FDMSOmahaDetailRecord Class

Properties   Methods   Events   Config Settings   Errors  

The FDMSOmahaDetailRecord class is a tool used to create off-line transactions (Captures, Refunds, Revisions, and Voids) to be settled by the FDMSOmahaBatchMgr class.

Syntax

dpaymentssdk.Fdmsomahadetailrecord

Remarks

Captures (for Auth Only transactions), Refunds, Voids, and Revisions are all off-line transactions. This means that there is no live response from the server for the transaction. Instead you will add the transactions to the FDMSOmahaBatchMgr component to be sent when the batch is closed.

To capture an AuthOnly transaction, first parse the aggregate obtained from the auth only transaction. FDMSOmahaDetailRecord.ParseAggregate(FDMSOmahaRetail1.GetDetailAggregate())

Once the aggregate is parsed, you must then set the BatchNumber, TransactionNumber, and TransactionType. FDMSOmahaDetailRecord.BatchNumber = 1 FDMSOmahaDetailRecord.TransactionNumber = 1 FDMSOmahaDetailRecord.TransactionType = ttCapture

Finally, the aggregate can be added to the FDMSOmahaBatchMgr component to be sent when the batch is closed. FDMSOmahaBatchMgr.DetailRecords.Add(new FDMSOmahaRecordType(FDMSOmahaDetailRecord.GetDetailAggregate()))

Void and Revision transactions are performed very much like Capture transactions. First, the aggregate is added to the FDMSOmahaDetailRecord component. The TransactionType can then be set to either ottVoid or ottRevise. For revision transactions, you can update the transaction details (such as SettlementAmount). Note that neither of these transaction types allow you to set BatchNumber or TransactionNumber as they have already been assigned to the transaction when it was marked for capture (after a Sale transaction or after a Capture transaction).

A common revision request is adding a TipAmount to charge. Below is an example of adding a TipAmount to a restaurant transaction. FDMSOmahaDetailRecord.ParseAggregate(FDMSOmahaRestaurant1.GetDetailAggregate()) FDMSOmahaDetailRecord.TipAmount = "5.00" //The SettlementAmount must include the sum of the TipAmount and the AuthorizedAmount //If the transaction was originally for $10.00 and a $5.00 tip is added the new //SettlementAmount should be "15.00" FDMSOmahaDetailRecord.SettlementAmount = "15.00" FDMSOmahaBatchMgr.DetailRecords.Add(New FDMSRecordType(FDMSOmahaDetailRecord.GetDetailAggregate()))

A Credit Card Refund is not based on a prior transaction. Instead, the FDMSOmahaDetailRecord class is used to construct a completely new aggregate. To perform a Credit Card Refund, first set the IndustryType to the desired industry and set TransactionType to ttRefund. The below example is for a Retail transaction. FDMSOmahaDetailRecord.IndustryType = itRetail FDMSOmahaDetailRecord.TransactionType = ttRefund

Next, set the card and transaction data along with the amount of the refund (via SettlementAmount). FDMSOmahaDetailRecord.Card.EntryDataSource = edsManualEntryTrack1Capable FDMSOmahaDetailRecord.Card.Number = "4444333322221111" FDMSOmahaDetailRecord.Card.ExpMonth = 1 FDMSOmahaDetailRecord.Card.ExpYear = 2013 FDMSOmahaDetailRecord.BatchNumber = 1 FDMSOmahaDetailRecord.TransactionNumber = 2 FDMSOmahaDetailRecord.SettlementAmount = "1.00"

Finally, the aggregate can be added to the FDMSOmahaBatchMgr component to be sent when the batch is closed. FDMSOmahaBatchMgr.DetailRecords.Add(new FDMSOmahaRecordType(FDMSOmahaDetailRecord.GetDetailAggregate()))

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

AuthCodeAuthorization Code returned from the server.
AuthorizedAmountOriginal amount authorized before any reversals.
AVSResultContains the Address Verification System result code.
BatchNumberNumber identifying the batch (assigned by the POS device).
BeverageAmountThe amount of the restaurant beverage purchase.
CardContains the customer's credit card information.
CustomerAddressThe customer's street number of the billing address.
CustomerCodeMerchant-assigned customer code.
CustomerZipCodeCustomer's zip code (or postal code if outside of the USA).
DeviceIdPOS Device Identification.
DirectMarketingTypeSpecifies the type of transaction to process.
FoodAmountThe amount of the restaurant food purchase.
IndustryTypeCode which indicates the industry the merchant is engaged in.
InvoiceNumberMerchant-defined invoice number.
OperatorIDMerchant-assigned operator code identifying the operator who entered the transaction.
OrderNumberMerchant-defined number identifying the purchase or service.
SettlementAmountThe amount that the customer will be charged.
ShipToZipCodeThe zip code where the purchased items will be shipped to.
TaxAmountDollar-and-cent amount of tax for the purchase.
TipAmountThe amount of the tip given at a restaurant for the purchase.
TPPIDThird Party Processor Identifier assigned by FDMS.
TransactionIdContains the Transaction Identifier or MasterCard Reference Number.
TransactionNumberThe transaction number for the current transaction.
TransactionTypeIndicates transaction type for this detail record.
VisaIdentifierAdditional merchant identification field used when authorizing Visa transactions.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
GetDetailAggregateReturns an aggregate containing details of this transaction, which is then used for settlement.
ParseAggregateParses the aggregate returned from another class's GetDetailAggregate method.
ResetClears all properties to their default values.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ErrorInformation about errors during data delivery.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

