FDMSRcECommerce Class
Properties Methods Events Config Settings Errors
The FDMSRcECommerce class is an advanced tool used to authorize credit cards in both Mail Order (Direct Marketing) and eCommerce environments, where the customer is ordering products or services via the telephone or Internet. This class makes authorizing these types of transactions very easy.
Syntax
FDMSRcECommerce
Remarks
This class connects to the First Data Merchant Services (FDMS) processor, by way of the Datawire VXN transaction transport network. Transactions originating with these classs go through Datawire, to the FDMS processor where the transaction is authorized. The result is then returned back through Datawire and received by the class. This class can be integrated into web pages or stand-alone Point Of Sale applications. Because all SSL communications are handled inside the class, any application or web page can be deployed without the need for expensive dedicated SSL servers.
The FDMSRcECommerce class makes authorizing Card-Not-Present Mail Order and E-Commerce transactions very easy by adding an additional layer of abstraction between the programmer and the protocol. There is no need to deal with raw sockets, TLS/SSL handshakes, or data packet formatting. The steps to setting up the class and authorizing a transaction are outlined below:
Datawire Setup
First, you must register and activate your account with Datawire. FDMS Rapid Connect will provide you with the following values:
The FDMSRegister class must be used to activate the merchant and receive a DatawireId. Once you acquire the DatawireId and receive your transaction URLs through ServiceDiscovery, you may begin to authorize transactions. For instance:
FDMSRegister.FDMSPlatform = FdmsregisterFDMSPlatforms.fpRapidConnect;
FDMSRegister.MerchantNumber = "000000999990";
FDMSRegister.MerchantTerminalNumber = "555555";
FDMSRegister.Config("GroupId=20001"); //Required for Rapid Connect
FDMSRegister.TransactionNumber = "1"; //any unique number will do.
FDMSRegister.URL = "https://stagingsupport.datawire.net/staging_expresso/SRS.do";
FDMSRegister.Register();
FDMSRegister.TransactionNumber = FDMSRegister.TransactionNumber + 1;
FDMSRegister.Activate();
FDMSRegister.ServiceDiscovery(FDMSRegister.PrimaryDiscoveryURL);
for (int i = 0; i < FDMSRegister.ServiceProviders.Length; i++) {
FDMSRegister.Ping(FDMSRegister.ServiceProviders[i]);
Console.WriteLine(FDMSRegister.ServiceProviders[i] + " = " + FDMSRegister.PingResponseTime);
}
To authorize a credit, debit, ebt or FSA/HSA card set the MerchantId, MerchantTerminalNumber, and GroupId properties with the values supplied by FDMS Rapid Connect. Set the DatawireId property with the value retrieved by the FDMSRegister class after activating your merchant account. Set the URL property with one of the URLs you retrieved during ServiceDiscovery.
Transaction Processing
To being processing transactions first set the required merchant values. For instance:
fdmsrcecommerce.IndustryType = FdmsrcecommerceIndustryTypes.feitEcommerce;
fdmsrcecommerce.TPPID = "AAA000";
fdmsrcecommerce.MerchantTerminalNumber = "00000001";
fdmsrcecommerce.MerchantId = "1234";
fdmsrcecommerce.GroupId = "20001";
fdmsrcecommerce.DatawireId = "00011122233344455566";
fdmsrcecommerce.MerchantURL = "mywebsite"; //Required for ECommerce transactions
fdmsrcecommerce.ApplicationId = "RAPIDCONNECTVXN";
fdmsrcecommerce.URL = "https://stg.dw.us.fdcnet.biz/rc";
Next specify transaction specific information. These values uniquely identify the transaction to Datawire and FDMS.
fdmsrcecommerce.STAN = "112";
fdmsrcecommerce.TransactionNumber = "120013";
fdmsrcecommerce.OrderNumber = "12000503";
fdmsrcecommerce.ReferenceNumber = "123";
Then specify customer card and address information along with the transaction amount:
fdmsrcecommerce.Card.Number = "36185900055556";
fdmsrcecommerce.Card.ExpMonth = 4;
fdmsrcecommerce.Card.ExpYear = 2016;
fdmsrcecommerce.Card.CVVData = "123";
fdmsrcecommerce.CustomerAddress = "1307 Broad Hollow Road";
fdmsrcecommerce.CustomerZip = "11747";
fdmsrcecommerce.TransactionAmount = "1200"; //$12.00
Finally, submit the transaction by calling the Sale method.
fdmsrcecommerce.Sale();
The ResponseCode property indicates the result of the transaction. A code of 000 indicates success. For all other values please see the Response Codes section. Additional Response properties such as ResponseApprovalCode, ResponseAuthorizedAmount, ResponseText, ResponseAVSResult, ResponseCVVResult, and more, provide further details about the transaction response.
To perform subsequent operations on a transaction, such as calling Reverse to reverse a Sale, or calling Capture to capture a previous AuthOnly transaction the GetDetailAggregate method must be used to get details about the original transaction. This aggregate must be stored securely, it will contain cardholder information that is required for subsequent transactions. For instance:
fdmsrcecommerce.AuthOnly();
//Save the detail aggregate to use with Capture
string aggregate = fdmsrcecommerce.GetDetailAggregate();
//The aggregate must then be stored securely.
//At a later time the aggregate is retrieved in order to perform a capture.
//Capture
fdmsrcecommerce = new Fdmsrcecommerce();
...
//Specify the detail aggregate from the original transaction
fdmsrcecommerce.SetDetailAggregate(aggregate);
fdmsrcecommerce.Capture();
Transaction Types
In addition to a basic sale transaction, additional transaction types exist for other common operations. Not all transaction types are applicable for all classs. Check the method list for applicable transaction types.
AuthOnly | An authorization that must be Captured later. |
BalanceInquiry | Inquire about available balance. |
Capture | Captures a previous AuthOnly transaction for settlement. |
Credit | Credits funds to the cardholder. This is not based on a previous transaction. |
Reverse | Reverse a previous transaction. This is also used for timeout reversals. |
Sale | A basic sale, no other steps are required to complete the payment. |
VerifyCard | Verifies that a card is valid. |
HostTotals | Requests a Host Totals Report for a particular day. |
VoucherClear | Performs an online force-post entry of a voice-authorized Food Benefit or eWIC transaction. |
Note: FDMS Rapid Connect is a host capture system. No explicit calls are needed to settle or otherwise manage the batch.
Level 2 Transactions
The values required for Level 2 transaction depend on the card type. The following tables indicate which properties are valid for what card type:
American Express
- Level2CustomerReferenceNumber (required if Level2TaxAmount specified)
- Level2DestinationPostalCode (required)
- Level2DiscountAmount (required if discount applied)
- Level2DutyAmount (required if duty amount applied)
- Level2FreightAmount (required if freight amount applied)
- Level2ProductDescription (required)
- Level2PurchaseIdentifier (required)
- Level2MerchantTaxId
- Level2ShipFromPostalCode
- Level2TaxAmount
- Level2TaxIndicator
- Level2CustomerReferenceNumber (required if Level2TaxAmount specified)
- Level2DiscountAmount (required if discount applied)
- Level2DutyAmount (required if duty amount applied)
- Level2FreightAmount (required if freight amount applied)
- Level2PurchaseIdentifier (required)
- Level2TaxAmount (required if Level2TaxIndicator indicates tax is applied)
- Level2TaxIndicator (required)
- Level2DestinationPostalCode
- Level2ShipFromPostalCode
- Level2MerchantTaxId
- Level2CustomerReferenceNumber (required if Level2TaxAmount specified)
- Level2DiscountAmount (required if discount applied)
- Level2DutyAmount (required if duty amount applied)
- Level2FreightAmount (required if freight amount applied)
- Level2MerchantTaxId (required)
- Level2PurchaseIdentifier (required)
- Level2TaxAmount (required if Level2TaxIndicator indicates tax is applied)
- Level2TaxIndicator (required)
- Level2DestinationPostalCode
- Level2ShipFromPostalCode
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
ApplicationId | Identifies the merchant application to the Datawire System. |
InstallmentDescription | The merchant's description of an Installment Bill Payment Transaction. |
InstallmentInvoiceNumber | The Invoice Number of an Installment Bill Payment Transaction. |
InstallmentType | The type of the Installment payment. |
MerchantAdviceCode | This property contains a code which may be returned by the issuer to provide additional information for a card not present transaction. |
MITAmount | The amount of the Recurring or Installment payment. |
MITAmountType | Identifies the type of the Recurring or Installment Payment amount. |
MITFrequency | This property indicates the frequency of a Recurring or Installment payment. |
MITPaymentCurrency | Contains the Installment Payment Currency represented as a 3 digit value. |
MITRecurringPaymentType | This property contains the type of Recurring Payment. |
MITRegistrationRefNum | This property contains a unique Reference Number for the Recurring Payment transaction. |
MITSequenceIndicator | Identifies the sequence of the transactions when multiple Installment payments will be submitted. |
MITTotalPaymentAmount | This property contains the Total Installment Amount. |
MITTotalPaymentCount | The number of Recurring payments or Installments per the Cardholder agreement with the Merchant. |
MITUniqueID | This property is used to uniquely identify each of the Recurring or Installment Payment. |
MITValidationFlag | Indicates the validation source for the validity of a transaction. |
MITValidationRef | This property contains a cryptogram generated by the validation source for each cardholder account, for an Issuer to validate a transaction. |
TransactionIndicator | Specifies the type of Bill Payment being made. |
CardType | Type of credit card being used in this transaction. |
CardCVVData | Three digit security code on back of card (optional). |
CardCVVPresence | Indicates the presence of the card verification value. |
CardEntryDataSource | This property contains a 1-character code identifying the source of the customer data. |
CardExpMonth | Expiration month of the credit card specified in Number . |
CardExpYear | Expiration year of the credit card specified in Number . |
CardIsEncrypted | Determines whether data set to the Number or MagneticStripe properties is validated. |
CardMagneticStripe | Track data read off of the card's magnetic stripe. |
CardNumber | Customer's credit card number for the transaction. |
CustomerAddress | The customer's billing address. |
CustomerZip | Customer's zip code (or postal code if outside of the USA). |
DatawireId | Identifies the merchant to the Datawire System. |
GroupId | The Id assigned by FDMS to identify the merchant or group of merchants. |
IndustryType | The merchant's industry type. |
Level2CustomerReferenceNumber | The reference number or order number to be reported as part of the Purchase Card data. |
Level2DestinationCountryCode | This property represents the country code of the location the items in this purchase are being delivered to. |
Level2DestinationPostalCode | This property contains the postal or zip code of the location the item(s) in this purchase are being delivered to. |
Level2DiscountAmount | This property contains the discount amount for the purchase. |
Level2DutyAmount | This property contains the duty amount for this purchase. |
Level2FreightAmount | This property contains the amount for freight included in this purchase. |
Level2MerchantTaxId | This property should contain the Tax Id collected by the merchant for this transaction. |
Level2ProductDescription | This property should contain a description of an item purchased with this card. |
Level2PurchaseIdentifier | This property represents the data used by the merchant or customer to identify the purchase. |
Level2ShipFromPostalCode | The postal or zip code the item(s) in this purchase are to be shipped from. |
Level2TaxAmount | This property contains the portion of the transaction amount that represents the tax. |
Level2TaxIndicator | This property indicates the taxable status of the transaction. |
MerchantId | A unique Id used to identify the merchant within the FDMS and Datawire systems. |
MerchantServicePhone | The merchant's phone number, used to assist cardholders. |
MerchantTerminalNumber | Used to identify a unique terminal within a merchant location. |
MerchantURL | The URL of the site performing the ECommerce transaction. |
OrderNumber | A merchant assigned order number to uniquely reference the transaction. |
ProxyAuthScheme | This property is used to tell the class which type of authorization to perform when connecting to the proxy. |
ProxyAutoDetect | This property tells the class whether or not to automatically detect and use proxy system settings, if available. |
ProxyPassword | This property contains a password if authentication is to be used for the proxy. |
ProxyPort | This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). |
ProxyServer | If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified. |
ProxySSL | This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. |
ProxyUser | This property contains a username if authentication is to be used for the proxy. |
ReferenceNumber | A value assigned by the merchant to uniquely reference a transaction and any subsequent related transactions. |
ResponseApprovalCode | The Approval Code returned from the server after a successful authorization. |
ResponseAuthorizedAmount | The amount actually charged to the card. |
ResponseAuthorizingNetworkId | This property indicates the network Id as returned by the host, if available. |
ResponseAuthorizingNetworkName | This property indicates the authorizing network name as returned by the host, when available. |
ResponseAVSResult | Contains the Address Verification System result code. |
ResponseBalance | Contains the remaining available balance left on the card. |
ResponseCardLevelResult | This property is only applicable to Visa card. |
ResponseCode | Contains the 3 digit response code indicating success or reason of failure. |
ResponseCommercialCard | Indicates whether the credit card charged is a corporate commercial card. |
ResponseCVVResult | Contains the returned CVV result code (if CVV data was sent in the request). |
ResponseDatawireReturnCode | Contains an error code providing more details about the DatawireStatus received. |
ResponseDatawireStatus | Status of the communication with Datawire. |
ResponsePOSData | This property holds transaction specific information returned by the issuer (if any). |
ResponseReturnedACI | Returned Authorization Characteristics Indicator contains CPS qualification status. |
ResponseRoutingIndicator | Indicates whether the transaction was processed as Credit or Debit. |
ResponseSettlementDate | The date the transaction will be settled in the format MMDD. |
ResponseText | This property may hold additional text which describes the reason for a decline, the property in error, etc. |
ResponseTransactionDate | The transaction date returned from the server in yyyyMMddHHmmss format. |
ResponseTransactionId | Card issuer's Transaction Reference Number. |
ReversalTransactionType | The type of transaction to reverse. |
ReversalType | The type of reversal. |
SettlementMode | Indicates whether the class uses Host Capture (0) or Terminal Capture (1) system. |
SSLAcceptServerCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSLCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSLCertStore | This is the name of the certificate store for the client certificate. |
SSLCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSLCertStoreType | This is the type of certificate store for this certificate. |
SSLCertSubject | This is the subject of the certificate used for client authentication. |
SSLProvider | This specifies the SSL/TLS implementation to use. |
SSLServerCertEncoded | This is the certificate (PEM/Base64 encoded). |
STAN | The merchant assigned System Trace Audit Number(STAN). |
Timeout | A timeout for the class. |
TPPID | Third Party Processor Identifier assigned by FDMS. |
TransactionAmount | The transaction amount to be authorized. |
TransactionNumber | Uniquely identifies the transaction. |
URL | Location of the Datawire server to which transactions are sent. |
VisaIdentifier | Additional merchant identification field used when authorizing Visa transactions. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
AuthOnly | Performs an authorization request. |
Capture | Captures a previously authorized transaction. |
