and is automatically computed by the class.

Constructors

public TSYSBatchInfo();



TSYSMerchant Type

Contains the merchant's setup information.

Remarks

This type contains the merchant's setup information. This includes the merchant identification, bank routing information, language, location, and other fields that identify the merchant to the TSYS server. Some of the information in these fields will be included on the customer's credit card statement, such as the merchant's Name, State, ServicePhone, etc.

Fields

BankId
String

Default Value: ""

The number which identifies the merchant's bank or processor.

This field contains a six digit Visa assigned Bank Identification Number issued by the merchant's member bank or processor. The acquirer Bank Identification Number (BIN) identifies the member bank that signed the merchant using the Point of Sale application. This field may not remain zero-filled.

Note, the TSYS Server uses the Merchant's BankId and Number to route the transaction to the proper back-end processor. If either number is incorrect (or if you're using test numbers and the test system is offline) the TSYS server will immediately disconnect, and will not supply an error message.

CategoryCode
String

Default Value: ""

Classifies a merchant by the type of store.

This four digit field contains a number assigned by the signing member or processor to identify a merchant industry classification. This value is similar to the Standard Industry Code (SIC).

City
String

Default Value: ""

Merchant's City

For Retail (Card Present) transactions, this field should contain the city in which the merchant is located. This is an optional field. However if it is specified, the Name and State must also be specified.

Note: For Direct Marketing and E-Commerce transactions, for Visa, Discover, and Amex, this field is ignored. ServicePhone is used for those industries instead of City (this does not apply to MasterCard).

Note: This field must contain the same data used in the batch settlement. The first character of this field may not be a space. This field may contain alphanumeric characters, but not punctuation or control characters. The maximum length of this field is 13 characters.

CountryCode
String

Default Value: "840"

Identifies the country where the merchant is located.

This field contains a three digit number assigned by the signing member or processor to identify the merchant's location country. These codes are specified by ISO-3166-1. For the United States, use "840".

CurrencyCode
String

Default Value: "840"

Identifies the type of currency used by the merchant.

This field contains a three digit number assigned by the signing member or processor to identify the merchant's authorization currency. For US Dollars, use "840".

Language
String

Default Value: "00"

Designates the language that response messages will be returned in.

This field contains a two digit language indicator. This value designates the language to be used in formatting the authorization response text message. This field may be changed from transaction to transaction. The following table provides a summary of the languages currently supported.

IndicatorLanguage
00English.
01Spanish.
02Portuguese.
03Reserved for Irish.
04Reserved for French.
05Reserved for German.
06Reserved for Italian.
07Reserved for Dutch.

Name
String

Default Value: ""

Name of the merchant.

This 25 character field contains the merchant name provided by the signing member or processor. The name provided must correspond to the name printed on the customer receipt. The first character of this field may not be a space. This field must contain the same value in both authorization and batch settlement.

This is an optional field. However if this field is specified, the State and City (Retail) or State and ServicePhone (E-Commerce) must also be specified.

This field may contain alphanumeric and punctuation characters. The maximum length of this field is 25 characters.

Number
String

Default Value: ""

A unique number used to identify the merchant within the VisaNet system.

This 12 digit field contains a unique number which is assigned by the signing merchant's bank or processor. This field is used to identify the merchant within the VisaNet system. This number will be right-justified and zero-filled.

Note, the TSYS Server uses the Merchant's BankId and Number to route the transaction to the proper back-end processor. If either number is incorrect (or if you're using test numbers and the test system is offline) the TSYS server will immediately disconnect, and will not supply an error message.

Phone
String

Default Value: ""

Merchant's phone number.

This field contains the Merchant's business phone number. This can be the same as the customer service phone number.

ServicePhone
String

Default Value: ""

Merchant's customer service number.

This field contains a merchant telephone number that the cardholder may call for service. It should contain an 11-character phone number in XXX-XXXXXXX format. The initial "1" for long-distance or toll-free calls should be omitted. For instance, "800-1234567" is acceptable, while "1-800-1234567" is not. The fourth character position MUST contain a hyphen. Hyphens may not be used anywhere else.

This field is used for authorizations in the Hotel, Auto Rental, and Direct Marketing Industry Types, and in the settlement for all industry types.

State
String

Default Value: ""

State or province that the merchant is located in.