ACIRequested Authorization Characteristics Indicator (ACI).
CustomerAddressThe customer's street number of the billing address.
CustomerZipCustomer's zip code (or postal code if outside of the USA).
OperatorIDMerchant-assigned Operator code identifying the operator who entered the transaction.
UseEncryptionChannelSpecifies whether First Data should use the SST Encryption Channel.
CloseStreamAfterTransferIf true, the class will close the upload or download stream after the transfer.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallListenerIf true, the class binds to a SOCKS firewall as a server (TCPClient only).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseNTLMv2Whether to use NTLM V2.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLContextProtocolThe protocol used when getting an SSLContext instance.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
SSLTrustManagerFactoryAlgorithmThe algorithm to be used to create a TrustManager through TrustManagerFactory.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
GUIAvailableTells the class whether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
UseDaemonThreadsWhether threads created by the class are daemon threads.
UseInternalSecurityAPITells the class whether or not to use the system security libraries or an internal implementation.

AuthCode Property (FDMSOmahaDetailRecord Class)

Authorization Code returned from the server.

Syntax


public String getAuthCode();


public void setAuthCode(String authCode);

Default Value

""

Remarks

This field contains the Authorization Code returned from the server after a successful authorization.

AuthorizedAmount Property (FDMSOmahaDetailRecord Class)

Original amount authorized before any reversals.

Syntax


public String getAuthorizedAmount();


Default Value

""

Remarks

This field contains the transaction amount from the original authorization request message. If a partial authorization occurred, this field will contain the partially authorized amount.

If any additional authorizations have been made, or the SettlementAmount is different than the originally authorized amount (due to items out of stock or adding a TipAmount) this property should still reflect the original unchanged amount from the initial authorization request.

This property is read-only.

AVSResult Property (FDMSOmahaDetailRecord Class)

Contains the Address Verification System result code.

Syntax


public String getAVSResult();


public void setAVSResult(String AVSResult);

Default Value

""

Remarks

This one character field contains the Address Verification System (AVS) result code. An AVS result code can provide additional information concerning the authentication of a particular transaction for which cardholder address verification was requested. An AVS result code of "0" will be returned in the response message when no address verification has been requested. The value returned should be stored and submitted as part of the batch settlement. The valid AVS codes are listed in the table below.

Valid AVS Codes:

CodeDescription
0Address verification was not requested.
ACustomer's address matches, zip does not.
EAVS error / Ineligible (not a mail/phone order)
GAddress information not verified for international transaction. (Non-US Issuer does not participate).
IVer Unavailable - Address information not verified for international transaction.
MExact Match - Address match for international transaction.
NNo match on customer's address or zip.
RRetry - Issuer system unavailable.
SService not supported by issuer.
UAddress information is unavailable.
WWhole nine digit zip matches, but the address does not.
XExact AVS match, nine digit zip.
YExact AVS match, five digit zip.
ZFive digit zip matches, but the address does not.

If supporting international transactions, six additional International Address Verification Service (IAVS) codes are introduced:

BStreet address match for international transaction. Postal code not verified due to incompatible formats (acquirer sent both street address and postal code).
CStreet address and postal code not verified for international transaction due to incompatible formats (acquirer sent both street address and postal code).
DStreet addresses and postal codes match for international transaction.
IAddress information not verified for international transaction.
MStreet addresses and postal codes match for international transaction.
PPostal codes match for international transaction. Street address not verified due to incompatible formats (acquirer sent both street address and postal code).

BatchNumber Property (FDMSOmahaDetailRecord Class)

Number identifying the batch (assigned by the POS device).

Syntax


public int getBatchNumber();


public void setBatchNumber(int batchNumber);

Default Value

0

Remarks

This property is used to specify the number identifying the batch that the transaction will be processed in.

This is a consecutive numbering system assigned by the POS application that identifies a batch of transactions. The batch number must increment each time a batch is successfully closed. When the batch number reaches 9, it is the responsibility of the application to recycle the batch number to 0. The Host will allow a variety of sequencing of the batch number, but you cannot have the same batch number in consecutive batches. For example: The application can close batch 2 and open the next batch with number 5, but you cannot close batch 2 then re-open batch 2 without a different batch number in between. If you should receive a message of "INV BATCH SEQ", this usually indicates the current batch number is the same as the previous batch number closed or there is a batch still open on the Host and the application is trying to process a transaction with a different batch number. If a batch is left open for more than 45 days, (45 days from the open date, not last activity date), the system will automatically purge the batch and it will not be retrievable.