Config | Sets or retrieves a configuration setting. |
Credit | Submits a credit transaction. |
GetDetailAggregate | Returns a detail aggregate containing details of this transaction, which is used for Capture or Reverse transactions or settlement when using Terminal Capture mode. |
HostTotals | Performs a Host Totals request. |
Interrupt | Interrupts the current action. |
Reset | Clears all properties to their default values. |
Reverse | Reverses a transaction. |
Sale | Performs a sale transaction. |
SetDetailAggregate | Specifies the detail aggregate before calling Capture or Reverse. |
VerifyCard | Performs a zero dollar verification of the card. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Connected | This event is fired immediately after a connection completes (or fails). |
DataPacketIn | Fired when receiving a data packet from the transaction server. |
DataPacketOut | Fired when sending a data packet to the transaction server. |
Disconnected | This event is fired when a connection is closed. |
Error | Fired when information is available about errors during data delivery. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
Status | Shows the progress of the FDMS/Datawire connection. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
AccountUpdaterCardNumber | This field contains the updated account number received from the issuer. |
AccountUpdaterCardStatus | This field contains the account status received from the issuer. |
AccountUpdaterExpirationDate | This field contains the updated expiration date received from the issuer in YYMM format. |
AccountUpdaterRequestIndicator | Account Updater Request Indicator. |
AccountUpdaterResultCode | This field contains the result code received from the issuer. |
AccountUpdaterToken | This field contains the updated multi-pay token. |
ACI | Authorization Characteristics Indicator. |
AllowPartialAuths | Indicates whether partial authorizations are supported. |
AltMerchantAddress | The alternative merchant address. |
AltMerchantCity | The alternative merchant city. |
AltMerchantCountryCode | The alternative merchant country code. |
AltMerchantEmail | The alternative merchant email. |
AltMerchantName | The alternative merchant name. |
AltMerchantState | The alternative merchant state. |
AltMerchantZip | The alternative merchant zip code. |
AuthIndicator | Indicate the type of authorization requested. |
AuthorizationIndicator | Indicates whether the authorization is a final authorization. |
AuthSource | Indicates the source of the decision for the Visa transaction. |
CardInfoRequestIndicator | Card Info Request Indicator. |
CardInfoResponseCardBrand | This field indicates the brand of the card used in the transaction. |
CardInfoResponseCardIndicator | This field indicates the type of card used in the transaction. |
CardInfoResponseDetailedProductID | This field contains the association product identifier. |
CardInfoResponseIssuingBank | This field contains the name of the bank that issued the card. |
CardInfoResponseIssuingCountry | This field contains the country code of the bank that issued the card. |
CardInputMode | The method used to input the card details. |
CardType | Specifies the type of card. |
CAVV | The Visa CAVV or American Express AEVV. |
CITMITFrameIndicator | CIT/MIT Frame Indicator (Mastercard only). |
ClientTimeout | Indicates timeout client application will wait for response. |
CurrencyCode | Currency Code for this transaction. |
DebugTrace | Whether to enable debug logging. |
DeviceTypeIndicator | Defines the form factor used at the POS for MasterCard PayPass transactions. |
ECI | Identifies the security level of the ECommerce transaction. |
GetTransArmorToken | Allows you to retrieve a TransArmor Token for a specified card. |
HostTotalsPassword | The merchant password required in Host Totals requests. |
HostTotalsType | Indicates the Host Totals Report type requested. |
IsCOFScheduled | Indicates whether the stored credential transaction was scheduled. |
IsDeferredAuth | Indicates whether the transaction is a Deferred Authorization. |
IsOnlineRefund | Indicates whether a transaction is Online Refund Authorization. |
LocalTransactionDate | The local date of the transaction. |
MCSC | Identifies the total number of Capture transactions for a single Authorization. |
MCSN | Identifies a specific Capture transaction when there are multiple Capture transactions for a single Authorization. |
MerchantCategoryCode | The 4 digit Merchant Category Code (MCC). |
MITTransactionId | Transaction Id associated with the original authorization of a Credential on File Transaction. |
MOTOIndicator | Indicates whether the transaction is Mail Order or Telephone Order. |
POSConditionCode | The POS condition code. |
POSId | Identifies the specific point of sale device. |
ProgramProtocol | Identifies the version of the EMV 3D-Secure protocol (Mastercard only). |
StoredCredentialIndicator | Indicates the usage of stored credentials. |
SurchargeAmount | Indicates Merchant Surcharge/Transaction Fee Amount charged to the customer to account for acquirer-assessed surcharge. |
TerminalCardCapability | The terminal's card capture capability. |
TerminalEntryCapability | The terminal's entry mode capability. |
TerminalLocationIndicator | The terminal's location. |
TerminalPinCapability | The terminal's PIN capability. |
TerminalTaxCapability | The terminal's ability to prompt for tax. |
TotalAuthorizedAmount | Total Authorized Amount. |
TransactionInitiation | Indicates how the transaction was initiated. |
TransArmorKey | Specifies the TransArmor key used to perform the encryption. |
TransArmorKeyId | Specifies the Id of the TransArmor key used to perform the encryption. |
TransArmorMode | Specifies the TransArmor Security Level to use. |
TransArmorProviderId | The Id of the Provider that issued a TransArmorToken. |
TransArmorToken | A TransArmor Token used in place of a card number or magnetic stripe data. |
TransArmorTokenType | The FDMS assigned token type. |
TransArmorTokenType | Specifies the type of TransArmor token that will be used. |
TransArmorUpdateIndicator | Indicates whether your TransArmorKey needs to be updated. |
UCAFCollectInd | Specifies whether the merchant supports MasterCard UCAF (SecureCode) data collection. |
UpdateTransArmorKey | Allows you to update your TransArmor Key. |
UTCTransactionDate | The UTC date of the transaction. |
VisaCheckoutIndicator | Indicates whether the transaction is a Visa Checkout transaction. |
VoiceApprovalCode | The voice approval. |
XID | The 3-D Secure transaction Id for Visa 3D Secure or American Express Safekey. |
AcceptEncoding | Used to tell the server which types of content encodings the client supports. |
AllowHTTPCompression | This property enables HTTP compression for receiving data. |
AllowHTTPFallback | Whether HTTP/2 connections are permitted to fallback to HTTP/1.1. |
Append | Whether to append data to LocalFile. |
Authorization | The Authorization string to be sent to the server. |
BytesTransferred | Contains the number of bytes transferred in the response data. |
ChunkSize | Specifies the chunk size in bytes when using chunked encoding. |
CompressHTTPRequest | Set to true to compress the body of a PUT or POST request. |
EncodeURL | If set to True the URL will be encoded by the class. |
FollowRedirects | Determines what happens when the server issues a redirect. |
GetOn302Redirect | If set to True the class will perform a GET on the new location. |
HTTP2HeadersWithoutIndexing | HTTP2 headers that should not update the dynamic header table with incremental indexing. |
HTTPVersion | The version of HTTP used by the class. |
IfModifiedSince | A date determining the maximum age of the desired document. |
KeepAlive | Determines whether the HTTP connection is closed after completion of the request. |
KerberosSPN | The Service Principal Name for the Kerberos Domain Controller. |
LogLevel | The level of detail that is logged. |
MaxRedirectAttempts | Limits the number of redirects that are followed in a request. |
NegotiatedHTTPVersion | The negotiated HTTP version. |
OtherHeaders | Other headers as determined by the user (optional). |
ProxyAuthorization | The authorization string to be sent to the proxy server. |
ProxyAuthScheme | The authorization scheme to be used for the proxy. |
ProxyPassword | A password if authentication is to be used for the proxy. |
ProxyPort | Port for the proxy server (default 80). |
ProxyServer | Name or IP address of a proxy server (optional). |
ProxyUser | A user name if authentication is to be used for the proxy. |
SentHeaders | The full set of headers as sent by the client. |
StatusCode | The status code of the last response from the server. |
StatusLine | The first line of the last response from the server. |
TransferredData | The contents of the last response from the server. |
TransferredDataLimit | The maximum number of incoming bytes to be stored by the class. |
TransferredHeaders | The full set of headers as received from the server. |
TransferredRequest | The full request as sent by the client. |
UseChunkedEncoding | Enables or Disables HTTP chunked encoding for transfers. |
UseIDNs | Whether to encode hostnames to internationalized domain names. |
UsePlatformHTTPClient | Whether or not to use the platform HTTP client. |
UseProxyAutoConfigURL | Whether to use a Proxy auto-config file when attempting a connection. |
UserAgent | Information about the user agent (browser). |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveRetryCount | The number of keep-alive packets to be sent before the remotehost is considered disconnected. |
KeepAliveRetryCount | The number of keep-alive packets to be sent before the remotehost is considered disconnected. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
LocalPort | The port in the local host where the class binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
ApplicationId Property (FDMSRcECommerce Class)
Identifies the merchant application to the Datawire System.
Syntax
ANSI (Cross Platform) char* GetApplicationId();
int SetApplicationId(const char* lpszApplicationId); Unicode (Windows) LPWSTR GetApplicationId();
INT SetApplicationId(LPCWSTR lpszApplicationId);
char* dpaymentssdk_fdmsrcecommerce_getapplicationid(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setapplicationid(void* lpObj, const char* lpszApplicationId);
QString GetApplicationId();
int SetApplicationId(QString qsApplicationId);
Default Value
"NSOFTDIRECTPXML"
Remarks
The Application Id identifies the application that has generated and is sending the transaction. This is a 15 character alphanumeric code that identifies each application and is provided by the Datawire Secure Transport Vendor Integration Team
This property may be validated along with the DatawireId as connection credentials.
The default value of this property is a value used for testing with Rapid Connect. You may be required to have a new ApplicationId assigned for the software you create with this class.
Data Type
String
InstallmentDescription Property (FDMSRcECommerce Class)
The merchant's description of an Installment Bill Payment Transaction.
Syntax
ANSI (Cross Platform) char* GetInstallmentDescription();
int SetInstallmentDescription(const char* lpszInstallmentDescription); Unicode (Windows) LPWSTR GetInstallmentDescription();
INT SetInstallmentDescription(LPCWSTR lpszInstallmentDescription);
char* dpaymentssdk_fdmsrcecommerce_getinstallmentdescription(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setinstallmentdescription(void* lpObj, const char* lpszInstallmentDescription);
QString GetInstallmentDescription();
int SetInstallmentDescription(QString qsInstallmentDescription);
Default Value
""
Remarks
The merchant's description of an Installment Bill Payment Transaction.
This field is only sent in an 'Installment' or 'Recurring' transaction.
The maximum length of this field is 15 characters.
Data Type
String
InstallmentInvoiceNumber Property (FDMSRcECommerce Class)
The Invoice Number of an Installment Bill Payment Transaction.
Syntax
ANSI (Cross Platform) char* GetInstallmentInvoiceNumber();
int SetInstallmentInvoiceNumber(const char* lpszInstallmentInvoiceNumber); Unicode (Windows) LPWSTR GetInstallmentInvoiceNumber();
INT SetInstallmentInvoiceNumber(LPCWSTR lpszInstallmentInvoiceNumber);
char* dpaymentssdk_fdmsrcecommerce_getinstallmentinvoicenumber(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setinstallmentinvoicenumber(void* lpObj, const char* lpszInstallmentInvoiceNumber);
QString GetInstallmentInvoiceNumber();
int SetInstallmentInvoiceNumber(QString qsInstallmentInvoiceNumber);
Default Value
""
Remarks
The Invoice Number of an Installment Bill Payment Transaction.
This field is only sent in an 'Installment' or 'Recurring' transaction.
The maximum length of this field is 12 characters.
Data Type
String
InstallmentType Property (FDMSRcECommerce Class)
The type of the Installment payment.
Syntax
ANSI (Cross Platform) int GetInstallmentType();
int SetInstallmentType(int iInstallmentType); Unicode (Windows) INT GetInstallmentType();
INT SetInstallmentType(INT iInstallmentType);
Possible Values
IT_UNSPECIFIED(0),
IT_MERCHANT(1),
IT_THIRD_PARTY(2),
IT_ISSUER(3)
int dpaymentssdk_fdmsrcecommerce_getinstallmenttype(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setinstallmenttype(void* lpObj, int iInstallmentType);
int GetInstallmentType();
int SetInstallmentType(int iInstallmentType);
Default Value
0
Remarks
The type of the Installment payment.
This field is required for all Discover, Diners (including JCB - US Domestic) Installment transactions TransactionIndicator value 3 (tiInstallment) and it is applicable to ECommerce, MOTO, and Retail transactions. Possible values are:
0 (itUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (itMerchant) | Merchant - Merchant Installment Payment |
2 (itThirdParty) | ThirdParty - Third Party Installment Payment |
3 (itIssuer) | Issuer - Issuer Installment Payment |
Data Type
Integer
MerchantAdviceCode Property (FDMSRcECommerce Class)
This property contains a code which may be returned by the issuer to provide additional information for a card not present transaction.
Syntax
ANSI (Cross Platform) char* GetMerchantAdviceCode(); Unicode (Windows) LPWSTR GetMerchantAdviceCode();
char* dpaymentssdk_fdmsrcecommerce_getmerchantadvicecode(void* lpObj);
QString GetMerchantAdviceCode();
Default Value
""
Remarks
This field contains a code which may be returned by the issuer to provide additional information for a card not present transaction.
The following values are defined:
Response Code | Meaning |
01 | New account information available |
02 | Try again later (must wait 72 hours before sending the recurring transaction again) |
03 | Do not try again |
04 | Token requirements are not fulfilled for this token type |
05 | Card account closed or fraud |
06 | Cardholder canceled recurring payment |
07 | Cancel specific payment |
21 | Do not honor - Issuer has blocked recurring payment service / Payment Cancellation |
22 | Merchant does not qualify for product code |
24 | Retry after 1 hour |
25 | Retry after 24 hours |
26 | Retry after 2 days |
27 | Retry after 4 days |
28 | Retry after 6 days |
29 | Retry after 8 days |
30 | Retry after 10 days |
This property is read-only.
Data Type
String
MITAmount Property (FDMSRcECommerce Class)
The amount of the Recurring or Installment payment.
Syntax
ANSI (Cross Platform) char* GetMITAmount();
int SetMITAmount(const char* lpszMITAmount); Unicode (Windows) LPWSTR GetMITAmount();
INT SetMITAmount(LPCWSTR lpszMITAmount);
char* dpaymentssdk_fdmsrcecommerce_getmitamount(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmitamount(void* lpObj, const char* lpszMITAmount);
QString GetMITAmount();
int SetMITAmount(QString qsMITAmount);
Default Value
""
Remarks
The amount of the Recurring or Installment payment.
This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
MITAmountType Property (FDMSRcECommerce Class)
Identifies the type of the Recurring or Installment Payment amount.
Syntax
ANSI (Cross Platform) int GetMITAmountType();
int SetMITAmountType(int iMITAmountType); Unicode (Windows) INT GetMITAmountType();
INT SetMITAmountType(INT iMITAmountType);
Possible Values
AT_UNSPECIFIED(0),
AT_FIXED(1),
AT_VARIABLE(2)
int dpaymentssdk_fdmsrcecommerce_getmitamounttype(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmitamounttype(void* lpObj, int iMITAmountType);
int GetMITAmountType();
int SetMITAmountType(int iMITAmountType);
Default Value
0
Remarks
Identifies the type of the Recurring or Installment Payment amount.