This two character field contains the merchant state or province provided by the signing member or processor. This field must contain the same data used in the batch settlement.

This is an optional field. However if it is specified the Merchant Name and City (Retail) or Name and ServicePhone (E-Commerce) must also be specified.

StoreNumber
String

Default Value: ""

Used to identify a specific merchant's store within the VisaNet system.

This four digit field contains a number assigned by the signing member, processor, or merchant to identify a specific merchant store within the VisaNet system. This field must be right-justified and zero-filled.

StreetAddress
String

Default Value: ""

Merchant's street address.

This 25 character field contains the Merchant's street address, which should include the street number, street name, and other identifiers of the precise location, such as a building or unit number.

TerminalNumber
String

Default Value: ""

Used to identify a unique terminal within a merchant location.

This four digit field contains a number assigned by the signing member, processor, or merchant to identify a unique terminal within a merchant location. Because the terminal number submitted in the authorization request is echoed back to the terminal in the authorization response, this field may additionally be used in controller-based environments to assist in the matching and routing of authorization request and response messages at the point of concentration. This field must be right-justified and zero-filled.

TimeZone
String

Default Value: "705"

Specifies the GMT offset used to calculate the local time within the VisaNet system.

This filed contains a three digit code used to calculate the local time within the VisaNet authorization system. The differential is calculated by the signing member or processor, providing the standard local time zone differential from Greenwich Mean Time (GMT). The first digit specifies the direction of the differential and offset increment as well as whether daylight savings is observed. The last two digits specify the magnitude of the differential. For example, North Carolina would be "705", California would be "708", and Arizona would be "107" (daylight savings not observed). The following table provides a brief summary of the Time Zone Differential Codes.

Byte #1:

ValueMeaning
0Positive offset, in hours, ahead of GMT.
1Negative offset, in hours, behind GMT.
2Positive offset, in 15 minute increments, ahead of GMT.
3Negative offset, in 15 minute increments, behind GMT.
4Positive offset, in 15 minute increments, ahead of GMT, in cities participating in daylight savings.
5Negative offset, in 15 minute increments, behind GMT, in cities participating in daylight savings.
6Positive offset, in hours, ahead of GMT, in cities participating in daylight savings.
7Negative offset, in hours, behind GMT, in cities participating in daylight savings.
8-9RESERVED.
Bytes #2-3:

If byte #1 designates an area with offset in hours, (0, 1, 6, 7) the value of these bytes should be between "00" and "12", inclusive. If byte #1 designates an area with offset in 15 minute increments, (2-5) the value of these bytes should be between "00" and "48", inclusive.

Zip
String

Default Value: ""

Zip code where the merchant that initiated this transaction is located.

This field contains the nine character code used to further identify the merchant location. Within the United States, the five or nine digit zip code of the address of the store location is used. Outside of the United States, this field will be assigned by the signing member or processor.

This field is alphanumeric, with a maximum length of nine characters. Spaces and dashes are automatically stripped when the field is set.

Constructors

public TSYSMerchant();



TSYSRecordType Type

Detail record storage type.

Remarks

This type contains the XML aggregate for a single transaction, as well as an XML aggregate of any additional addenda to be added to the record at settlement. The fields contained by this type are listed below.

Fields

AddendumAggregate
String

Default Value: ""

Optional Detail Record Addendum data (such as Level2 or Level3 data)

The DetailAggregate field contains an xml aggregate of the transaction retrieved from the TSYSECommerce, TSYSRetail, or TSYSDetailRecord class's GetDetailAggregate method. If you wish to accept corporate purchasing cards you will also need to send Level2, and possibly Level3 addendum data along with the DetailAggregate. The AddendumAggregate field takes an xml aggregate containing either Level2 or Level3 addendum data, which will be added to the DetailAggregate. The addendum aggregate may be created with either the TSYSLevel2 or TSYSLevel3 classs, and then returned via those class's GetAddendum method.