Valid values: 0-9

BeverageAmount Property (FDMSOmahaDetailRecord Class)

The amount of the restaurant beverage purchase.

Syntax


public String getBeverageAmount();


public void setBeverageAmount(String beverageAmount);

Default Value

""

Remarks

This property contains the total dollar-and-cent amount ($$$.cc) of the restaurant beverage purchase (other miscellaneous amount can also be included).

Note: This is a reporting field only. Therefore the BeverageAmount must be accounted for within TransactionAmount.

Note: The decimal point is required to be specified within the amount.

Card Property (FDMSOmahaDetailRecord Class)

Contains the customer's credit card information.

Syntax


public CCCard getCard();


public void setCard(CCCard card);

Remarks

This must be set to an instance of the CCCard type, which will contain information about the credit card to be charged. This may include a MagneticStripe for swiped cards, or a Number, ExpMonth, and ExpYear for manually entered cards. (EntryDataSource indicates which set of properties will be used). See the CCCard type for more information.

This property is not available at design time.

Please refer to the CCCard type for a complete list of fields.

CustomerAddress Property (FDMSOmahaDetailRecord Class)

The customer's street number of the billing address.

Syntax


public String getCustomerAddress();


public void setCustomerAddress(String customerAddress);

Default Value

""

Remarks

This field is used as part of the Address Verification Service (AVS) and contains the customer's street number as it appears on their monthly statement. Only the street number is allowed in this field. Street number, street name, apartment number, city and state are not included, and the zip code is set in the CustomerZip property.

The maximum length of this configuration setting is 5 characters.

CustomerCode Property (FDMSOmahaDetailRecord Class)

Merchant-assigned customer code.

Syntax


public String getCustomerCode();


public void setCustomerCode(String customerCode);

Default Value

""

Remarks

This property is used to specify a merchant-assigned code identifying the customer of the transaction.

Note: This is a mandatory field for supporting Amex Level 2 Transactions.

CustomerZipCode Property (FDMSOmahaDetailRecord Class)

Customer's zip code (or postal code if outside of the USA).

Syntax


public String getCustomerZipCode();


public void setCustomerZipCode(String customerZipCode);

Default Value

""

Remarks

This field is used as part of the Address Verification Service (AVS). If the customer resides within the United States, this field should contain the five or nine digit zip code as it appears on the customer's monthly statement. If the customer's billing address is outside of the United States, this field should contain the customer's postal code.

This field is optional and has a maximum length of 9 characters.

DeviceId Property (FDMSOmahaDetailRecord Class)

POS Device Identification.

Syntax


public String getDeviceId();


public void setDeviceId(String deviceId);

Default Value

""

Remarks

Merchant-assigned code identifying the device at the merchant's location.

This field is required if there is one MerchantNumber assigned to more than one terminal at a merchant's location.

The maximum length of this property is 4 characters.

DirectMarketingType Property (FDMSOmahaDetailRecord Class)

Specifies the type of transaction to process.

Syntax


public int getDirectMarketingType();


public void setDirectMarketingType(int directMarketingType);


Enumerated values:
  public final static int dmECommerce = 0;
  public final static int dmMOTO = 1;
  public final static int dmRecurring = 2;
  public final static int dmInstallment = 3;

Default Value

0

Remarks

This property is used to specify the type of direct marketing transaction you wish to process.

The following types of transactions are supported by this class:

dmECommerce (0)This is an E-Commerce transaction, and consists of goods or services sold online over the Internet.
dmMOTO (1)This is a Mail Order or Telephone Order transaction, and consists of goods sold through the mail or over the phone.
dmRecurring (2)This is a recurring payment, such as a magazine subscription or health club membership.
dmInstallment (3)This is an installment payment. For example, "Three easy payments of $19.95".

All of these transactions are card-not-present transactions. If you wish to authorize card-present transactions, you must use the FDMSOmahaRetail class.

Note: For Installment payments, Omaha does not support specifying the Installment Number and Installment Count. Therefore it is up to the merchant to maintain this information internally. Thus the only additional requirement to send an Installment payment is to set DirectMarketingType to dmInstallment.

FoodAmount Property (FDMSOmahaDetailRecord Class)

The amount of the restaurant food purchase.

Syntax


public String getFoodAmount();


public void setFoodAmount(String foodAmount);

Default Value

""

Remarks

This property contains the total dollar-and-cent amount ($$$$$.cc) of the restaurant food purchase.

Note: This is a reporting field only. Therefore the FoodAmount must be accounted for within TransactionAmount.

Note: The decimal point is required to be specified within the amount.

IndustryType Property (FDMSOmahaDetailRecord Class)

Code which indicates the industry the merchant is engaged in.