The following values are defined:
0 (atUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (atFixed) | Fixed - subscription (e.g. monthly newspaper subscription) |
2 (atVariable) | Variable - standing order (e.g. monthly utility payment) |
Data Type
Integer
MITFrequency Property (FDMSRcECommerce Class)
This property indicates the frequency of a Recurring or Installment payment.
Syntax
ANSI (Cross Platform) int GetMITFrequency();
int SetMITFrequency(int iMITFrequency); Unicode (Windows) INT GetMITFrequency();
INT SetMITFrequency(INT iMITFrequency);
Possible Values
FREQ_UNSPECIFIED(0),
FREQ_DAILY(1),
FREQ_WEEKLY(2),
FREQ_BIWEEKLY(3),
FREQ_MONTHLY(4),
FREQ_QUARTERLY(5),
FREQ_BIANNUALLY(6),
FREQ_ANNUALLY(7),
FREQ_UNSCHEDULED(8),
FREQ_TEN_DAYS(9),
FREQ_TWICE_WEEKLY(10),
FREQ_EVERY_TWO_MONTHS(11),
FREQ_TRIMESTER(12)
int dpaymentssdk_fdmsrcecommerce_getmitfrequency(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmitfrequency(void* lpObj, int iMITFrequency);
int GetMITFrequency();
int SetMITFrequency(int iMITFrequency);
Default Value
0
Remarks
This field indicates the frequency of a Recurring or Installment payment.
The following values are defined:
0 (freqUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (freqDaily) | Daily |
2 (freqWeekly) | Weekly |
3 (freqBiweekly) | Biweekly / Fortnightly |
4 (freqMonthly) | Monthly |
5 (freqQuarterly) | Quarterly |
6 (freqBiannually) | Half-Yearly (Biannually) |
7 (freqAnnually) | Annually |
8 (freqUnscheduled) | Unscheduled (Type of MIT) |
9 (freqTenDays) | Ten days |
10 (freqTwiceWeekly) | Twice weekly |
11 (freqEveryTwoMonths) | Every two months |
12 (freqTrimester) | Trimester |
This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'.
When the Card Type is 'Discover', 'JCB', or 'Diners', the valid values are 1, 2, 3, 4, 5, 6, 7, or 8.
For Visa Recurring transactions, valid values are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12.
For Visa Installment transactions, valid values are 2, 3, or 4.
Data Type
Integer
MITPaymentCurrency Property (FDMSRcECommerce Class)
Contains the Installment Payment Currency represented as a 3 digit value.
Syntax
ANSI (Cross Platform) char* GetMITPaymentCurrency();
int SetMITPaymentCurrency(const char* lpszMITPaymentCurrency); Unicode (Windows) LPWSTR GetMITPaymentCurrency();
INT SetMITPaymentCurrency(LPCWSTR lpszMITPaymentCurrency);
char* dpaymentssdk_fdmsrcecommerce_getmitpaymentcurrency(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmitpaymentcurrency(void* lpObj, const char* lpszMITPaymentCurrency);
QString GetMITPaymentCurrency();
int SetMITPaymentCurrency(QString qsMITPaymentCurrency);
Default Value
"840"
Remarks
Contains the Installment Payment Currency represented as a 3 digit value.
This field is only applicable when Card Type is 'Visa'. For US Dollars, use "840".
Data Type
String
MITRecurringPaymentType Property (FDMSRcECommerce Class)
This property contains the type of Recurring Payment.
Syntax
ANSI (Cross Platform) int GetMITRecurringPaymentType();
int SetMITRecurringPaymentType(int iMITRecurringPaymentType); Unicode (Windows) INT GetMITRecurringPaymentType();
INT SetMITRecurringPaymentType(INT iMITRecurringPaymentType);
Possible Values
RPT_UNSPECIFIED(0),
RPT_REGISTRATION(1),
RPT_SUBSEQUENT(2),
RPT_MODIFICATION(3),
RPT_CANCELLATION(4)
int dpaymentssdk_fdmsrcecommerce_getmitrecurringpaymenttype(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmitrecurringpaymenttype(void* lpObj, int iMITRecurringPaymentType);
int GetMITRecurringPaymentType();
int SetMITRecurringPaymentType(int iMITRecurringPaymentType);
Default Value
0
Remarks
This field contains the type of Recurring Payment.
This field is only applicable when Card Type is 'Visa'. The following values are defined:
0 (rptUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (rptRegistration) | Registration / first transaction |
2 (rptSubsequent) | Subsequent transaction |
3 (rptModification) | Modification |
4 (rptCancellation) | Cancellation |
Data Type
Integer
MITRegistrationRefNum Property (FDMSRcECommerce Class)
This property contains a unique Reference Number for the Recurring Payment transaction.
Syntax
ANSI (Cross Platform) char* GetMITRegistrationRefNum();
int SetMITRegistrationRefNum(const char* lpszMITRegistrationRefNum); Unicode (Windows) LPWSTR GetMITRegistrationRefNum();
INT SetMITRegistrationRefNum(LPCWSTR lpszMITRegistrationRefNum);
char* dpaymentssdk_fdmsrcecommerce_getmitregistrationrefnum(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmitregistrationrefnum(void* lpObj, const char* lpszMITRegistrationRefNum);
QString GetMITRegistrationRefNum();
int SetMITRegistrationRefNum(QString qsMITRegistrationRefNum);
Default Value
""
Remarks
This field contains a unique Reference Number for the Recurring Payment transaction.
This field is only applicable when Card Type is 'Visa'.
The maximum length of this field is 35 characters.
Data Type
String
MITSequenceIndicator Property (FDMSRcECommerce Class)
Identifies the sequence of the transactions when multiple Installment payments will be submitted.
Syntax
ANSI (Cross Platform) int GetMITSequenceIndicator();
int SetMITSequenceIndicator(int iMITSequenceIndicator); Unicode (Windows) INT GetMITSequenceIndicator();
INT SetMITSequenceIndicator(INT iMITSequenceIndicator);
int dpaymentssdk_fdmsrcecommerce_getmitsequenceindicator(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmitsequenceindicator(void* lpObj, int iMITSequenceIndicator);
int GetMITSequenceIndicator();
int SetMITSequenceIndicator(int iMITSequenceIndicator);
Default Value
0
Remarks
Identifies the sequence of the transactions when multiple Installment payments will be submitted.
This field should be populated in ascending order and is only applicable when Card Type is 'Discover', 'JCB', or 'Diners'.
Valid values for this field are numbers from 0 to 99.
Data Type
Integer
MITTotalPaymentAmount Property (FDMSRcECommerce Class)
This property contains the Total Installment Amount.
Syntax
ANSI (Cross Platform) char* GetMITTotalPaymentAmount();
int SetMITTotalPaymentAmount(const char* lpszMITTotalPaymentAmount); Unicode (Windows) LPWSTR GetMITTotalPaymentAmount();
INT SetMITTotalPaymentAmount(LPCWSTR lpszMITTotalPaymentAmount);
char* dpaymentssdk_fdmsrcecommerce_getmittotalpaymentamount(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmittotalpaymentamount(void* lpObj, const char* lpszMITTotalPaymentAmount);
QString GetMITTotalPaymentAmount();
int SetMITTotalPaymentAmount(QString qsMITTotalPaymentAmount);
Default Value
""
Remarks
This field contains the Total Installment Amount.
This field is only applicable for Visa Installment transactions. Note : The total amount cannot exceed USD 500,000.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
MITTotalPaymentCount Property (FDMSRcECommerce Class)
The number of Recurring payments or Installments per the Cardholder agreement with the Merchant.
Syntax
ANSI (Cross Platform) char* GetMITTotalPaymentCount();
int SetMITTotalPaymentCount(const char* lpszMITTotalPaymentCount); Unicode (Windows) LPWSTR GetMITTotalPaymentCount();
INT SetMITTotalPaymentCount(LPCWSTR lpszMITTotalPaymentCount);
char* dpaymentssdk_fdmsrcecommerce_getmittotalpaymentcount(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmittotalpaymentcount(void* lpObj, const char* lpszMITTotalPaymentCount);
QString GetMITTotalPaymentCount();
int SetMITTotalPaymentCount(QString qsMITTotalPaymentCount);
Default Value
""
Remarks
The number of Recurring payments or Installments per the Cardholder agreement with the Merchant.
The following values are defined:
Value | Description |
01 to 99 | Installment Count |
UD | Not Defined |
UC | Until Canceled |
This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'. For Discover, the valid values should be from 02 to 99, UD and UC. For Visa, the valid values should be from 01 to 99. Note: For Visa recurring payments, value of '99' means that recurring payments are authorized until canceled or that the Number of Recurring Payments is not defined.
When this field is sent for Visa or Discover (including JCB - US Domestic Only and Diners), the Bill Payment Transaction Indicator must be present with the value of 'Recurring' or 'Installment'. For Discover (including JCB - US Domestic Only and Diners) installment transactions, this field can only be sent when the Installment Type field contains the value of 'Merchant' or 'ThirdParty'. For Discover (including JCB - US Domestic Only and Diners) installment transactions, this field must be sent for ALL Installment transactions for a series of payments, and the original CIT transaction must be initiated with 3DS.
The maximum length of this field is 2 characters.
Data Type
String
MITUniqueID Property (FDMSRcECommerce Class)
This property is used to uniquely identify each of the Recurring or Installment Payment.
Syntax
ANSI (Cross Platform) char* GetMITUniqueID();
int SetMITUniqueID(const char* lpszMITUniqueID); Unicode (Windows) LPWSTR GetMITUniqueID();
INT SetMITUniqueID(LPCWSTR lpszMITUniqueID);
char* dpaymentssdk_fdmsrcecommerce_getmituniqueid(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmituniqueid(void* lpObj, const char* lpszMITUniqueID);
QString GetMITUniqueID();
int SetMITUniqueID(QString qsMITUniqueID);
Default Value
""
Remarks
This field is used to uniquely identify each of the Recurring or Installment Payment. This ID is used to reference authorization transactions.
This field is only applicable when Card Type is 'Discover', 'JCB' or 'Diners'.
The maximum length of this field is 14 characters.
Data Type
String
MITValidationFlag Property (FDMSRcECommerce Class)
Indicates the validation source for the validity of a transaction.
Syntax
ANSI (Cross Platform) int GetMITValidationFlag();
int SetMITValidationFlag(int iMITValidationFlag); Unicode (Windows) INT GetMITValidationFlag();
INT SetMITValidationFlag(INT iMITValidationFlag);
Possible Values
VF_UNSPECIFIED(0),
VF_VALIDATED(1),
VF_NOT_VALIDATED(2)
int dpaymentssdk_fdmsrcecommerce_getmitvalidationflag(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmitvalidationflag(void* lpObj, int iMITValidationFlag);
int GetMITValidationFlag();
int SetMITValidationFlag(int iMITValidationFlag);
Default Value
0
Remarks
Indicates the validation source for the validity of a transaction.
This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'.
The following values are defined:
0 (vfUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (vfValidated) | Validated Card Transaction |
2 (vfNotValidated) | Not Validated Card Transaction |
Data Type
Integer
MITValidationRef Property (FDMSRcECommerce Class)
This property contains a cryptogram generated by the validation source for each cardholder account, for an Issuer to validate a transaction.
Syntax
ANSI (Cross Platform) char* GetMITValidationRef();
int SetMITValidationRef(const char* lpszMITValidationRef); Unicode (Windows) LPWSTR GetMITValidationRef();
INT SetMITValidationRef(LPCWSTR lpszMITValidationRef);
char* dpaymentssdk_fdmsrcecommerce_getmitvalidationref(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmitvalidationref(void* lpObj, const char* lpszMITValidationRef);
QString GetMITValidationRef();
int SetMITValidationRef(QString qsMITValidationRef);
Default Value
""
Remarks
This field contains a cryptogram generated by the validation source for each cardholder account, for an Issuer to validate a transaction.
This field is only applicable when Card Type is 'Discover', 'JCB', or 'Diners'.
The maximum length of this field is 20 characters.
Data Type
String
TransactionIndicator Property (FDMSRcECommerce Class)
Specifies the type of Bill Payment being made.
Syntax
ANSI (Cross Platform) int GetTransactionIndicator();
int SetTransactionIndicator(int iTransactionIndicator); Unicode (Windows) INT GetTransactionIndicator();
INT SetTransactionIndicator(INT iTransactionIndicator);
Possible Values
TI_UNSPECIFIED(0),
TI_SINGLE_TRANSACTION(1),
TI_RECURRING(2),
TI_INSTALLMENT(3),
TI_DEFERRED_BILLING(4)
int dpaymentssdk_fdmsrcecommerce_gettransactionindicator(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_settransactionindicator(void* lpObj, int iTransactionIndicator);
int GetTransactionIndicator();
int SetTransactionIndicator(int iTransactionIndicator);
Default Value
0
Remarks
Specifies the type of Bill Payment being made.
This property contains the type of bill payment being made. This is applicable to ECommerce, MOTO, and Retail transactions. Possible values are:
0 (tiUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (tiSingleTransaction) | Single transaction |
2 (tiRecurring) | Recurring transaction |
3 (tiInstallment) | Installment transaction |
4 (tiDeferredBilling) | Deferred Billing transaction |
To settle an Installment transaction, you must use the FDMSRcDetailrecord class to add the number of this installment and the total count of all installments to be made. For instance, if the purchase was for "Three easy payments of $19.95", and this is the first payment, then the installment number will be 1, and the installment count 3. An example is included below:
FDMSRcECommerce.Config("BillPaymentType=3") // 3=Installment
FDMSRcECommerce.TransactionAmount = "1995"
FDMSRcECommerce.AuthOnly()
FDMSRcDetailRecord.ParseAggregate(FDMSRcECommerce.GetDetailAggregate())
FDMSRcDetailRecord.InstallmentCount = 3
FDMSRcDetailRecord.InstallmentNumber = 1
FDMSRcSettle.DetailRecordAggregate(5) = FDMSRcDetailRecord.GetDetailAggregate()
Data Type
Integer
CardType Property (FDMSRcECommerce Class)
Type of credit card being used in this transaction.
Syntax
ANSI (Cross Platform) int GetCardType();
int SetCardType(int iCardType); Unicode (Windows) INT GetCardType();
INT SetCardType(INT iCardType);
Possible Values
CT_UNKNOWN(0),
CT_VISA(1),
CT_MASTER_CARD(2),
CT_AMEX(3),
CT_DISCOVER(4),
CT_DINERS(5),
CT_JCB(6),
CT_VISA_ELECTRON(7),
CT_MAESTRO(8),
CT_LASER(10)
int dpaymentssdk_fdmsrcecommerce_getcardtype(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setcardtype(void* lpObj, int iCardType);
int GetCardType();
int SetCardType(int iCardType);
Default Value
0
Remarks
Type of credit card being used in this transaction. This property contains the customer's credit card type. This is automatically computed after the Number is set, but it can also be changed manually. A list of valid card types is included below.
ctUnknown (0) | Invalid or unknown prefix, card type not known. |
ctVisa (1) | Visa or Delta Card. |
ctMasterCard (2) | MasterCard. |
ctAMEX (3) | American Express Card. |
ctDiscover (4) | Discover Card. |
ctDiners (5) | Diners Club or Carte Blanche Card. |
ctJCB (6) | JCB Card. |
ctVisaElectron (7) | Visa Electron Card (runs as a Visa for most gateways) |
ctMaestro (8) | Maestro Card |
ctLaser (10) | Laser Card (Ireland) |
This property is not available at design time.