For example:

// First authorize the credit card TSYSECommerce1.TransactionAmount = "53"; TSYSECommerce.Authorize(); // Then, put the result into the settlement component TSYSSettle.DetailRecords.Add(new TSYSRecordType()); TSYSSettle.DetailRecords[0].DetailAggregate = TSYSECommerce.GetDetailAggregate(); // Now build the Level3 Extension. // The following properties are required for a Visa Corporate Purchasing Card: TSYSLevel3.CardType = tctVisa; TSYSLevel3.LocalTax = "EXEMPT"; TSYSLevel3.NationalTax = "0"; TSYSLevel3.PurchaseOrder = "purchOrdNum"; TSYSLevel3.MerchantTaxId = "merchantTaxId"; // Merchant VAT Registration Number TSYSLevel3.CustomerTaxId = "customerTaxId"; // Customer VAT Registration Number TSYSLevel3.CommodityCode = "fake"; TSYSLevel3.DiscountAmount = "0"; TSYSLevel3.FreightAmount = "0"; TSYSLevel3.DutyAmount = "0"; TSYSLevel3.DestinationZip = "27709"; TSYSLevel3.ShipFromZip = "27709"; TSYSLevel3.DestinationCountry = "840"; TSYSLevel3.TaxInvoiceNumber = "VATInvoiceRefNo"; TSYSLevel3.OrderDate = "060526"; TSYSLevel3.FreightTaxAmount = "0"; TSYSLevel3.FreightTaxRate = "0"; // Begin adding line items: TSYSLevel3.LineItems.Add(new TSYSLineItem()); TSYSLevel3.LineItems[0].CommodityCode = "fake"; TSYSLevel3.LineItems[0].Description = "hardware"; TSYSLevel3.LineItems[0].ProductCode = "productCode123"; TSYSLevel3.LineItems[0].Quantity = 1; TSYSLevel3.LineItems[0].Units = ""; TSYSLevel3.LineItems[0].UnitCost = "33"; TSYSLevel3.LineItems[0].TaxAmount = "0"; TSYSLevel3.LineItems[0].TaxRate = "0"; TSYSLevel3.LineItems[0].DiscountAmount = "0"; TSYSLevel3.LineItems[0].Total = "33"; TSYSLevel3.LineItems.Add(new TSYSLineItem()); TSYSLevel3.LineItems[1].CommodityCode = "fake"; TSYSLevel3.LineItems[1].Description = "hardware"; TSYSLevel3.LineItems[1].ProductCode = "productCode124"; TSYSLevel3.LineItems[1].Quantity = 1; TSYSLevel3.LineItems[1].Units = ""; TSYSLevel3.LineItems[1].UnitCost = "20"; TSYSLevel3.LineItems[1].TaxAmount = "0"; TSYSLevel3.LineItems[1].TaxRate = "0"; TSYSLevel3.LineItems[1].DiscountAmount = "0"; TSYSLevel3.LineItems[1].Total = "20"; // Finally, add the Level3 addendum to the same index in the settlement. TSYSSettle.DetailRecords[0].AddendumAggregate = TSYSLevel3.GetAddendum();

Note that you may mix corporate and non-corporate card transactions in the same settlement. It is not necessary that all DetailAggregates have a corresponding AddendumAggregate.

DetailAggregate
String

Default Value: ""

Set this field with xml aggregates of the transactions you wish to settle.

To settle previously authorized transactions, this field must be set with the xml aggregate returned from the TSYSRetail, or TSYSECommerce class's GetDetailAggregate method. For instance:

TSYSSettle.DetailRecords.Add(new TSYSRecordType(TSYSRetail.GetDetailAggregate()));

On occasion, you may need to modify these aggregates before sending them to settlement. For instance, if you're running a restaurant you may need to add a gratuity to the charge. If you're accepting installment payments, you will need to add the installment info. To accomplish this, you may use the TSYSDetailRecord class.

For example, to add a gratuity to a charge:

DetailRecord.ParseAggregate(TSYSRetail.GetDetailAggregate()) DetailRecord.Gratuity = "500" DetailRecord.SettlementAmount = DetailRecord.AuthorizedAmount + DetailRecord.Gratuity TSYSSettle.DetailAggregate[0] = DetailRecord.GetDetailAggregate()

To settle a Passenger Transport transaction authorized with the sitPassengerTransport IndustryType, you must use the TSYSDetailRecord class to add the number of this passenger and the total count of all passengers in the authorization code. For instance, if the authorization transaction included "Three passengers", and this is the first passenger, then the passenger number will be 1, and the passenger count 3. An example is included below:

TSYSRetail.IndustryType = sitPassengerTransport TSYSRetail.Authorize() DetailRecord.ParseAggregate TSYSRetail.GetDetailAggregate() DetailRecord.PassengerCount = 3 DetailRecord.PassengerNumber = 1 DetailRecord.Config("RestrictedTicketIndicator=True") DetailRecord.Config("TicketNumber=8382152100395") DetailRecord.Config("PassengerName=John Smith") DetailRecord.Config("DepartureDate=072117") DetailRecord.Config("Origin=JFK") DetailRecord.Config("Leg1=Carrier=DL;ServiceClass=C;StopOver=X;Destination=LAX") TSYSSettle1.IndustryType = sitPassengerTransport TSYSSettle1.Config("TravelAgencyCode=12345678") 'if ticket was issued by a travel agency TSYSSettle1.Config("TravelAgencyName=Travel and Tours") 'if ticket was issued by a travel agency TSYSSettle1.DetailAggregate[5] = DetailRecord.GetDetailAggregate()

Constructors

public TSYSRecordType();



public TSYSRecordType( detailAggregate);



public TSYSRecordType( detailAggregate,  addendumAggregate);



TSYSSettleResponse Type

Contains the response to a batch settlement.

Remarks

This type contains the results of a batch settlement made with the TSYSSettle class. The fields contained by this type are listed below.

Fields

Code
String (read-only)

Default Value: ""

Indicates the status of the batch transmission.

This field contains the two character response code returned by the host indicating the status of the Batch Settlement attempt. The following table provides a summary of the response returned by the TSYS host:

GBGood Batch.
QDDuplicate Batch.
RBRejected Batch.

NetDeposit
String (read-only)

Default Value: ""

Total of purchases minus credits and voids.

This field contains the net deposit generated by the terminal. It should equal the Batch.NetDeposit field, which is computed by the class. The net deposit total is generated by adding the settlement amounts of all detail transaction records and subtracting credit amounts from it. This field is represented as an absolute value and cannot be negative.

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The allowable number of significant digits as well as the positioning of any implied decimal point is dictated by the designated CurrencyCode configuration setting. In the United States (default), the number of allowable significant digits is seven. Thus the maximum TransactionAmount is "9999999", yielding a US dollar amount of $99,999.99. This field may not contain a negative number.

Number
int (read-only)

Default Value: 0

Batch number that belongs to this response.

This field should be compared to the BatchNumber in order to match a response with a given Batch Settlement. If running in synchronous mode, this field should always be identical to BatchNumber.

RecordCount
int (read-only)

Default Value: 0

Number of records received by the server in this batch.

This field contains the total number of records received by the host -- including Header, Parameter, Detail, and Trailer records. In the case of a Code of "GB" (Good Batch), the value returned should match the value in the Batch.RecordCount field. In the case of a Code of "RB" (Rejected Batch), this field will reflect the total number of records received until the point of failure. RecordCount + 1 will reveal the sequential number of the transaction record responsible for causing a rejected batch condition, and should be identical to the Error.SequenceNumber field in this case.

Text
String (read-only)

Default Value: ""

Contents of this field are dependent upon the Code.

This nine character field will contain the text "_ACCEPTED" when a settlement batch has been successfully received by the host. However, the Point of Sale (POS) device should examine only the Code to determine the status of a particular Batch Settlement.

TransmissionDate
String (read-only)

Default Value: ""

Date that the batch was settled.

This field is reserved, pending the future upgrade to a higher protocol version.

Constructors

public TSYSSettleResponse();



Config Settings (Tsyssettle Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

TSYSSettle Config Settings

AmexAggregatorName:   Contains the name of the Payment Service Provider/Aggregator or Facilitator participating in Amex OptBlue program.

This configuration setting is used for Amex OptBlue participators to determine the name of the Payment Service Provider, Aggragator or Facilitator. You need to set this field for transactions originating from an Aggregator, Payment Service Provider or Facilitator. The maximum length of this field is 12-characters and it must not contain spaces.

CombineRecords:   Whether settlement records are being concatenated into a single settlement block.

Default value of this configuration setting is True meaning that settlement records will be combined together to optimize message size and expedite the overall settlement process by minimizing the total number of settlement packets to be transmitted. Setting this to False will send each record as a separate settlement packet during the batch settlement process.

DeviceCode:   A 1-character value used to identify the device and type of the merchant submitting the settlement batch.