Syntax


public int getIndustryType();


public void setIndustryType(int industryType);


Enumerated values:
  public final static int oitRetail = 0;
  public final static int oitRestaurant = 1;
  public final static int oitDirectMarketing = 2;

Default Value

1

Remarks

This property is used to identify the industry type of the merchant submitting the authorization request. The following table lists the industry types supported by this class.

oitRetail (0) Retail store.
oitRestaurant (1) Food / Restaurant.
oitDirectMarketing (2) eCommerce or Direct Marketing

InvoiceNumber Property (FDMSOmahaDetailRecord Class)

Merchant-defined invoice number.

Syntax


public String getInvoiceNumber();


public void setInvoiceNumber(String invoiceNumber);

Default Value

""

Remarks

This property is used to specify an invoice number as defined by the merchant.

The maximum length of this field is 8 characters.

OperatorID Property (FDMSOmahaDetailRecord Class)

Merchant-assigned operator code identifying the operator who entered the transaction.

Syntax


public String getOperatorID();


public void setOperatorID(String operatorID);

Default Value

""

Remarks

This property is used to specify the ID of the operator (such as a cashier or server) who entered the transaction.

The maximum length for this field is 4.

OrderNumber Property (FDMSOmahaDetailRecord Class)

Merchant-defined number identifying the purchase or service.

Syntax


public String getOrderNumber();


public void setOrderNumber(String orderNumber);

Default Value

""

Remarks

This property is used to specify an order number to identify the purchase or service.

The maximum length is 25 characters.

SettlementAmount Property (FDMSOmahaDetailRecord Class)

The amount that the customer will be charged.

Syntax


public String getSettlementAmount();


public void setSettlementAmount(String settlementAmount);

Default Value

""

Remarks

This field contains the final settlement amount of the transaction. In most cases, this is the TransactionAmount from the original authorization request. However, you may settle a lesser amount (ie: Partial shipment or backordered stock). If using the Restaurant IndustryType, you may also increase the SettlementAmount by adding any TipAmount (if present).

Note: The decimal point is required to be specified within the amount.

ShipToZipCode Property (FDMSOmahaDetailRecord Class)

The zip code where the purchased items will be shipped to.

Syntax


public String getShipToZipCode();


public void setShipToZipCode(String shipToZipCode);

Default Value

""

Remarks

This field is used to specify the zip code where the purchased items will be shipped to.

Note: This is a mandatory field for supporting Amex Level 2 Transactions.

TaxAmount Property (FDMSOmahaDetailRecord Class)

Dollar-and-cent amount of tax for the purchase.

Syntax


public String getTaxAmount();


public void setTaxAmount(String taxAmount);

Default Value

""

Remarks

This field contains the total dollar-and-cent amount ($$$.cc) of the tax for the purchase.

Note: This is a reporting field only. Therefore the TaxAmount must be accounted for within TransactionAmount.

Note: The decimal point is required to be specified within the amount.

Note: This is a mandatory field for supporting Amex Level 2 Transactions.

TipAmount Property (FDMSOmahaDetailRecord Class)

The amount of the tip given at a restaurant for the purchase.

Syntax


public String getTipAmount();


public void setTipAmount(String tipAmount);

Default Value

""

Remarks

This property contains the total dollar-and-cent amount ($$$.cc) of the tip given at a restaurant for the purchase.

Note: This is a reporting field only. Therefore the TipAmount must be accounted for within TransactionAmount.

Note: The decimal point is required to be specified within the amount.

TPPID Property (FDMSOmahaDetailRecord Class)

Third Party Processor Identifier assigned by FDMS.

Syntax


public String getTPPID();


public void setTPPID(String TPPID);

Default Value

"V4D001"

Remarks

The Third Party Processor Identifier (TPPID. Also sometimes referred to as a "Vendor Id") is assigned by FDMS to each third party who is processing transactions. Each merchant will receive a TPPID from FDMS.

The default value for 4D Payments, Inc. on the Omaha platform is "V4D001".

A VisaIdentifier is also required for Visa transactions.

TransactionId Property (FDMSOmahaDetailRecord Class)

Contains the Transaction Identifier or MasterCard Reference Number.

Syntax


public String getTransactionId();


public void setTransactionId(String transactionId);

Default Value

""

Remarks

This 15-character field can contain a Transaction Identifier (Visa, American Express or Discover) or Reference Number (MasterCard). The Point of Sale (POS) device should not attempt to interpret the meaning of any data appearing in this field. Data returned in this field (if any) should be recorded and submitted in the Batch Settlement.

TransactionNumber Property (FDMSOmahaDetailRecord Class)

The transaction number for the current transaction.

Syntax


public int getTransactionNumber();


public void setTransactionNumber(int transactionNumber);

Default Value

0

Remarks

This property is used to specify the transaction number for the current transaction. The valid values are 0 - 999. A TransactionNumber of 0 is only used and MUST be used for AuthOnly transactions, thus all other transaction types must have a TransactionNumber of 1 or greater. The maximum value of TransactionNumber is 999 (note: closing a batch requires an item number and thus the actual number of transactions in a batch is 998).

If a transaction is unsuccessful the TransactionNumber should be re-used.