Data Type
Integer
CardCVVData Property (FDMSRcECommerce Class)
Three digit security code on back of card (optional).
Syntax
ANSI (Cross Platform) char* GetCardCVVData();
int SetCardCVVData(const char* lpszCardCVVData); Unicode (Windows) LPWSTR GetCardCVVData();
INT SetCardCVVData(LPCWSTR lpszCardCVVData);
char* dpaymentssdk_fdmsrcecommerce_getcardcvvdata(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setcardcvvdata(void* lpObj, const char* lpszCardCVVData);
QString GetCardCVVData();
int SetCardCVVData(QString qsCardCVVData);
Default Value
""
Remarks
Three digit security code on back of card (optional).
This alphanumeric property contains the three digit Visa "Card Verification Value" (CVV), MasterCard "Card Verification Code" (CVC), or four-digit American Express "Card Identification Number" (CID). This value appears as additional characters embossed on the card signature line following the credit card account number on the back of the credit card. This is an optional property which can be used to determine if the customer is actually in possession of the credit card.
Even if the CVVData is incorrect, the transaction may still be authorized. It is up to the merchant to examine the ResponseCVVResult property and decide whether to honor the transaction or not.
Note: When set to a non-empty value, CVVPresence will be automatically set to cvpProvided. If set to empty string (""), CVVPresence will be automatically set to cvpNotProvided.
This property is not available at design time.
Data Type
String
CardCVVPresence Property (FDMSRcECommerce Class)
Indicates the presence of the card verification value.
Syntax
ANSI (Cross Platform) int GetCardCVVPresence();
int SetCardCVVPresence(int iCardCVVPresence); Unicode (Windows) INT GetCardCVVPresence();
INT SetCardCVVPresence(INT iCardCVVPresence);
Possible Values
CVP_NOT_PROVIDED(0),
CVP_PROVIDED(1),
CVP_ILLEGIBLE(2),
CVP_NOT_ON_CARD(3)
int dpaymentssdk_fdmsrcecommerce_getcardcvvpresence(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setcardcvvpresence(void* lpObj, int iCardCVVPresence);
int GetCardCVVPresence();
int SetCardCVVPresence(int iCardCVVPresence);
Default Value
0
Remarks
Indicates the presence of the card verification value.
This property is used to indicate the presence of CVVData.
The class will automatically set this value to cvpProvided when a CVVData value is specified. You can explicitly specify the CVVPresence indicator by setting this property.
Available values are:
- cvpNotProvided (0)
- cvpProvided (1)
- cvpIllegible (2)
- cvpNotOnCard (3)
This property is not available at design time.
Data Type
Integer
CardEntryDataSource Property (FDMSRcECommerce Class)
This property contains a 1-character code identifying the source of the customer data.
Syntax
ANSI (Cross Platform) int GetCardEntryDataSource();
int SetCardEntryDataSource(int iCardEntryDataSource); Unicode (Windows) INT GetCardEntryDataSource();
INT SetCardEntryDataSource(INT iCardEntryDataSource);
Possible Values
EDS_TRACK_1(0),
EDS_TRACK_2(1),
EDS_MANUAL_ENTRY_TRACK_1CAPABLE(2),
EDS_MANUAL_ENTRY_TRACK_2CAPABLE(3),
EDS_MANUAL_ENTRY_NO_CARD_READER(4),
EDS_TRACK_1CONTACTLESS(5),
EDS_TRACK_2CONTACTLESS(6),
EDS_MANUAL_ENTRY_CONTACTLESS_CAPABLE(7),
EDS_IVR(8),
EDS_KIOSK(9)
int dpaymentssdk_fdmsrcecommerce_getcardentrydatasource(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setcardentrydatasource(void* lpObj, int iCardEntryDataSource);
int GetCardEntryDataSource();
int SetCardEntryDataSource(int iCardEntryDataSource);
Default Value
0
Remarks
This property contains a 1-character code identifying the source of the customer data. The table below shows all supported values for this property.
edsTrack1 (0) | Full Magnetic stripe read and transmit, Track 1. |
edsTrack2 (1) | Full magnetic stripe read and transmit, Track 2. |
edsManualEntryTrack1Capable (2) | Manually keyed, Track 1 capable. |
edsManualEntryTrack2Capable (3) | Manually keyed, Track 2 capable. |
edsManualEntryNoCardReader (4) | Manually keyed, terminal has no card reading capability (use this for e-commerce and MOTO transactions). |
edsTrack1Contactless (5) | Full magnetic stripe read (Track 1 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only). |
edsTrack2Contactless (6) | Full magnetic stripe read (Track 2 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only). |
edsManualEntryContactlessCapable (7) | Manually keyed, Chip Card read capable terminal (Visa, MasterCard, and JCB transactions only). |
edsIVR (8) | Interactive Voice Response processing. This is applicable to Mail Order/Telephone Order (MOTO) transactions. (Number, ExpMonth, and ExpYear are sent). |
edsKiosk (9) | Automated kiosk transaction. Track1 or Track2 data must be sent in MagneticStripe, the transaction cannot be manually entered. |
Below is a list of processors and their support EntryDataSource values:
FDMS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable, edsIVR, edsKiosk
FDMSOmaha - All EntryDataSources applicable
FDMS Rapid Connect - All EntryDataSources applicable
Global - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsIVR, edsKiosk
PTech - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable
TSYS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack2Contactless, edsManualEntryContactlessCapable
TSYSHC - Values are based on Industry type.
TSYSHCBenefit | edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable |
TSYSHCECommerce | edsManualEntryNoCardReader |
TSYSHCRetail | edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable |
This property is not available at design time.
Data Type
Integer
CardExpMonth Property (FDMSRcECommerce Class)
Expiration month of the credit card specified in Number .
Syntax
ANSI (Cross Platform) int GetCardExpMonth();
int SetCardExpMonth(int iCardExpMonth); Unicode (Windows) INT GetCardExpMonth();
INT SetCardExpMonth(INT iCardExpMonth);
int dpaymentssdk_fdmsrcecommerce_getcardexpmonth(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setcardexpmonth(void* lpObj, int iCardExpMonth);
int GetCardExpMonth();
int SetCardExpMonth(int iCardExpMonth);
Default Value
1
Remarks
Expiration month of the credit card specified in Number.
This property contains the expiration date of the customer's credit card, and must be in the range 1 - 12.
This property is not available at design time.
Data Type
Integer
CardExpYear Property (FDMSRcECommerce Class)
Expiration year of the credit card specified in Number .
Syntax
ANSI (Cross Platform) int GetCardExpYear();
int SetCardExpYear(int iCardExpYear); Unicode (Windows) INT GetCardExpYear();
INT SetCardExpYear(INT iCardExpYear);
int dpaymentssdk_fdmsrcecommerce_getcardexpyear(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setcardexpyear(void* lpObj, int iCardExpYear);
int GetCardExpYear();
int SetCardExpYear(int iCardExpYear);
Default Value
2000
Remarks
Expiration year of the credit card specified in Number.
This property contains the expiration date of the customer's credit card. This property must be in the range 0 - 99, or 2000 - 2099. Any date before the year 2000 or after 2099 cannot be specified.
This property is not available at design time.
Data Type
Integer
CardIsEncrypted Property (FDMSRcECommerce Class)
Determines whether data set to the Number or MagneticStripe properties is validated.
Syntax
ANSI (Cross Platform) int GetCardIsEncrypted();
int SetCardIsEncrypted(int bCardIsEncrypted); Unicode (Windows) BOOL GetCardIsEncrypted();
INT SetCardIsEncrypted(BOOL bCardIsEncrypted);
int dpaymentssdk_fdmsrcecommerce_getcardisencrypted(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setcardisencrypted(void* lpObj, int bCardIsEncrypted);
bool GetCardIsEncrypted();
int SetCardIsEncrypted(bool bCardIsEncrypted);
Default Value
FALSE
Remarks
Determines whether data set to the Number or MagneticStripe fields is validated.
By default, when the Number or MagneticStripe fields are set, the value will be validated and normalized. For instance, "4444-33332222 1111" will be normalized as "4444333322221111" and MagneticStripe data will be parsed for the track specified by EntryDataSource. However, any other non-numerical data entered will cause an exception to be thrown. It may be useful in some gateways to send other data in the Number or MagneticStripe fields, and this can be accomplished by setting IsEncrypted to true. However, please note that in doing so automatic calculation of the CardType may be affected, and the card number will not be verified.
This property is not available at design time.
Data Type
Boolean
CardMagneticStripe Property (FDMSRcECommerce Class)
Track data read off of the card's magnetic stripe.
Syntax
ANSI (Cross Platform) char* GetCardMagneticStripe();
int SetCardMagneticStripe(const char* lpszCardMagneticStripe); Unicode (Windows) LPWSTR GetCardMagneticStripe();
INT SetCardMagneticStripe(LPCWSTR lpszCardMagneticStripe);
char* dpaymentssdk_fdmsrcecommerce_getcardmagneticstripe(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setcardmagneticstripe(void* lpObj, const char* lpszCardMagneticStripe);
QString GetCardMagneticStripe();
int SetCardMagneticStripe(QString qsCardMagneticStripe);
Default Value
""
Remarks
Track data read off of the card's magnetic stripe.
If EntryDataSource is not one of the manually entered enumerations, then this property must be set with the track1 or track2 data from the magnetic stripe on the back of the customer's credit card. This includes everything after but not including the start sentinel (% or ;) and up to but not including the end sentinel (?) and LRC check character. You may only set this property with track 1 or track 2 data, and may not pass both. Use the EntryDataSource property to indicate which track you are sending.
The following example shows how to set the MagneticStripe and EntryDataSource properties if the data read off the card is "%B4788250000028291^TSYS^05121015432112345678?;4788250000028291=05121015432112345678?"
class.CardMagneticStripe = "B4788250000028291^TSYS^05121015432112345678"
class.CardEntryDataSource = edsTrack1
or
class.CardMagneticStripe = "4788250000028291=05121015432112345678"
class.CardEntryDataSource = edsTrack2
Industry regulations do not allow merchants or processors to store track data in any form of persistent storage. Failure to abide by this regulation can result in significant fines and other penalties.
This property is not available at design time.
Data Type
String
CardNumber Property (FDMSRcECommerce Class)
Customer's credit card number for the transaction.
Syntax
ANSI (Cross Platform) char* GetCardNumber();
int SetCardNumber(const char* lpszCardNumber); Unicode (Windows) LPWSTR GetCardNumber();
INT SetCardNumber(LPCWSTR lpszCardNumber);
char* dpaymentssdk_fdmsrcecommerce_getcardnumber(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setcardnumber(void* lpObj, const char* lpszCardNumber);
QString GetCardNumber();
int SetCardNumber(QString qsCardNumber);
Default Value
""
Remarks
Customer's credit card number for the transaction.
If you're sending the transaction with MagneticStripe data, this property should be left empty.
This property is not available at design time.
Data Type
String
CustomerAddress Property (FDMSRcECommerce Class)
The customer's billing address.
Syntax
ANSI (Cross Platform) char* GetCustomerAddress();
int SetCustomerAddress(const char* lpszCustomerAddress); Unicode (Windows) LPWSTR GetCustomerAddress();
INT SetCustomerAddress(LPCWSTR lpszCustomerAddress);
char* dpaymentssdk_fdmsrcecommerce_getcustomeraddress(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setcustomeraddress(void* lpObj, const char* lpszCustomerAddress);
QString GetCustomerAddress();
int SetCustomerAddress(QString qsCustomerAddress);
Default Value
""
Remarks
This field is used as part of the Address Verification Service (AVS) and contains the customer's street address as it appears on their monthly statement. Only the street number, street name, and apartment number are required in this field. City and state are not included, and the zip code is set in the CustomerZip property.
The maximum length of this property is 30 characters.
If the customer's address is much greater than the length of this field, it is admissible to include only the street number in this field.
Data Type
String
CustomerZip Property (FDMSRcECommerce Class)
Customer's zip code (or postal code if outside of the USA).
Syntax
ANSI (Cross Platform) char* GetCustomerZip();
int SetCustomerZip(const char* lpszCustomerZip); Unicode (Windows) LPWSTR GetCustomerZip();
INT SetCustomerZip(LPCWSTR lpszCustomerZip);
char* dpaymentssdk_fdmsrcecommerce_getcustomerzip(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setcustomerzip(void* lpObj, const char* lpszCustomerZip);
QString GetCustomerZip();
int SetCustomerZip(QString qsCustomerZip);
Default Value
""
Remarks
This field is used as part of the Address Verification Service (AVS). If the customer resides within the United States, this field should contain the five or nine digit zip code as it appears on the customer's monthly statement. If the customer's billing address is outside of the United States, this field should contain the customer's postal code.
The maximum length of this property is 9 characters.
Data Type
String
DatawireId Property (FDMSRcECommerce Class)
Identifies the merchant to the Datawire System.
Syntax
ANSI (Cross Platform) char* GetDatawireId();
int SetDatawireId(const char* lpszDatawireId); Unicode (Windows) LPWSTR GetDatawireId();
INT SetDatawireId(LPCWSTR lpszDatawireId);
char* dpaymentssdk_fdmsrcecommerce_getdatawireid(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setdatawireid(void* lpObj, const char* lpszDatawireId);
QString GetDatawireId();
int SetDatawireId(QString qsDatawireId);
Default Value
""
Remarks
The Datawire Id is a unique customer identifier generated by Datawire and returned to the client after successfully registering the merchant (using the FDMSRegister class). This Id (which is sent in all subsequent transactions) allows a transaction, to pass through the Datawire system and be correctly routed to the FDMS Payment processor.
The maximum length for this property is 32 characters.
Data Type
String
GroupId Property (FDMSRcECommerce Class)
The Id assigned by FDMS to identify the merchant or group of merchants.
Syntax
ANSI (Cross Platform) char* GetGroupId();
int SetGroupId(const char* lpszGroupId); Unicode (Windows) LPWSTR GetGroupId();
INT SetGroupId(LPCWSTR lpszGroupId);
char* dpaymentssdk_fdmsrcecommerce_getgroupid(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setgroupid(void* lpObj, const char* lpszGroupId);
QString GetGroupId();
int SetGroupId(QString qsGroupId);
Default Value
""
Remarks
This property specifies the FDMS assigned group Id. This Id identifies the merchant or group of merchants. This property is required.
Data Type
String
IndustryType Property (FDMSRcECommerce Class)
The merchant's industry type.