This configuration setting contains a 1-character value used to identify the device and type of the merchant submitting the settlement batch. The table below provides a summary of currently defined values. The default value for this setting is "Q".

0Unknown or unsure.
BAutomated Teller Machine (ATM).
CPersonal Computer (PC)
DDial terminal
EElectronic Cash Register (ECR)
GMobile Payment Acceptance.
HTSYS Hosted Payment.
IIn-store processor
JMulti Payment Acceptance.
MMainframe
PPOS-Port
QThird-party developer
RPOS-Port
SPOS Partner
TCounter Payment Acceptance.
WWeb Payment Acceptance.
XEMV Mode Contact and/or Contactless terminal (Must be used on all EMV mode chip card transactions).
ZSuppress PS2000/Merit fields

GenKey:   A randomly generated string of alphanumeric characters identifying the terminal.

This field is used to specify retrieve or specify a GenKey value for a terminal. This field will be populated after a successful call to ActivateTerminal is made. The Genkey must be stored in the POS device, must be sent with every request to the TSYS Acquiring Solutions host after authentication (by setting this field), and will be checked against the terminal hierarchy. A GenKey value is required when processing transactions using Voltage Encryption or Tokenization.

HeartlandDeviceId:   Specifies a device ID to uniquely identify each terminal (card data entry device).

The specified value must be 4 characters or less. Note that this value is required to comply with MasterCard's Authorization Data Accuracy Initiative.

HeartlandEncryptionMode:   Specifies the encryption mode to use in Heartland transactions.

This field allows you to specify the Heartland E3 encryption mode used when processing Heartland transactions. The available values are (descriptions describe the data that will be encrypted):

0No Encryption (default)
1Merchant ID and Card Data (reserved for future use)
2Merchant ID, Card Data, and Card Security Code (reserved for future use)
3Card Data Only

Note you will also need to set Processor to 1 (Heartland) and HeartlandKeyBlock if you wish to process Heartland E3 transactions.

HeartlandKeyBlock:   Specifies the key block used to encrypt the data.

This field allows you to specify the key block that was used to encrypt the data specified by HeartlandEncryptionMode. This value will be obtained from an E3 magnetic stripe reader and is used by Heartland to decrypt the encrypted data.

LocationNumber:   Provides additional information on the location of the merchant.

This field contains a five character value providing additional information on the location of the merchant. Unless otherwise specified by the merchant's bank or processor, this field should be defaulted to "00001".

This is a Parameter Property, and only needs to be set once for a single Batch Settlement transaction.

Port:   The port to which transactions are posted.

This is port that this class connects to on the server. The default value for TSYS is 5003 for the live server, and 5004 for the test server. The default live server values for Heartland is 22341 for Authorization and 22342 for Settlement. The Heartland test server values are 12341 for Authorization and 12342 for Settlement.

Processor:   Specifies the Processor you are connecting to.

This field allows you to specify the processor that you are connecting to (thus allowing the class to correctly generate the request and parse the response). The available values are:

0TSYS (default)
1Heartland

Note that when set, this property will set the Server and Port to the default values for the specified processor. Additionally, this config must be set prior to setting Card to ensure the card data is formatted correctly.

Server:   The server to which transactions are posted.

This is name of the server to which all transactions are posted. Do not use an IP address, use the actual name, as a server's IP address may change. The default (Live) TSYS server is "ssl2.vitalps.net", but you may use "ssltest.tsysacquiring.net" for testing. The default (Live) Heartland server is "txns.secureexchange.net", but you may use "test.txns.secureexchange.net" for testing. Note that there are several BankIds and Numbers that will always run in test mode regardless of whether you are using the live server. See the included demos for examples.

TravelAgencyCode:   Contains the Travel Agency IATA Code if the ticket was issued by a travel agency.

You do not need to set this field if the merchant is not a travel agency. The default value of this field is space-filled.

TravelAgencyName:   Contains the Travel Agency Name if the ticket was issued by a travel agency.

You do not need to set this field if the merchant is not a travel agency. The default value of this field is space-filled.

UseHTTPPOST:   Tells the component whether or not to use HTTP POST when transmitting the Batch for Settlement.

Default value of this configuration setting is False meaning that settlement records will be sent using Socket connection. When True, the component will submit the whole batch at once using POST. You must also set Server to the correct end-point for POST transmission.