For Credit Card transactions, the TransactionNumber starts at 1 (provided it is not an AuthOnly transaction) and must increment with each successful transaction.

For Debit/EBT Card transactions, the TransactionNumber starts at 999 and must decrement with each successful transaction.

Note TransactionNumbers for Credit Card and Debit/EBT cards *cannot* overlap and must be unique. Additionally, there must be an open TransactionNumber for the close batch transaction. For example, you can have 1-454 for Credit Card transactions and 456-999 for Debit/EBT cards but TransactionNumber 455 must be left available for the close batch transaction.

Item numbers do NOT have to be processed in sequence (i.e. 1, 2, 3, etc.). However, when a batch is closed all transactions up to the TransactionNumber specified to close the batch must be accounted for. For example; if a batch is closed using TransactionNumber 5, transactions 1, 2, 3, and 4 MUST be accounted for. Additionally, if the batch is closed using an TransactionNumber that is not one more than the number of items in the batch, the Host will delete all records over the close TransactionNumber. For example; if a batch is closed using TransactionNumber 5, transaction records 5, 6, 7, etc. will be automatically deleted by the system.

Each transaction that posts to the Host with an TransactionNumber must keep that TransactionNumber until the batch is closed. Note: the Host accepts two or more transactions with the same TransactionNumber, but the last transaction will overwrite any previous transactions. For example, if a Sale is performed for TransactionNumber 1 and then a Credit is performed, only the Credit will post to the cardholder's account (it will be as if the Sale transaction never happened, with the exception of the reserved funds).

This property is not applicable for the ottRevise and ottVoid transaction types. Thus when GetDetailAggregate is called, the returned aggregate will contain the TransactionNumber specified within the original transaction.

Below is a table of the various transaction types and how TransactionNumber should be handled for Credit Card transactions. Note that the below table is only applicable to Credit Card transactions.

Credit Card Transaction Type TransactionNumber Handling
AuthOnly TransactionNumber = 0 (This is the case for all AuthOnly transactions).
Sale Last TransactionNumber + 1
Capture Last TransactionNumber + 1
Refund Last TransactionNumber + 1
Revise Not applicable as the TransactionNumber contained within the DetailAggregate is used.
Void Not applicable as the TransactionNumber contained within the DetailAggregate is used.

Debit/EBT cards are always performed online and thus each successful transaction should have their own unique TransactionNumber that starts at 999 and decrements by 1 for each success transaction performed.

Debit/EBT Card Transaction Type TransactionNumber Handling
All Last TransactionNumber - 1

TransactionType Property (FDMSOmahaDetailRecord Class)

Indicates transaction type for this detail record.

Syntax


public int getTransactionType();


public void setTransactionType(int transactionType);


Enumerated values:
  public final static int ottCapture = 0;
  public final static int ottRefund = 1;
  public final static int ottRevise = 2;
  public final static int ottVoid = 3;

Default Value

0

Remarks

This property indicates the type of transaction that is being settled. The following table lists the industry types supported by this class.

ottCapture (0) Capture an AuthOnly transaction or perform a Force transaction.
ottRefund (1) Perform a Refund transaction (return funds to cardholder).
ottRevise (2) Revise a transaction (Only applicable for Sale, Refund, and Capture transactions).
ottVoid (3) Void a transaction.

VisaIdentifier Property (FDMSOmahaDetailRecord Class)

Additional merchant identification field used when authorizing Visa transactions.

Syntax


public String getVisaIdentifier();


public void setVisaIdentifier(String visaIdentifier);

Default Value

""

Remarks

In conjunction with Visa regulatory change(s), First Data will require the Agent Identification Service from all Third Party Servicers (TPS) or Merchant Servicers (MS). This information should be passed for all card types. Each 17-byte Visa Agent Identifier in the chain is composed of the following pieces:

First 5 bytes: Visa Business Identifier (Bid)
Final 12 bytes: Text representation of the hexadecimal Visa secret Agent Unique Account Result (AUAR).. {0x01, 0x02, 0x03, 0x04, 0x05, 0xFF} will be represented as "0102030405FF".

Config Method (Fdmsomahadetailrecord Class)

Sets or retrieves a configuration setting.

Syntax

public String config(String configurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

GetDetailAggregate Method (Fdmsomahadetailrecord Class)

Returns an aggregate containing details of this transaction, which is then used for settlement.

Syntax

public String getDetailAggregate();

Remarks

This method returns an aggregate containing all of the required data to send a transaction to settlement. This aggregate must be passed to the FDMSSettle class's DetailAggregate array property in order to settle the transaction. If you wish to view or change any part of the aggregate (such as adding a gratuity or additional info for an Installment payment), you may use the FDMSDetailRecord class to do so.

Note: This method may only be called after a successful authorization. If the authorization was not successful (and the CaptureFlag is false) the method throws an exception.