Syntax
ANSI (Cross Platform) int GetIndustryType();
int SetIndustryType(int iIndustryType); Unicode (Windows) INT GetIndustryType();
INT SetIndustryType(INT iIndustryType);
Possible Values
FEIT_ECOMMERCE(0),
FEIT_MOTO(1)
int dpaymentssdk_fdmsrcecommerce_getindustrytype(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setindustrytype(void* lpObj, int iIndustryType);
int GetIndustryType();
int SetIndustryType(int iIndustryType);
Default Value
0
Remarks
The merchant's industry type. Possible values are:
0 (feitEcommerce - default) | ECommerce |
1 (feitMOTO) | Mail Order/Telephone Order |
NOTE: TransactionType of dmtMOTO(1) cannot be used in feitEcommerce(0) IndustryType. Likewise TransactionType of dmtECommerce(0) cannot be used in feitMOTO(1) IndustryType.
Data Type
Integer
Level2CustomerReferenceNumber Property (FDMSRcECommerce Class)
The reference number or order number to be reported as part of the Purchase Card data.
Syntax
ANSI (Cross Platform) char* GetLevel2CustomerReferenceNumber();
int SetLevel2CustomerReferenceNumber(const char* lpszLevel2CustomerReferenceNumber); Unicode (Windows) LPWSTR GetLevel2CustomerReferenceNumber();
INT SetLevel2CustomerReferenceNumber(LPCWSTR lpszLevel2CustomerReferenceNumber);
char* dpaymentssdk_fdmsrcecommerce_getlevel2customerreferencenumber(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2customerreferencenumber(void* lpObj, const char* lpszLevel2CustomerReferenceNumber);
QString GetLevel2CustomerReferenceNumber();
int SetLevel2CustomerReferenceNumber(QString qsLevel2CustomerReferenceNumber);
Default Value
""
Remarks
The reference number or order number to be reported as part of the Purchase Card data.
If Level2TaxAmount is specified this property is required.
The value may be up to 17 characters in length.
Data Type
String
Level2DestinationCountryCode Property (FDMSRcECommerce Class)
This property represents the country code of the location the items in this purchase are being delivered to.
Syntax
ANSI (Cross Platform) char* GetLevel2DestinationCountryCode();
int SetLevel2DestinationCountryCode(const char* lpszLevel2DestinationCountryCode); Unicode (Windows) LPWSTR GetLevel2DestinationCountryCode();
INT SetLevel2DestinationCountryCode(LPCWSTR lpszLevel2DestinationCountryCode);
char* dpaymentssdk_fdmsrcecommerce_getlevel2destinationcountrycode(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2destinationcountrycode(void* lpObj, const char* lpszLevel2DestinationCountryCode);
QString GetLevel2DestinationCountryCode();
int SetLevel2DestinationCountryCode(QString qsLevel2DestinationCountryCode);
Default Value
""
Remarks
This field represents the country code of the location the items in this purchase are being delivered to.
This value is the ISO 3166 three digit numeric identifier.
Data Type
String
Level2DestinationPostalCode Property (FDMSRcECommerce Class)
This property contains the postal or zip code of the location the item(s) in this purchase are being delivered to.
Syntax
ANSI (Cross Platform) char* GetLevel2DestinationPostalCode();
int SetLevel2DestinationPostalCode(const char* lpszLevel2DestinationPostalCode); Unicode (Windows) LPWSTR GetLevel2DestinationPostalCode();
INT SetLevel2DestinationPostalCode(LPCWSTR lpszLevel2DestinationPostalCode);
char* dpaymentssdk_fdmsrcecommerce_getlevel2destinationpostalcode(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2destinationpostalcode(void* lpObj, const char* lpszLevel2DestinationPostalCode);
QString GetLevel2DestinationPostalCode();
int SetLevel2DestinationPostalCode(QString qsLevel2DestinationPostalCode);
Default Value
""
Remarks
This property contains the postal or zip code of the location the item(s) in this purchase are being delivered to.
This property is required for American Express purchase card transactions. This is the same as the Level2ShipFromPostalCode when the customer takes possession of the items at the merchant location.
The value may be up to 9 characters.
Data Type
String
Level2DiscountAmount Property (FDMSRcECommerce Class)
This property contains the discount amount for the purchase.
Syntax
ANSI (Cross Platform) char* GetLevel2DiscountAmount();
int SetLevel2DiscountAmount(const char* lpszLevel2DiscountAmount); Unicode (Windows) LPWSTR GetLevel2DiscountAmount();
INT SetLevel2DiscountAmount(LPCWSTR lpszLevel2DiscountAmount);
char* dpaymentssdk_fdmsrcecommerce_getlevel2discountamount(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2discountamount(void* lpObj, const char* lpszLevel2DiscountAmount);
QString GetLevel2DiscountAmount();
int SetLevel2DiscountAmount(QString qsLevel2DiscountAmount);
Default Value
""
Remarks
This property contains the discount amount for the purchase.
This property is required for Visa, MasterCard, and American Express purchase card transactions when a discount has been applied.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
Level2DutyAmount Property (FDMSRcECommerce Class)
This property contains the duty amount for this purchase.
Syntax
ANSI (Cross Platform) char* GetLevel2DutyAmount();
int SetLevel2DutyAmount(const char* lpszLevel2DutyAmount); Unicode (Windows) LPWSTR GetLevel2DutyAmount();
INT SetLevel2DutyAmount(LPCWSTR lpszLevel2DutyAmount);
char* dpaymentssdk_fdmsrcecommerce_getlevel2dutyamount(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2dutyamount(void* lpObj, const char* lpszLevel2DutyAmount);
QString GetLevel2DutyAmount();
int SetLevel2DutyAmount(QString qsLevel2DutyAmount);
Default Value
""
Remarks
This property contains the duty amount for this purchase.
This property is required for Visa, MasterCard, and American Express purchase card transactions when a duty amount has been applied.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
Level2FreightAmount Property (FDMSRcECommerce Class)
This property contains the amount for freight included in this purchase.
Syntax
ANSI (Cross Platform) char* GetLevel2FreightAmount();
int SetLevel2FreightAmount(const char* lpszLevel2FreightAmount); Unicode (Windows) LPWSTR GetLevel2FreightAmount();
INT SetLevel2FreightAmount(LPCWSTR lpszLevel2FreightAmount);
char* dpaymentssdk_fdmsrcecommerce_getlevel2freightamount(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2freightamount(void* lpObj, const char* lpszLevel2FreightAmount);
QString GetLevel2FreightAmount();
int SetLevel2FreightAmount(QString qsLevel2FreightAmount);
Default Value
""
Remarks
This property contains the amount for freight included in this purchase.
This property is required for Visa, MasterCard, and American Express purchase card transactions when a freight amount has been applied.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
Level2MerchantTaxId Property (FDMSRcECommerce Class)
This property should contain the Tax Id collected by the merchant for this transaction.
Syntax
ANSI (Cross Platform) char* GetLevel2MerchantTaxId();
int SetLevel2MerchantTaxId(const char* lpszLevel2MerchantTaxId); Unicode (Windows) LPWSTR GetLevel2MerchantTaxId();
INT SetLevel2MerchantTaxId(LPCWSTR lpszLevel2MerchantTaxId);
char* dpaymentssdk_fdmsrcecommerce_getlevel2merchanttaxid(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2merchanttaxid(void* lpObj, const char* lpszLevel2MerchantTaxId);
QString GetLevel2MerchantTaxId();
int SetLevel2MerchantTaxId(QString qsLevel2MerchantTaxId);
Default Value
""
Remarks
This property should contain the Tax Id collected by the merchant for this transaction.
This property is required for MasterCard purchase card transactions.
The value may be up to 15 characters in length.
Data Type
String
Level2ProductDescription Property (FDMSRcECommerce Class)
This property should contain a description of an item purchased with this card.
Syntax
ANSI (Cross Platform) char* GetLevel2ProductDescription();
int SetLevel2ProductDescription(const char* lpszLevel2ProductDescription); Unicode (Windows) LPWSTR GetLevel2ProductDescription();
INT SetLevel2ProductDescription(LPCWSTR lpszLevel2ProductDescription);
char* dpaymentssdk_fdmsrcecommerce_getlevel2productdescription(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2productdescription(void* lpObj, const char* lpszLevel2ProductDescription);
QString GetLevel2ProductDescription();
int SetLevel2ProductDescription(QString qsLevel2ProductDescription);
Default Value
""
Remarks
This property should contain a description of an item purchased with this card.
This property is required for American Express purchase card transactions and not applicable to other card types.
The value may be up to 40 characters in length.
Data Type
String
Level2PurchaseIdentifier Property (FDMSRcECommerce Class)
This property represents the data used by the merchant or customer to identify the purchase.
Syntax
ANSI (Cross Platform) char* GetLevel2PurchaseIdentifier();
int SetLevel2PurchaseIdentifier(const char* lpszLevel2PurchaseIdentifier); Unicode (Windows) LPWSTR GetLevel2PurchaseIdentifier();
INT SetLevel2PurchaseIdentifier(LPCWSTR lpszLevel2PurchaseIdentifier);
char* dpaymentssdk_fdmsrcecommerce_getlevel2purchaseidentifier(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2purchaseidentifier(void* lpObj, const char* lpszLevel2PurchaseIdentifier);
QString GetLevel2PurchaseIdentifier();
int SetLevel2PurchaseIdentifier(QString qsLevel2PurchaseIdentifier);
Default Value
""
Remarks
This property represents the data used by the merchant or customer to identify the purchase. This can be a SKU, code, or reference number.
This property is required for Visa, MasterCard, and American Express purchase card transactions.
The value may be up to 25 characters in length.
Data Type
String
Level2ShipFromPostalCode Property (FDMSRcECommerce Class)
The postal or zip code the item(s) in this purchase are to be shipped from.
Syntax
ANSI (Cross Platform) char* GetLevel2ShipFromPostalCode();
int SetLevel2ShipFromPostalCode(const char* lpszLevel2ShipFromPostalCode); Unicode (Windows) LPWSTR GetLevel2ShipFromPostalCode();
INT SetLevel2ShipFromPostalCode(LPCWSTR lpszLevel2ShipFromPostalCode);
char* dpaymentssdk_fdmsrcecommerce_getlevel2shipfrompostalcode(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2shipfrompostalcode(void* lpObj, const char* lpszLevel2ShipFromPostalCode);
QString GetLevel2ShipFromPostalCode();
int SetLevel2ShipFromPostalCode(QString qsLevel2ShipFromPostalCode);
Default Value
""
Remarks
The postal or zip code the item(s) in this purchase are to be shipped from.
The value may be up to 9 characters.
Data Type
String
Level2TaxAmount Property (FDMSRcECommerce Class)
This property contains the portion of the transaction amount that represents the tax.
Syntax
ANSI (Cross Platform) char* GetLevel2TaxAmount();
int SetLevel2TaxAmount(const char* lpszLevel2TaxAmount); Unicode (Windows) LPWSTR GetLevel2TaxAmount();
INT SetLevel2TaxAmount(LPCWSTR lpszLevel2TaxAmount);
char* dpaymentssdk_fdmsrcecommerce_getlevel2taxamount(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2taxamount(void* lpObj, const char* lpszLevel2TaxAmount);
QString GetLevel2TaxAmount();
int SetLevel2TaxAmount(QString qsLevel2TaxAmount);
Default Value
""
Remarks
This property contains the portion of the transaction amount that represents the tax.
This property is required when Level2TaxIndicator is set to 2 (tiProvided).
For Visa this is the amount of state or provincial tax included in the TransactionAmount. The tax amount must be within 0.1 % and 22% of the pre-tax transaction amount.
For MasterCard the total amount of sales tax on the total purchase must be between 0.1% and 30 % of the total pre-tax transaction amount; zeros indicate that the card acceptor is capable of transmitting the tax amount and the tax amount is zero.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
Level2TaxIndicator Property (FDMSRcECommerce Class)
This property indicates the taxable status of the transaction.
Syntax
ANSI (Cross Platform) int GetLevel2TaxIndicator();
int SetLevel2TaxIndicator(int iLevel2TaxIndicator); Unicode (Windows) INT GetLevel2TaxIndicator();
INT SetLevel2TaxIndicator(INT iLevel2TaxIndicator);
Possible Values
TI_UN_SET(0),
TI_NOT_PROVIDED(1),
TI_PROVIDED(2),
TI_EXEMPT(3)
int dpaymentssdk_fdmsrcecommerce_getlevel2taxindicator(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setlevel2taxindicator(void* lpObj, int iLevel2TaxIndicator);
int GetLevel2TaxIndicator();
int SetLevel2TaxIndicator(int iLevel2TaxIndicator);
Default Value
0
Remarks
This field indicates the taxable status of the transaction. Possible values are:
0 (tiUnSet - default) | UnSet - no value is sent in the request |
1 (tiNotProvided) | No tax information provided |
2 (tiProvided) | Tax amount is provided |
3 (tiExempt) | Purchase item is tax exempt or non-taxable |
Data Type
Integer
MerchantId Property (FDMSRcECommerce Class)
A unique Id used to identify the merchant within the FDMS and Datawire systems.
Syntax
ANSI (Cross Platform) char* GetMerchantId();
int SetMerchantId(const char* lpszMerchantId); Unicode (Windows) LPWSTR GetMerchantId();
INT SetMerchantId(LPCWSTR lpszMerchantId);
char* dpaymentssdk_fdmsrcecommerce_getmerchantid(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmerchantid(void* lpObj, const char* lpszMerchantId);
QString GetMerchantId();
int SetMerchantId(QString qsMerchantId);
Default Value
""
Remarks
This property holds the Merchant Id assigned by FDMS. The value is an alphanumeric value up to 16 characters in length.
This property is required.
Data Type
String
MerchantServicePhone Property (FDMSRcECommerce Class)
The merchant's phone number, used to assist cardholders.
Syntax
ANSI (Cross Platform) char* GetMerchantServicePhone();
int SetMerchantServicePhone(const char* lpszMerchantServicePhone); Unicode (Windows) LPWSTR GetMerchantServicePhone();
INT SetMerchantServicePhone(LPCWSTR lpszMerchantServicePhone);
char* dpaymentssdk_fdmsrcecommerce_getmerchantservicephone(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmerchantservicephone(void* lpObj, const char* lpszMerchantServicePhone);
QString GetMerchantServicePhone();
int SetMerchantServicePhone(QString qsMerchantServicePhone);
Default Value
""
Remarks
This property specifies a 10 digit phone number which cardholders can call for assistance.
This value is required for MOTO transactions. It is recommended but not required for ecommerce and hotel transactions.
Data Type
String
MerchantTerminalNumber Property (FDMSRcECommerce Class)
Used to identify a unique terminal within a merchant location.