Note that the maximum batch size that can be transmitted via POST is 2MB.

TCPClient Config Settings

CloseStreamAfterTransfer:   If true, the component will close the upload or download stream after the transfer.

This setting determines whether the input or output stream is closed after the transfer completes. When set to True (default), all streams will be closed after a transfer is completed. In order to keep streams open after the transfer of data, set this to False. the default value is True.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallListener:   If true, the component binds to a SOCKS firewall as a server (TCPClient only).

This entry is for TCPClient only and does not work for other components that descend from TCPClient.

If this entry is set, the class acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.

RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.

The connection to the firewall is made by calling the Connect method.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback
UseNTLMv2:   Whether to use NTLM V2.

When authenticating with NTLM, this setting specifies whether NTLM V2 is used. By default this value is False and NTLM V1 will be used. Set this to True to use NTLM V2.

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the class will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class throws an exception.

When set to 0 (default) the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the OCSP URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class throws an exception.

When set to 0 (default) the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLContextProtocol:   The protocol used when getting an SSLContext instance.

Possible values are SSL, SSLv2, SSLv3, TLS and TLSv1. Use it only in case your security provider does not support TLS. This is the parameter "protocol" inside the SSLContext.getInstance(protocol) call.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Note: This value must be set after SSLProvider is set.

Example values: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA; SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA"); Possible values when SSLProvider is set to latform include:

  • SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_RC4_128_SHA
  • SSL_RSA_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_WITH_DES_CBC_SHA
  • SSL_RSA_WITH_NULL_MD5
  • SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
  • SSL_DHE_RSA_WITH_DES_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
  • SSL_RSA_WITH_NULL_SHA
  • SSL_DH_anon_WITH_RC4_128_MD5
  • SSL_RSA_WITH_RC4_128_MD5
  • SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_NULL_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA256 (Not Recommended)
  • TLS_ECDH_anon_WITH_RC4_128_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA (Not Recommended)
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_EXPORT_WITH_RC4_40_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_RC4_128_SHA
  • TLS_ECDH_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDH_anon_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_RSA_WITH_NULL_SHA256
  • TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
  • TLS_KRB5_WITH_RC4_128_MD5
  • TLS_ECDHE_ECDSA_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_RC4_128_SHA
  • TLS_EMPTY_RENEGOTIATION_INFO_SCSV
  • TLS_KRB5_WITH_3DES_EDE_CBC_MD5
  • TLS_KRB5_WITH_RC4_128_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_NULL_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_DES_CBC_MD5
  • TLS_KRB5_EXPORT_WITH_RC4_40_MD5
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
  • TLS_ECDH_anon_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_NULL_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA

Possible values when SSLProvider is set to Internal include:

  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30) [Platform Only]
SSL2 12 (Hex 0C) [Platform Only]

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLTrustManagerFactoryAlgorithm:   The algorithm to be used to create a TrustManager through TrustManagerFactory.

Possible values include SunX509. This is the parameter "algorithm" inside the TrustManagerFactory.getInstance(algorithm) call.

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class throws an exception.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The class will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the class does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseDaemonThreads:   Whether threads created by the class are daemon threads.

If set to True (default), when the class creates a thread, the thread's Daemon property will be explicitly set to True. When set to False, the class will not set the Daemon property on the created thread. The default value is True.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.

This setting is set to false by default on all platforms.

Trappable Errors (Tsyssettle Class)

TSYSSettle Errors

501   Data field invalid length.
502   Data field invalid format.
503   Data field out of range.
504   Luhn digit check failed.
505   Card date invalid.
506   Card expired.
507   Card type unknown.
509   No gateway specified.
511   Invalid data entered.
512   Truncated response.
513   Invalid response.
517   Response length mismatch.
518   LRC check failed.
519   Corrupt response.
520   Response packet empty.
521   Response truncated.
522   Host disconnected.
523   No response from host.
524   Server error response.
526   Invalid timeout value.
527   Vital/TSYS returned an error response.
535   Signature verification failed.
544   Error building packet.
593   Missing or erroneous property value. Cannot send transaction.
594   Response received before transmission completed.
595   Prematurely disconnected (check Number and BankId).
596   Pending responses max number exceeded (Interleaved).
597   Pending response timeout (Interleaved).
606   One or more detail records are empty.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
303   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).