An example of how this method is used is shown below:

FDMSRetail.AuthorizeTrack1() if (FDMSRetail.ResponseCaptureFlag) { FDMSSettle.DetailRecords.Add(new FDMSRecordType(FDMSRetail.GetDetailAggregate())); }

ParseAggregate Method (Fdmsomahadetailrecord Class)

Parses the aggregate returned from another class's GetDetailAggregate method.

Syntax

public void parseAggregate(String aggregate);

Remarks

This method takes the XML aggregate returned from the FDMSOmahaRetail, FDMSOmahaRestaurant, or FDMSOmahaECommerce class, parses it, and then fills all the properties of the OmahaDetailRecord class.

Reset Method (Fdmsomahadetailrecord Class)

Clears all properties to their default values.

Syntax

public void reset();

Remarks

This method clears all properties to their default values.

Error Event (Fdmsomahadetailrecord Class)

Information about errors during data delivery.

Syntax

public class DefaultFdmsomahadetailrecordEventListener implements FdmsomahadetailrecordEventListener {
  ...
  public void error(FdmsomahadetailrecordErrorEvent e) {}
  ...
}

public class FdmsomahadetailrecordErrorEvent {
  public int errorCode;
  public String description;
}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class throws an exception.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

CCCard Type

Contains the customer's credit card information.

Remarks

This type contains the customer's credit card information. If you are processing transactions where the customer and his credit card are physically present, set the MagneticStripe field with the data read from the card reader. You may set either Track1 or Track2 data (but not both). You must also set the EntryDataSource to indicate which track is stored in the MagneticStripe field.

Example: Setting the Fields CCCard card = new CCCard(); card.MagneticStripe = "B4012000033330026^FDMS TEST CARD /VISA^090410054321000000000000000 150 A"; card.EntryDataSource = edsTrack1; Example: Using a Constructor CCCard card = new CCCard("B4012000033330026^FDMS TEST CARD /VISA^090410054321000000000000000 150 A", edsTrack1);

If you are processing a transaction where the credit card is not physically present (eCommerce, mail/order, etc) or if the magstripe on the back of the card cannot be read by the card reader, you must set the Number, ExpMonth, and ExpYear fields, and EntryDataSource must be set to one of the manually entered enumerations.

Example: Setting the Fields CCCard card = new CCCard(); card.Number = "4788250000028291"; card.ExpMonth = 12; card.ExpYear = 2010; card.EntryDataSource = edsManualEntryNoCardReader; Example: Using a Constructor CCCard card = new CCCard("4012000033330026", 04, 2009); Note that the constructor in the previous example automatically sets the EntryDataSource to edsManualEntryNoCardReader. If you wish to set any other value for the EntryDataSource, you must set it yourself before authorizing the transaction.

When authorizing a transaction, the fields used by the class are solely dependant on the value of EntryDataSource. If you set the Number, ExpMonth, and ExpYear fields, but EntryDataSource is set to edsTrack2, the class will look for MagneticStripe data when authorizing the transaction, and will throws an exception because none is present.

Fields

CardType
int

Default Value: 0

Type of credit card being used in this transaction. This field contains the customer's credit card type. This is automatically computed after the Number is set, but it can also be changed manually. A list of valid card types is included below.

ctUnknown (0) Invalid or unknown prefix, card type not known.
ctVisa (1) Visa or Delta Card.
ctMasterCard (2) MasterCard.
ctAMEX (3) American Express Card.
ctDiscover (4) Discover Card.
ctDiners (5) Diners Club or Carte Blanche Card.
ctJCB (6) JCB Card.
ctVisaElectron (7) Visa Electron Card (runs as a Visa for most gateways)
ctMaestro (8) Maestro Card
ctLaser (10) Laser Card (Ireland)

CVVData
String

Default Value: ""

Three digit security code on back of card (optional).

This alphanumeric field contains the three digit Visa "Card Verification Value" (CVV), MasterCard "Card Verification Code" (CVC), or four-digit American Express "Card Identification Number" (CID). This value appears as additional characters embossed on the card signature line following the credit card account number on the back of the credit card. This is an optional field which can be used to determine if the customer is actually in possession of the credit card.

Even if the CVVData is incorrect, the transaction may still be authorized. It is up to the merchant to examine the ResponseCVVResult field and decide whether to honor the transaction or not.

Note: When set to a non-empty value, CVVPresence will be automatically set to cvpProvided. If set to empty string (""), CVVPresence will be automatically set to cvpNotProvided.

CVVPresence
int

Default Value: 0

Indicates the presence of the card verification value.

This field is used to indicate the presence of CVVData.

The class will automatically set this value to cvpProvided when a CVVData value is specified. You can explicitly specify the CVVPresence indicator by setting this property.