Syntax
ANSI (Cross Platform) char* GetMerchantTerminalNumber();
int SetMerchantTerminalNumber(const char* lpszMerchantTerminalNumber); Unicode (Windows) LPWSTR GetMerchantTerminalNumber();
INT SetMerchantTerminalNumber(LPCWSTR lpszMerchantTerminalNumber);
char* dpaymentssdk_fdmsrcecommerce_getmerchantterminalnumber(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmerchantterminalnumber(void* lpObj, const char* lpszMerchantTerminalNumber);
QString GetMerchantTerminalNumber();
int SetMerchantTerminalNumber(QString qsMerchantTerminalNumber);
Default Value
""
Remarks
This property contains a number assigned by FDMS to uniquely identify a terminal within a merchant location. The value is numeric and may be up to 8 digits in length.
This property is required.
Data Type
String
MerchantURL Property (FDMSRcECommerce Class)
The URL of the site performing the ECommerce transaction.
Syntax
ANSI (Cross Platform) char* GetMerchantURL();
int SetMerchantURL(const char* lpszMerchantURL); Unicode (Windows) LPWSTR GetMerchantURL();
INT SetMerchantURL(LPCWSTR lpszMerchantURL);
char* dpaymentssdk_fdmsrcecommerce_getmerchanturl(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setmerchanturl(void* lpObj, const char* lpszMerchantURL);
QString GetMerchantURL();
int SetMerchantURL(QString qsMerchantURL);
Default Value
""
Remarks
This property specifies the URL of the merchant's site. This value is required for ECommerce and Hotel AuthOnly, Sale, Capture, and Credit transactions.
For Visa and Discover transactions this value is limited to 13 characters. For all other card types this value is limited to 32 characters.
Data Type
String
OrderNumber Property (FDMSRcECommerce Class)
A merchant assigned order number to uniquely reference the transaction.
Syntax
ANSI (Cross Platform) char* GetOrderNumber();
int SetOrderNumber(const char* lpszOrderNumber); Unicode (Windows) LPWSTR GetOrderNumber();
INT SetOrderNumber(LPCWSTR lpszOrderNumber);
char* dpaymentssdk_fdmsrcecommerce_getordernumber(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setordernumber(void* lpObj, const char* lpszOrderNumber);
QString GetOrderNumber();
int SetOrderNumber(QString qsOrderNumber);
Default Value
""
Remarks
This property holds a merchant assigned order number that uniquely identifies the transaction. This must hold a numeric value up to 8 digits in length. This value cannot be all zeros.
This value is required for ECommerce and MOTO transactions. This value is optional for Retail transactions.
Data Type
String
ProxyAuthScheme Property (FDMSRcECommerce Class)
This property is used to tell the class which type of authorization to perform when connecting to the proxy.
Syntax
ANSI (Cross Platform) int GetProxyAuthScheme();
int SetProxyAuthScheme(int iProxyAuthScheme); Unicode (Windows) INT GetProxyAuthScheme();
INT SetProxyAuthScheme(INT iProxyAuthScheme);
Possible Values
AUTH_BASIC(0),
AUTH_DIGEST(1),
AUTH_PROPRIETARY(2),
AUTH_NONE(3),
AUTH_NTLM(4),
AUTH_NEGOTIATE(5)
int dpaymentssdk_fdmsrcecommerce_getproxyauthscheme(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setproxyauthscheme(void* lpObj, int iProxyAuthScheme);
int GetProxyAuthScheme();
int SetProxyAuthScheme(int iProxyAuthScheme);
Default Value
0
Remarks
This property is used to tell the class which type of authorization to perform when connecting to the proxy. This is used only when the User and Password properties are set.
AuthScheme should be set to authNone (3) when no authentication is expected.
By default, AuthScheme is authBasic (0), and if the User and Password properties are set, the component will attempt basic authentication.
If AuthScheme is set to authDigest (1), digest authentication will be attempted instead.
If AuthScheme is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.
If AuthScheme is set to authNtlm (4), NTLM authentication will be used.
For security reasons, setting this property will clear the values of User and Password.
Data Type
Integer
ProxyAutoDetect Property (FDMSRcECommerce Class)
This property tells the class whether or not to automatically detect and use proxy system settings, if available.
Syntax
ANSI (Cross Platform) int GetProxyAutoDetect();
int SetProxyAutoDetect(int bProxyAutoDetect); Unicode (Windows) BOOL GetProxyAutoDetect();
INT SetProxyAutoDetect(BOOL bProxyAutoDetect);
int dpaymentssdk_fdmsrcecommerce_getproxyautodetect(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setproxyautodetect(void* lpObj, int bProxyAutoDetect);
bool GetProxyAutoDetect();
int SetProxyAutoDetect(bool bProxyAutoDetect);
Default Value
FALSE
Remarks
This property tells the class whether or not to automatically detect and use proxy system settings, if available. The default value is false.
Data Type
Boolean
ProxyPassword Property (FDMSRcECommerce Class)
This property contains a password if authentication is to be used for the proxy.
Syntax
ANSI (Cross Platform) char* GetProxyPassword();
int SetProxyPassword(const char* lpszProxyPassword); Unicode (Windows) LPWSTR GetProxyPassword();
INT SetProxyPassword(LPCWSTR lpszProxyPassword);
char* dpaymentssdk_fdmsrcecommerce_getproxypassword(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setproxypassword(void* lpObj, const char* lpszProxyPassword);
QString GetProxyPassword();
int SetProxyPassword(QString qsProxyPassword);
Default Value
""
Remarks
This property contains a password if authentication is to be used for the proxy.
If AuthScheme is set to Basic Authentication, the User and Password are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If AuthScheme is set to Digest Authentication, the User and Password properties are used to respond to the Digest Authentication challenge from the server.
If AuthScheme is set to NTLM Authentication, the User and Password properties are used to authenticate through NTLM negotiation.
Data Type
String
ProxyPort Property (FDMSRcECommerce Class)
This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
Syntax
ANSI (Cross Platform) int GetProxyPort();
int SetProxyPort(int iProxyPort); Unicode (Windows) INT GetProxyPort();
INT SetProxyPort(INT iProxyPort);
int dpaymentssdk_fdmsrcecommerce_getproxyport(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setproxyport(void* lpObj, int iProxyPort);
int GetProxyPort();
int SetProxyPort(int iProxyPort);
Default Value
80
Remarks
This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). See the description of the Server property for details.
Data Type
Integer
ProxyServer Property (FDMSRcECommerce Class)
If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
Syntax
ANSI (Cross Platform) char* GetProxyServer();
int SetProxyServer(const char* lpszProxyServer); Unicode (Windows) LPWSTR GetProxyServer();
INT SetProxyServer(LPCWSTR lpszProxyServer);
char* dpaymentssdk_fdmsrcecommerce_getproxyserver(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setproxyserver(void* lpObj, const char* lpszProxyServer);
QString GetProxyServer();
int SetProxyServer(QString qsProxyServer);
Default Value
""
Remarks
If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
If the Server property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the Server property is set to the corresponding address. If the search is not successful, an error is returned.
Data Type
String
ProxySSL Property (FDMSRcECommerce Class)
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
Syntax
ANSI (Cross Platform) int GetProxySSL();
int SetProxySSL(int iProxySSL); Unicode (Windows) INT GetProxySSL();
INT SetProxySSL(INT iProxySSL);
Possible Values
PS_AUTOMATIC(0),
PS_ALWAYS(1),
PS_NEVER(2),
PS_TUNNEL(3)
int dpaymentssdk_fdmsrcecommerce_getproxyssl(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setproxyssl(void* lpObj, int iProxySSL);
int GetProxySSL();
int SetProxySSL(int iProxySSL);
Default Value
0
Remarks
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:
psAutomatic (0) | Default setting. If the URL is an https URL, the class will use the psTunnel option. If the URL is an http URL, the class will use the psNever option. |
psAlways (1) | The connection is always SSL enabled. |
psNever (2) | The connection is not SSL enabled. |
psTunnel (3) | The connection is made through a tunneling (HTTP) proxy. |
Data Type
Integer
ProxyUser Property (FDMSRcECommerce Class)
This property contains a username if authentication is to be used for the proxy.
Syntax
ANSI (Cross Platform) char* GetProxyUser();
int SetProxyUser(const char* lpszProxyUser); Unicode (Windows) LPWSTR GetProxyUser();
INT SetProxyUser(LPCWSTR lpszProxyUser);
char* dpaymentssdk_fdmsrcecommerce_getproxyuser(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setproxyuser(void* lpObj, const char* lpszProxyUser);
QString GetProxyUser();
int SetProxyUser(QString qsProxyUser);
Default Value
""
Remarks
This property contains a username if authentication is to be used for the proxy.
If AuthScheme is set to Basic Authentication, the User and Password properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If AuthScheme is set to Digest Authentication, the User and Password properties are used to respond to the Digest Authentication challenge from the server.
If AuthScheme is set to NTLM Authentication, the User and Password properties are used to authenticate through NTLM negotiation.
Data Type
String
ReferenceNumber Property (FDMSRcECommerce Class)
A value assigned by the merchant to uniquely reference a transaction and any subsequent related transactions.
Syntax
ANSI (Cross Platform) char* GetReferenceNumber();
int SetReferenceNumber(const char* lpszReferenceNumber); Unicode (Windows) LPWSTR GetReferenceNumber();
INT SetReferenceNumber(LPCWSTR lpszReferenceNumber);
char* dpaymentssdk_fdmsrcecommerce_getreferencenumber(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setreferencenumber(void* lpObj, const char* lpszReferenceNumber);
QString GetReferenceNumber();
int SetReferenceNumber(QString qsReferenceNumber);
Default Value
""
Remarks
This value is a merchant assigned 12 digit value. The value must be unique within a day for a given merchant id and terminal id. When performing a Capture or Reverse transaction this must be the same as the original transaction.
Data Type
String
ResponseApprovalCode Property (FDMSRcECommerce Class)
The Approval Code returned from the server after a successful authorization.
Syntax
ANSI (Cross Platform) char* GetResponseApprovalCode(); Unicode (Windows) LPWSTR GetResponseApprovalCode();
char* dpaymentssdk_fdmsrcecommerce_getresponseapprovalcode(void* lpObj);
QString GetResponseApprovalCode();
Default Value
""
Remarks
The Approval Code returned from the server after a successful authorization.
This value holds the approval code returned by the authorizer. This value will contain up to 8 characters. Only alphanumeric characters and spaces will be returned.
This property is read-only and not available at design time.
Data Type
String
ResponseAuthorizedAmount Property (FDMSRcECommerce Class)
The amount actually charged to the card.
Syntax
ANSI (Cross Platform) char* GetResponseAuthorizedAmount(); Unicode (Windows) LPWSTR GetResponseAuthorizedAmount();
char* dpaymentssdk_fdmsrcecommerce_getresponseauthorizedamount(void* lpObj);
QString GetResponseAuthorizedAmount();
Default Value
""
Remarks
The amount actually charged to the card.
This value holds the amount charged to the card. In the case of a partial authorization this will be different than the amount specified in TransactionAmount.
You must collect the remainder via another form of payment, or Reverse the authorization if the customer does not have an additional form of payment.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
This property is read-only.
Data Type
String
ResponseAuthorizingNetworkId Property (FDMSRcECommerce Class)
This property indicates the network Id as returned by the host, if available.
Syntax
ANSI (Cross Platform) char* GetResponseAuthorizingNetworkId(); Unicode (Windows) LPWSTR GetResponseAuthorizingNetworkId();
char* dpaymentssdk_fdmsrcecommerce_getresponseauthorizingnetworkid(void* lpObj);
QString GetResponseAuthorizingNetworkId();
Default Value
""
Remarks
This field indicates the network Id as returned by the host, if available.
This value is up to 3 alphanumeric characters.
This property is read-only.
Data Type
String
ResponseAuthorizingNetworkName Property (FDMSRcECommerce Class)
This property indicates the authorizing network name as returned by the host, when available.
Syntax
ANSI (Cross Platform) char* GetResponseAuthorizingNetworkName(); Unicode (Windows) LPWSTR GetResponseAuthorizingNetworkName();
char* dpaymentssdk_fdmsrcecommerce_getresponseauthorizingnetworkname(void* lpObj);
QString GetResponseAuthorizingNetworkName();
Default Value
""
Remarks
This field indicates the authorizing network name as returned by the host, when available.
This property is read-only.
Data Type
String
ResponseAVSResult Property (FDMSRcECommerce Class)
Contains the Address Verification System result code.
Syntax
ANSI (Cross Platform) char* GetResponseAVSResult(); Unicode (Windows) LPWSTR GetResponseAVSResult();
char* dpaymentssdk_fdmsrcecommerce_getresponseavsresult(void* lpObj);
QString GetResponseAVSResult();
Default Value
""
Remarks
Contains the Address Verification System result code.
This one character field contains the Address Verification System (AVS) result code. This property is populated if a value is present in the response. An AVS result code can provide additional information concerning the authentication of a particular transaction for which cardholder address verification was requested. Possible AVS codes are listed in the table below.
Visa Card AVS Codes
Code | Description |
A | Street address matches, postal code does not match |
B | Street addresses match; postal code not verified due to incompatible formats |
C | Street address and postal code not verified |
D | Street address and postal code match (International only) |
F | Street address and postal code match (UK) |
G | Address information not verified for international transaction. Issuer is not an AVS Participant, or, AVS data was present in the request but the issuer did not return an AVS result, or no address on file (International only) |
I | Address verification service not performed (International only) |
M | Street address and postal codes match (International only) |
N | No match; neither the street addresses nor the postal codes match |
P | Postal code matches; street address not verified |
R | Retry, system unavailable to process |
S | Service not supported |
U | Address information is unavailable |
Y | Both postal code and address match |
Z | Postal code matches, Street address does not match or Street address not included in request |
MasterCard AVS Codes
A | Street address matches, postal code does not match |
E | Error: Transaction ineligible for address verification or edit error found in the message that prevents AVS from being performed |
N | No match; neither the street addresses nor the postal codes match |
R | Retry, system unavailable to process |
S | Service not supported |
U | Address information is unavailable |
W | U.S. - Street Address does not match, nine digit postal code matches; For address outside the U.S., postal code matches, address does not |
X | Exact: U.S. - Address and 9-digit postal code match; For address outside the U.S., postal code matches, address does not |
Y | Yes: Address and 5-digit postal code match for US address |
Z | Five digit postal code matches, address does not match |
Amex AVS Codes
A | Street address matches, postal code does not match |
N | No match; neither the street addresses nor the postal code matches |
R | Retry, system unavailable to process |
S | Service not supported |
U | Address information is unavailable |
Y | Both postal code and address match |
Z | Nine or five digit postal code matches, address does not match |
L | Card member Name and Billing Postal Code match |
M | Card member Name, Billing Address and Postal Code match |
O | Card member Name and Billing Address match |
K | Card member Name matches |
D | Card member Name incorrect, Billing Postal Code matches |
E | Card member Name incorrect, Billing Address and Postal Code match |
F | Card member Name incorrect, Billing Address matches |
W | No, Card member Name, Billing Address and Postal Code are all incorrect |
Discover or JCB
A | Both address and five digit postal code match |
G | Address information not verified for international transaction |
N | No match; neither the street addresses nor the postal code matches |
R | Retry, system unable to process |
S | Service not supported |
T | No data received from Issuer |
W | Nine digit postal code matches, address does not match |
X | All digits match (nine digit zip code) |
Y | Street address matches, postal code does not match |
Z | Five digit postal code matches, address does not match |
This property is read-only.