Available values are:

  • cvpNotProvided (0)
  • cvpProvided (1)
  • cvpIllegible (2)
  • cvpNotOnCard (3)

EntryDataSource
int

Default Value: 0

This field contains a 1-character code identifying the source of the customer data. The table below shows all supported values for this field.

edsTrack1 (0) Full Magnetic stripe read and transmit, Track 1.
edsTrack2 (1) Full magnetic stripe read and transmit, Track 2.
edsManualEntryTrack1Capable (2) Manually keyed, Track 1 capable.
edsManualEntryTrack2Capable (3)Manually keyed, Track 2 capable.
edsManualEntryNoCardReader (4)Manually keyed, terminal has no card reading capability (use this for e-commerce and MOTO transactions).
edsTrack1Contactless (5)Full magnetic stripe read (Track 1 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only).
edsTrack2Contactless (6)Full magnetic stripe read (Track 2 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only).
edsManualEntryContactlessCapable (7)Manually keyed, Chip Card read capable terminal (Visa, MasterCard, and JCB transactions only).
edsIVR (8)Interactive Voice Response processing. This is applicable to Mail Order/Telephone Order (MOTO) transactions. (Number, ExpMonth, and ExpYear are sent).
edsKiosk (9)Automated kiosk transaction. Track1 or Track2 data must be sent in MagneticStripe, the transaction cannot be manually entered.

Below is a list of processors and their support EntryDataSource values:

FDMS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable, edsIVR, edsKiosk

FDMSOmaha - All EntryDataSources applicable

FDMS Rapid Connect - All EntryDataSources applicable

Global - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsIVR, edsKiosk

PTech - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable

TSYS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack2Contactless, edsManualEntryContactlessCapable

TSYSHC - Values are based on Industry type.

TSYSHCBenefit edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable
TSYSHCECommerce edsManualEntryNoCardReader
TSYSHCRetail edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable

ExpMonth
int

Default Value: 1

Expiration month of the credit card specified in Number.

This field contains the expiration date of the customer's credit card, and must be in the range 1 - 12.

ExpYear
int

Default Value: 2000

Expiration year of the credit card specified in Number.

This field contains the expiration date of the customer's credit card. This field must be in the range 0 - 99, or 2000 - 2099. Any date before the year 2000 or after 2099 cannot be specified.

IsEncrypted
boolean

Default Value: False

Determines whether data set to the Number or MagneticStripe fields is validated.

By default, when the Number or MagneticStripe fields are set, the value will be validated and normalized. For instance, "4444-33332222 1111" will be normalized as "4444333322221111" and MagneticStripe data will be parsed for the track specified by EntryDataSource. However, any other non-numerical data entered will cause an exception to be thrown. It may be useful in some gateways to send other data in the Number or MagneticStripe fields, and this can be accomplished by setting IsEncrypted to true. However, please note that in doing so automatic calculation of the CardType may be affected, and the card number will not be verified.

MagneticStripe
String

Default Value: ""

Track data read off of the card's magnetic stripe.

If EntryDataSource is not one of the manually entered enumerations, then this field must be set with the track1 or track2 data from the magnetic stripe on the back of the customer's credit card. This includes everything after but not including the start sentinel (% or ;) and up to but not including the end sentinel (?) and LRC check character. You may only set this field with track 1 or track 2 data, and may not pass both. Use the EntryDataSource field to indicate which track you are sending.

The following example shows how to set the MagneticStripe and EntryDataSource fields if the data read off the card is "%B4788250000028291^TSYS^05121015432112345678?;4788250000028291=05121015432112345678?"

class.Card = new CCCard("B4788250000028291^TSYS^05121015432112345678", dsTrack1) or class.Card = new CCCard("4788250000028291=05121015432112345678", dsTrack2) or CCCardType Card = new CCCard() Card.MagneticStripe = "B4788250000028291^TSYS^05121015432112345678" Card.EntryDataSource = dsTrack1

Industry regulations do not allow merchants or processors to store track data in any form of persistent storage. Failure to abide by this regulation can result in significant fines and other penalties.

Number
String

Default Value: ""

Customer's credit card number for the transaction.

If you're sending the transaction with MagneticStripe data, this field should be left empty.

Constructors

public CCCard();



public CCCard( number,  expMonth,  expYear);



public CCCard( magneticStripe,  entryDataSource);



Config Settings (Fdmsomahadetailrecord Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

FDMSOmahaDetailRecord Config Settings

ACI:   Requested Authorization Characteristics Indicator (ACI).

This 1-character field contains the Requested ACI used to identify an authorization request as potentially qualifying for CPS (Custom Payment Services) and MasterCard Merit programs. If a merchant chooses not to participate in CPS, the ACI may be set to "N". By default, the class sends "Y" for all authorizations. This config should be set immediately before calling the Authorize method.

I Incremental Charge.
P Card is not present at time of the authorization request, but the cardholder is a preferred customer participant.
R Recurring Charge.
Y Card is present or the card is not present and request for address verification is needed.

CustomerAddress:   The customer's street number of the billing address.

This field is used as part of the Address Verification Service (AVS) and contains the customer's street number as it appears on their monthly statement. Only the street number is allowed in this field. Street number, street name, apartment number, city and state are not included, and the zip code is set in the CustomerZip property.

The maximum length of this configuration setting is 5 characters.

CustomerZip:   Customer's zip code (or postal code if outside of the USA).