Data Type
String
ResponseBalance Property (FDMSRcECommerce Class)
Contains the remaining available balance left on the card.
Syntax
ANSI (Cross Platform) char* GetResponseBalance(); Unicode (Windows) LPWSTR GetResponseBalance();
char* dpaymentssdk_fdmsrcecommerce_getresponsebalance(void* lpObj);
QString GetResponseBalance();
Default Value
""
Remarks
Contains the remaining available balance left on the card.
This balance amount will only be returned for prepaid cards.
This property is read-only and not available at design time.
Data Type
String
ResponseCardLevelResult Property (FDMSRcECommerce Class)
This property is only applicable to Visa card.
Syntax
ANSI (Cross Platform) char* GetResponseCardLevelResult(); Unicode (Windows) LPWSTR GetResponseCardLevelResult();
char* dpaymentssdk_fdmsrcecommerce_getresponsecardlevelresult(void* lpObj);
QString GetResponseCardLevelResult();
Default Value
""
Remarks
This property is only applicable to Visa card. This property holds a two character value returned by Visa to designate the type of card product used to process the transaction.
This property is read-only and not available at design time.
Data Type
String
ResponseCode Property (FDMSRcECommerce Class)
Contains the 3 digit response code indicating success or reason of failure.
Syntax
ANSI (Cross Platform) char* GetResponseCode(); Unicode (Windows) LPWSTR GetResponseCode();
char* dpaymentssdk_fdmsrcecommerce_getresponsecode(void* lpObj);
QString GetResponseCode();
Default Value
""
Remarks
Contains the 3 digit response code indicating success or reason of failure.
This property contains a 3 digit code indicating success or the reason of failure. A value of 000 indicates approval. For all other values please see the Response Codes section.
This property is read-only.
Data Type
String
ResponseCommercialCard Property (FDMSRcECommerce Class)
Indicates whether the credit card charged is a corporate commercial card.
Syntax
ANSI (Cross Platform) int GetResponseCommercialCard(); Unicode (Windows) INT GetResponseCommercialCard();
Possible Values
RCCT_NOT_COMMERCIAL(0),
RCCT_PURCHASE_CARD(1),
RCCT_CORPORATE_CARD(2),
RCCT_BUSINESS_CARD(3),
RCCT_UNKNOWN(4)
int dpaymentssdk_fdmsrcecommerce_getresponsecommercialcard(void* lpObj);
int GetResponseCommercialCard();
Default Value
0
Remarks
Indicates whether the credit card charged is a corporate commercial card.
This is only applicable to Visa cards. Visa Business, corporate, and purchasing cards are subsets of commercial cards. Therefore, the user should send Level 2 (and possibly Level 3) data when calling Capture when this property indicates a commercial card was used. The following table indicates the type of commercial card:
fccNotCommercial (0) | Card presented for authorization is not a commercial card |
fccPurchaseCard (1) | Card presented for authorization is a Visa Purchasing Card. |
fccCorporateCard (2) | Card presented for authorization is a Visa Corporate Card. |
fccBusinessCard (3) | Card presented for authorization is a Visa Business Card. |
fccUnknown (4) | Unable to obtain information from processor. |
Note: Tax amounts should be included with the Level2 or Level3 data when calling Capture in order to receive the best interchange rate.
This property is read-only.
Data Type
Integer
ResponseCVVResult Property (FDMSRcECommerce Class)
Contains the returned CVV result code (if CVV data was sent in the request).
Syntax
ANSI (Cross Platform) char* GetResponseCVVResult(); Unicode (Windows) LPWSTR GetResponseCVVResult();
char* dpaymentssdk_fdmsrcecommerce_getresponsecvvresult(void* lpObj);
QString GetResponseCVVResult();
Default Value
""
Remarks
Contains the returned CVV result code (if CVV data was sent in the request).
If a CVV value was sent in the authorization, this property will contain the host returned Card Verification Value result code. This property is populated if a value is present in the response. The following is a list of current result codes:
Match | Values match |
NoMtch | Values do not match |
NotPrc | Not processed |
NotPrv | Value not provided |
NotPrt | Issuer not participating |
Unknwn | Unknown |
This property is read-only.
Data Type
String
ResponseDatawireReturnCode Property (FDMSRcECommerce Class)
Contains an error code providing more details about the DatawireStatus received.
Syntax
ANSI (Cross Platform) char* GetResponseDatawireReturnCode(); Unicode (Windows) LPWSTR GetResponseDatawireReturnCode();
char* dpaymentssdk_fdmsrcecommerce_getresponsedatawirereturncode(void* lpObj);
QString GetResponseDatawireReturnCode();
Default Value
""
Remarks
Contains an error code providing more details about the ResponseDatawireStatus received.
When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.
The ResponseApprovalCode contains the actual transaction result that was returned by FDMS.
The following is a list of possible Datawire return codes:
000 | Transaction successfully passed through the Datawire system to the FDMS Payment Processor and back. |
200 | Host Busy - The processor's Host is busy and is currently unable to service this request. |
201 | Host Unavailable - The processor's Host is currently unavailable. For example, the server is sending NAK. |
202 | Host Connect Error - Could not connect to the processor's Host. |
203 | Host Drop - The processor's Host disconnected during the transaction before sending a response. |
204 | Host Comm Error - An error was encountered while communicating with the processor's Host. |
205 | No Response - No response from the processor's Host |
206 | Host Send Error - An error has encountered when sending the request to the processor, and the Host daemon cannot continue sending packets to the processor because the connection is broken. |
405 | Vxn Timeout - The request could not be processed. |
505 | Network Error - The request could not be processed. |
This property is read-only.
Data Type
String
ResponseDatawireStatus Property (FDMSRcECommerce Class)
Status of the communication with Datawire.
Syntax
ANSI (Cross Platform) char* GetResponseDatawireStatus(); Unicode (Windows) LPWSTR GetResponseDatawireStatus();
char* dpaymentssdk_fdmsrcecommerce_getresponsedatawirestatus(void* lpObj);
QString GetResponseDatawireStatus();
Default Value
""
Remarks
Status of the communication with Datawire.
When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.
The ResponseApprovalCode contains the actual FDMS Transaction Result that was returned.
The following is a list of possible Datawire response status codes:
OK | Transaction has successfully passed through the Datawire system to the FDMS Payment processor and back. |
AuthenticationError | DatawireId in the request was not successfully authenticated. |
UnknownServiceID | ServiceId part of the URL (in the Service Discovery or Ping request) is unknown. |
WrongSessionContext | The SessionContext element of the Session Transaction request does not match the SessionContext returned by the InitiateSession response (applicable to the FDMSSettle class). |
AccessDenied | Generally, occurs when you try to register a merchant after a merchant has already been activated to use the Datawire VXN. |
Failed | Your Merchant Registration has failed. Contact tech.support@datawire.net for more information. |
Retry | Registration is not yet complete. You must send the Registration request again. |
Timeout | No response from the Service Provider was received during the expected period of time. |
XMLError | Request contains some XML error, such as malformed XML, violation of this DTD, etc. |
OtherError | Unspecified error occurred. |
008 | Network Error |
This property is read-only.
Data Type
String
ResponsePOSData Property (FDMSRcECommerce Class)
This property holds transaction specific information returned by the issuer (if any).
Syntax
ANSI (Cross Platform) char* GetResponsePOSData(); Unicode (Windows) LPWSTR GetResponsePOSData();
char* dpaymentssdk_fdmsrcecommerce_getresponseposdata(void* lpObj);
QString GetResponsePOSData();
Default Value
""
Remarks
This property holds transaction specific information returned by the issuer (if any). This is only applicable to MasterCard, Discover, and AmEx card transactions.
This property is read-only and not available at design time.
Data Type
String
ResponseReturnedACI Property (FDMSRcECommerce Class)
Returned Authorization Characteristics Indicator contains CPS qualification status.
Syntax
ANSI (Cross Platform) char* GetResponseReturnedACI(); Unicode (Windows) LPWSTR GetResponseReturnedACI();
char* dpaymentssdk_fdmsrcecommerce_getresponsereturnedaci(void* lpObj);
QString GetResponseReturnedACI();
Default Value
""
Remarks
Returned Authorization Characteristics Indicator contains CPS qualification status.
This one character field contains the returned Authorization Characteristics Indicator (ACI) for Visa transactions. This value provides information concerning the transaction's Customer Payment Service (CPS) qualification status. It is not recommended that the Point of Sale (POS) system attempt to interpret the meaning of this value.
Possible returned ACI values are:
Value | Description |
A | Card Present |
B | Tokenized Ecommerce via mobile device (Payment Token) |
C | Card present with merchant name and location data (cardholder activated) |
E | Card present with merchant name and location data |
F | Card not present, Account Funding |
I | Incremental Authorization |
J | Card not present Recurring bill payment transaction |
K | Key Entered Transaction (error while reading magnetic stripe data) |
N | Not a custom payment service transaction |
P | Card-not-present (preferred customer participation) |
R | Card-not-present, AVS not required |
S | Card not present, e-commerce 3-D secure attempt |
T | Transaction cannot participate in CPS programs |
U | Card not present, 3-D secure |
V | Card-not-present, AVS requested |
W | Card not present, e-commerce non-3-D secure |
This property is read-only.
Data Type
String
ResponseRoutingIndicator Property (FDMSRcECommerce Class)
Indicates whether the transaction was processed as Credit or Debit.
Syntax
ANSI (Cross Platform) char* GetResponseRoutingIndicator(); Unicode (Windows) LPWSTR GetResponseRoutingIndicator();
char* dpaymentssdk_fdmsrcecommerce_getresponseroutingindicator(void* lpObj);
QString GetResponseRoutingIndicator();
Default Value
""
Remarks
Indicates whether the transaction was processed as Credit or Debit. Possible values are:
Value | Meaning |
C | Credit |
D | Debit |
This property is read-only.
Data Type
String
ResponseSettlementDate Property (FDMSRcECommerce Class)
The date the transaction will be settled in the format MMDD.
Syntax
ANSI (Cross Platform) char* GetResponseSettlementDate(); Unicode (Windows) LPWSTR GetResponseSettlementDate();
char* dpaymentssdk_fdmsrcecommerce_getresponsesettlementdate(void* lpObj);
QString GetResponseSettlementDate();
Default Value
""
Remarks
The date the transaction will be settled in the format MMDD.
This property is read-only.
Data Type
String
ResponseText Property (FDMSRcECommerce Class)
This property may hold additional text which describes the reason for a decline, the property in error, etc.
Syntax
ANSI (Cross Platform) char* GetResponseText(); Unicode (Windows) LPWSTR GetResponseText();
char* dpaymentssdk_fdmsrcecommerce_getresponsetext(void* lpObj);
QString GetResponseText();
Default Value
""
Remarks
This property may hold additional text which describes the reason for a decline, the field in error, etc. Applications should not be coded to the text in this property as it is subject to change.
This property is read-only.
Data Type
String
ResponseTransactionDate Property (FDMSRcECommerce Class)
The transaction date returned from the server in yyyyMMddHHmmss format.
Syntax
ANSI (Cross Platform) char* GetResponseTransactionDate(); Unicode (Windows) LPWSTR GetResponseTransactionDate();
char* dpaymentssdk_fdmsrcecommerce_getresponsetransactiondate(void* lpObj);
QString GetResponseTransactionDate();
Default Value
""
Remarks
The transaction date returned from the server in yyyyMMddHHmmss format.
This 15 digit field contains the transaction date and time returned by the Rapid Connect system. This is not a local datetime, it is the time according the Rapid Connect system.
This property is read-only.
Data Type
String
ResponseTransactionId Property (FDMSRcECommerce Class)
Card issuer's Transaction Reference Number.
Syntax
ANSI (Cross Platform) char* GetResponseTransactionId(); Unicode (Windows) LPWSTR GetResponseTransactionId();
char* dpaymentssdk_fdmsrcecommerce_getresponsetransactionid(void* lpObj);
QString GetResponseTransactionId();
Default Value
""
Remarks
Card issuer's Transaction Reference Number.
This property contains a Visa Transaction Id, MasterCard BankNet data, American Express Transaction Id, or Discover Network Result Indicator (NRID). If returned in the response, this property should be printed on the receipt.
This property is read-only and not available at design time.
Data Type
String
ReversalTransactionType Property (FDMSRcECommerce Class)
The type of transaction to reverse.
Syntax
ANSI (Cross Platform) int GetReversalTransactionType();
int SetReversalTransactionType(int iReversalTransactionType); Unicode (Windows) INT GetReversalTransactionType();
INT SetReversalTransactionType(INT iReversalTransactionType);
Possible Values
FRTT_AUTH_ONLY(0),
FRTT_CAPTURE(1),
FRTT_CREDIT(2),
FRTT_SALE(3)
int dpaymentssdk_fdmsrcecommerce_getreversaltransactiontype(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setreversaltransactiontype(void* lpObj, int iReversalTransactionType);
int GetReversalTransactionType();
int SetReversalTransactionType(int iReversalTransactionType);
Default Value
0
Remarks
This property specifies the type of transaction to reverse. Possible values are:
0 (frttAuthOnly - default | AuthOnly. |
1 (frttCapture) | Capture. Only applicable when ReversalType is set to frtTimeoutReversal. |
2 (frttCredit) | Credit. Only applicable when ReversalType is set to frtTimeoutReversal. |
3 (frttSale) | Sale. |
Data Type
Integer
ReversalType Property (FDMSRcECommerce Class)
The type of reversal.
Syntax
ANSI (Cross Platform) int GetReversalType();
int SetReversalType(int iReversalType); Unicode (Windows) INT GetReversalType();
INT SetReversalType(INT iReversalType);
Possible Values
FERT_FULL_REVERSAL(0),
FERT_TIMEOUT_REVERSAL(1),
FERT_VOID_FOR_SUSPECTED_FRAUD(2),
FERT_PARTIAL_REVERSAL(3)
int dpaymentssdk_fdmsrcecommerce_getreversaltype(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setreversaltype(void* lpObj, int iReversalType);
int GetReversalType();
int SetReversalType(int iReversalType);
Default Value
0
Remarks
This property specifies the type of reversal. Possible values are:
0 (fertFullReversal - default) | Void / Full Reversal |
1 (fertTimeoutReversal) | Timeout Reversal |
2 (fertVoidForSuspectedFraud) | Full Reversal with suspected fraud as the reason. This is only applicable to MasterCard. |
3 (fertPartialReversal) | Partial Reversal |
Timeout Reversals are applicable to the following transaction types:
Full Reversals are applicable to the following transaction types:
Data Type
Integer
SettlementMode Property (FDMSRcECommerce Class)
Indicates whether the class uses Host Capture (0) or Terminal Capture (1) system.