This field is used as part of the Address Verification Service (AVS). If the customer resides within the United States, this field should contain the five or nine digit zip code as it appears on the customer's monthly statement. If the customer's billing address is outside of the United States, this field should contain the customer's postal code.

The maximum length of this configuration setting is 9 characters.

OperatorID:   Merchant-assigned Operator code identifying the operator who entered the transaction.

This field is used to specify the OperatorID of the operator (such as a cashier or server) who entered the transaction. The maximum length for this field is 4.

UseEncryptionChannel:   Specifies whether First Data should use the SST Encryption Channel.

For E-Commerce transactions, First Data can use an SST (Secure Stream Technology) Encryption Channel which uses RSA encryption to encrypt all the transmitted data. The component will set the needed flag in the request based on the value specified. Please note that this specific encryption is for the back-end, not for the component request to First Data.

TCPClient Config Settings

CloseStreamAfterTransfer:   If true, the component will close the upload or download stream after the transfer.

This setting determines whether the input or output stream is closed after the transfer completes. When set to True (default), all streams will be closed after a transfer is completed. In order to keep streams open after the transfer of data, set this to False. the default value is True.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallListener:   If true, the component binds to a SOCKS firewall as a server (TCPClient only).

This entry is for TCPClient only and does not work for other components that descend from TCPClient.

If this entry is set, the class acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.

RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.

The connection to the firewall is made by calling the Connect method.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback
UseNTLMv2:   Whether to use NTLM V2.

When authenticating with NTLM, this setting specifies whether NTLM V2 is used. By default this value is False and NTLM V1 will be used. Set this to True to use NTLM V2.

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the class will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class throws an exception.

When set to 0 (default) the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the OCSP URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class throws an exception.

When set to 0 (default) the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLContextProtocol:   The protocol used when getting an SSLContext instance.

Possible values are SSL, SSLv2, SSLv3, TLS and TLSv1. Use it only in case your security provider does not support TLS. This is the parameter "protocol" inside the SSLContext.getInstance(protocol) call.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Note: This value must be set after SSLProvider is set.

Example values: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA; SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA"); Possible values when SSLProvider is set to latform include:

  • SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_RC4_128_SHA
  • SSL_RSA_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_WITH_DES_CBC_SHA
  • SSL_RSA_WITH_NULL_MD5
  • SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
  • SSL_DHE_RSA_WITH_DES_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
  • SSL_RSA_WITH_NULL_SHA
  • SSL_DH_anon_WITH_RC4_128_MD5
  • SSL_RSA_WITH_RC4_128_MD5
  • SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_NULL_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA256 (Not Recommended)
  • TLS_ECDH_anon_WITH_RC4_128_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA (Not Recommended)
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_EXPORT_WITH_RC4_40_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_RC4_128_SHA
  • TLS_ECDH_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDH_anon_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_RSA_WITH_NULL_SHA256
  • TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
  • TLS_KRB5_WITH_RC4_128_MD5
  • TLS_ECDHE_ECDSA_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_RC4_128_SHA
  • TLS_EMPTY_RENEGOTIATION_INFO_SCSV
  • TLS_KRB5_WITH_3DES_EDE_CBC_MD5
  • TLS_KRB5_WITH_RC4_128_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_NULL_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_DES_CBC_MD5
  • TLS_KRB5_EXPORT_WITH_RC4_40_MD5
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
  • TLS_ECDH_anon_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_NULL_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA

Possible values when SSLProvider is set to Internal include:

  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLTrustManagerFactoryAlgorithm:   The algorithm to be used to create a TrustManager through TrustManagerFactory.

Possible values include SunX509. This is the parameter "algorithm" inside the TrustManagerFactory.getInstance(algorithm) call.

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class throws an exception.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Tells the class whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The class will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the class does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseDaemonThreads:   Whether threads created by the class are daemon threads.

If set to True (default), when the class creates a thread, the thread's Daemon property will be explicitly set to True. When set to False, the class will not set the Daemon property on the created thread. The default value is True.

UseInternalSecurityAPI:   Tells the class whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this setting to true tells the class to use the internal implementation instead of using the system security libraries.

This setting is set to false by default on all platforms.

Trappable Errors (Fdmsomahadetailrecord Class)

FDMSOmahaDetailRecord Errors

432   Invalid index.
501   Invalid length for this property.
502   Invalid data format for this property.
503   Value is out of range.
504   Credit card digit check failed.
505   Card date invalid.
506   Card expired.
519   Corrupt response.
520   Response payload empty.
521   Response truncated.
526   Invalid timeout value.
593   A property required for this transaction is missing.
529   Error in XML response.
530   Status code received in response indicates an error condition.
531   Return code received in response indicates an error condition.
532   Cannot generate detail aggregate - this transaction was not successfully authorized.
533   Internal error constructing payload.

HTTP Errors

118   Firewall Error. Error description contains detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in URL
153   Specified URLScheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Can't open AttachedFile.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
303   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).