Syntax
ANSI (Cross Platform) int GetSettlementMode();
int SetSettlementMode(int iSettlementMode); Unicode (Windows) INT GetSettlementMode();
INT SetSettlementMode(INT iSettlementMode);
Possible Values
SMI_HOST_CAPTURE(0),
SMI_TERMINAL_CAPTURE(1)
int dpaymentssdk_fdmsrcecommerce_getsettlementmode(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setsettlementmode(void* lpObj, int iSettlementMode);
int GetSettlementMode();
int SetSettlementMode(int iSettlementMode);
Default Value
0
Remarks
Possible values are:
0 (smiHostCapture - default) | Host Capture |
1 (smiTerminalCapture) | Terminal Capture |
Host-Capture means that you authorize your transactions using the AuthOnly or Sale methods, and you process refunds and capture outstanding authorizations with the Credit and Capture methods. FDMS Rapid Connect handles all batch management.
Terminal-Capture means that you handle all of the batch management yourself. This is necessary for the Hotel/Lodging IndustryType, because the final settlement amount may be more than (or less than) the amount that was originally authorized. For instance, a customer may stay longer or shorter than originally planned, or incur additional charges (mini bar, telephone call, room service, etc), and the settlement amount must be adjusted accordingly.
All industry types may be processed in Terminal Capture mode. However, Hotel/Lodging transactions MUST be authorized and settled in Terminal Capture mode. Attempting to authorize a Hotel/Lodging transaction with the Host Capture mode will cause the class fails with an error.
Data Type
Integer
SSLAcceptServerCertEncoded Property (FDMSRcECommerce Class)
This is the certificate (PEM/Base64 encoded).
Syntax
ANSI (Cross Platform) int GetSSLAcceptServerCertEncoded(char* &lpSSLAcceptServerCertEncoded, int &lenSSLAcceptServerCertEncoded);
int SetSSLAcceptServerCertEncoded(const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded); Unicode (Windows) INT GetSSLAcceptServerCertEncoded(LPSTR &lpSSLAcceptServerCertEncoded, INT &lenSSLAcceptServerCertEncoded);
INT SetSSLAcceptServerCertEncoded(LPCSTR lpSSLAcceptServerCertEncoded, INT lenSSLAcceptServerCertEncoded);
int dpaymentssdk_fdmsrcecommerce_getsslacceptservercertencoded(void* lpObj, char** lpSSLAcceptServerCertEncoded, int* lenSSLAcceptServerCertEncoded);
int dpaymentssdk_fdmsrcecommerce_setsslacceptservercertencoded(void* lpObj, const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded);
QByteArray GetSSLAcceptServerCertEncoded();
int SetSSLAcceptServerCertEncoded(QByteArray qbaSSLAcceptServerCertEncoded);
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The Store and Subject properties also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
This property is not available at design time.
Data Type
Binary String
SSLCertEncoded Property (FDMSRcECommerce Class)
This is the certificate (PEM/Base64 encoded).
Syntax
ANSI (Cross Platform) int GetSSLCertEncoded(char* &lpSSLCertEncoded, int &lenSSLCertEncoded);
int SetSSLCertEncoded(const char* lpSSLCertEncoded, int lenSSLCertEncoded); Unicode (Windows) INT GetSSLCertEncoded(LPSTR &lpSSLCertEncoded, INT &lenSSLCertEncoded);
INT SetSSLCertEncoded(LPCSTR lpSSLCertEncoded, INT lenSSLCertEncoded);
int dpaymentssdk_fdmsrcecommerce_getsslcertencoded(void* lpObj, char** lpSSLCertEncoded, int* lenSSLCertEncoded);
int dpaymentssdk_fdmsrcecommerce_setsslcertencoded(void* lpObj, const char* lpSSLCertEncoded, int lenSSLCertEncoded);
QByteArray GetSSLCertEncoded();
int SetSSLCertEncoded(QByteArray qbaSSLCertEncoded);
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The Store and Subject properties also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
This property is not available at design time.
Data Type
Binary String
SSLCertStore Property (FDMSRcECommerce Class)
This is the name of the certificate store for the client certificate.
Syntax
ANSI (Cross Platform) int GetSSLCertStore(char* &lpSSLCertStore, int &lenSSLCertStore);
int SetSSLCertStore(const char* lpSSLCertStore, int lenSSLCertStore); Unicode (Windows) INT GetSSLCertStore(LPSTR &lpSSLCertStore, INT &lenSSLCertStore);
INT SetSSLCertStore(LPCSTR lpSSLCertStore, INT lenSSLCertStore);
int dpaymentssdk_fdmsrcecommerce_getsslcertstore(void* lpObj, char** lpSSLCertStore, int* lenSSLCertStore);
int dpaymentssdk_fdmsrcecommerce_setsslcertstore(void* lpObj, const char* lpSSLCertStore, int lenSSLCertStore);
QByteArray GetSSLCertStore();
int SetSSLCertStore(QByteArray qbaSSLCertStore);
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The StoreType property denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.
Store is used in conjunction with the Subject property to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Binary String
SSLCertStorePassword Property (FDMSRcECommerce Class)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
ANSI (Cross Platform) char* GetSSLCertStorePassword();
int SetSSLCertStorePassword(const char* lpszSSLCertStorePassword); Unicode (Windows) LPWSTR GetSSLCertStorePassword();
INT SetSSLCertStorePassword(LPCWSTR lpszSSLCertStorePassword);
char* dpaymentssdk_fdmsrcecommerce_getsslcertstorepassword(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setsslcertstorepassword(void* lpObj, const char* lpszSSLCertStorePassword);
QString GetSSLCertStorePassword();
int SetSSLCertStorePassword(QString qsSSLCertStorePassword);
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SSLCertStoreType Property (FDMSRcECommerce Class)
This is the type of certificate store for this certificate.
Syntax
ANSI (Cross Platform) int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType); Unicode (Windows) INT GetSSLCertStoreType();
INT SetSSLCertStoreType(INT iSSLCertStoreType);
Possible Values
CST_USER(0),
CST_MACHINE(1),
CST_PFXFILE(2),
CST_PFXBLOB(3),
CST_JKSFILE(4),
CST_JKSBLOB(5),
CST_PEMKEY_FILE(6),
CST_PEMKEY_BLOB(7),
CST_PUBLIC_KEY_FILE(8),
CST_PUBLIC_KEY_BLOB(9),
CST_SSHPUBLIC_KEY_BLOB(10),
CST_P7BFILE(11),
CST_P7BBLOB(12),
CST_SSHPUBLIC_KEY_FILE(13),
CST_PPKFILE(14),
CST_PPKBLOB(15),
CST_XMLFILE(16),
CST_XMLBLOB(17),
CST_JWKFILE(18),
CST_JWKBLOB(19),
CST_SECURITY_KEY(20),
CST_BCFKSFILE(21),
CST_BCFKSBLOB(22),
CST_PKCS11(23),
CST_AUTO(99)
int dpaymentssdk_fdmsrcecommerce_getsslcertstoretype(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setsslcertstoretype(void* lpObj, int iSSLCertStoreType);
int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType);
Default Value
0
Remarks
This is the type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SSLCertSubject Property (FDMSRcECommerce Class)
This is the subject of the certificate used for client authentication.
Syntax
ANSI (Cross Platform) char* GetSSLCertSubject();
int SetSSLCertSubject(const char* lpszSSLCertSubject); Unicode (Windows) LPWSTR GetSSLCertSubject();
INT SetSSLCertSubject(LPCWSTR lpszSSLCertSubject);
char* dpaymentssdk_fdmsrcecommerce_getsslcertsubject(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setsslcertsubject(void* lpObj, const char* lpszSSLCertSubject);
QString GetSSLCertSubject();
int SetSSLCertSubject(QString qsSSLCertSubject);
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SSLProvider Property (FDMSRcECommerce Class)
This specifies the SSL/TLS implementation to use.
Syntax
ANSI (Cross Platform) int GetSSLProvider();
int SetSSLProvider(int iSSLProvider); Unicode (Windows) INT GetSSLProvider();
INT SetSSLProvider(INT iSSLProvider);
Possible Values
SSLP_AUTOMATIC(0),
SSLP_PLATFORM(1),
SSLP_INTERNAL(2)
int dpaymentssdk_fdmsrcecommerce_getsslprovider(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setsslprovider(void* lpObj, int iSSLProvider);
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider);
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.
When Automatic is selected, on Windows the class will use the platform implementation. On Linux/macOS the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used on all platforms.
Data Type
Integer
SSLServerCertEncoded Property (FDMSRcECommerce Class)
This is the certificate (PEM/Base64 encoded).
Syntax
ANSI (Cross Platform) int GetSSLServerCertEncoded(char* &lpSSLServerCertEncoded, int &lenSSLServerCertEncoded); Unicode (Windows) INT GetSSLServerCertEncoded(LPSTR &lpSSLServerCertEncoded, INT &lenSSLServerCertEncoded);
int dpaymentssdk_fdmsrcecommerce_getsslservercertencoded(void* lpObj, char** lpSSLServerCertEncoded, int* lenSSLServerCertEncoded);
QByteArray GetSSLServerCertEncoded();
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The Store and Subject properties also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
This property is read-only and not available at design time.
Data Type
Binary String
STAN Property (FDMSRcECommerce Class)
The merchant assigned System Trace Audit Number(STAN).
Syntax
ANSI (Cross Platform) char* GetSTAN();
int SetSTAN(const char* lpszSTAN); Unicode (Windows) LPWSTR GetSTAN();
INT SetSTAN(LPCWSTR lpszSTAN);
char* dpaymentssdk_fdmsrcecommerce_getstan(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setstan(void* lpObj, const char* lpszSTAN);
QString GetSTAN();
int SetSTAN(QString qsSTAN);
Default Value
""
Remarks
This property represents a six digit number assigned by the merchant to uniquely reference the transaction. This number must be unique within a day per Merchant ID and Terminal ID.
Valid values are from 000001 to 999999 inclusive.
Data Type
String
Timeout Property (FDMSRcECommerce Class)
A timeout for the class.
Syntax
ANSI (Cross Platform) int GetTimeout();
int SetTimeout(int iTimeout); Unicode (Windows) INT GetTimeout();
INT SetTimeout(INT iTimeout);
int dpaymentssdk_fdmsrcecommerce_gettimeout(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_settimeout(void* lpObj, int iTimeout);
int GetTimeout();
int SetTimeout(int iTimeout);
Default Value
30
Remarks
If Timeout is set to a positive value, and an operation cannot be completed immediately, the class will return with an error after Timeout seconds.
The default value for Timeout is 30 (seconds).
Data Type
Integer
TPPID Property (FDMSRcECommerce Class)
Third Party Processor Identifier assigned by FDMS.
Syntax
ANSI (Cross Platform) char* GetTPPID();
int SetTPPID(const char* lpszTPPID); Unicode (Windows) LPWSTR GetTPPID();
INT SetTPPID(LPCWSTR lpszTPPID);
char* dpaymentssdk_fdmsrcecommerce_gettppid(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_settppid(void* lpObj, const char* lpszTPPID);
QString GetTPPID();
int SetTPPID(QString qsTPPID);
Default Value
""
Remarks
The Third Party Processor Identifier (TPPID. Also sometimes referred to as a "Vendor Id") is assigned by FDMS to each third party who is processing transactions. Each merchant will receive a TPPID from FDMS.
The default value is "" (empty string). This should be set to the FDMS assigned TPPID.
A VisaIdentifier is also required for Visa transactions.
Data Type
String
TransactionAmount Property (FDMSRcECommerce Class)
The transaction amount to be authorized.
Syntax
ANSI (Cross Platform) char* GetTransactionAmount();
int SetTransactionAmount(const char* lpszTransactionAmount); Unicode (Windows) LPWSTR GetTransactionAmount();
INT SetTransactionAmount(LPCWSTR lpszTransactionAmount);
char* dpaymentssdk_fdmsrcecommerce_gettransactionamount(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_settransactionamount(void* lpObj, const char* lpszTransactionAmount);
QString GetTransactionAmount();
int SetTransactionAmount(QString qsTransactionAmount);
Default Value
""
Remarks
This property contains the transaction amount to be authorized.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
TransactionNumber Property (FDMSRcECommerce Class)
Uniquely identifies the transaction.
Syntax
ANSI (Cross Platform) char* GetTransactionNumber();
int SetTransactionNumber(const char* lpszTransactionNumber); Unicode (Windows) LPWSTR GetTransactionNumber();
INT SetTransactionNumber(LPCWSTR lpszTransactionNumber);
char* dpaymentssdk_fdmsrcecommerce_gettransactionnumber(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_settransactionnumber(void* lpObj, const char* lpszTransactionNumber);
QString GetTransactionNumber();
int SetTransactionNumber(QString qsTransactionNumber);
Default Value
""
Remarks
The TransactionNumber (otherwise known as the Client Reference Number, or ClientRef) uniquely identifies the packet sent by the application to the Datawire system. This parameter stores some unique token of information, and is used to match the response to the initial request sent. For example, the client application could use a static counter that is increased with the each executed request.
For all classs except FDMSGiftCard the maximum length of this property is 14 alphanumeric characters.
The FDMS recommended format is "tttttttVnnnnrrr" where ttttttt is a 7 digit transaction id, V is a constant, and nnn is a 3 digit version number and rrr is a 3 digit revision number. The 6 digit version number is typically static but unique for an application (Example: Version 2.5 = tttttttV002500).
For the Rapid Connect platform, the 6 character version number should be your Project/TPPID value. The entire TransactionNumber must be unique within a 24 hour time period.
The FDMSGiftCard also passes this value to the FDMS Closed Loop Gift Card system as a transaction id, and therefore the following restrictions are enforced: The maximum length is 7 characters. If the first character is an 'X', the remaining characters must be in the range '0' through 'F', indicating a hexadecimal number. Otherwise the FDMS Closed Loop Gift Card system only allows digits in this property.
Data Type
String
URL Property (FDMSRcECommerce Class)
Location of the Datawire server to which transactions are sent.
Syntax
ANSI (Cross Platform) char* GetURL();
int SetURL(const char* lpszURL); Unicode (Windows) LPWSTR GetURL();
INT SetURL(LPCWSTR lpszURL);
char* dpaymentssdk_fdmsrcecommerce_geturl(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_seturl(void* lpObj, const char* lpszURL);
QString GetURL();
int SetURL(QString qsURL);
Default Value
"https://staging1.datawire.net/sd/"
Remarks
This is the URL to which all authorization and settlement transactions are sent. This URL is acquired by using the FDMSRegister class. Once you Register and Activate the merchant using the FDMSRegister class, you may then do a Service Discovery. After sending a Service Discovery transaction, the Datawire system will return a list of transaction URLs. The URL from this list with the shortest round-trip transit time from a ping is the URL you should use here.
Note: By default, this property is populated with the Datawire Staging (test) server, and is not the correct URL to use in a production environment. In a production environment, this URL is supplied by the FDMSRegister class.
Data Type
String
VisaIdentifier Property (FDMSRcECommerce Class)
Additional merchant identification field used when authorizing Visa transactions.
Syntax
ANSI (Cross Platform) char* GetVisaIdentifier();
int SetVisaIdentifier(const char* lpszVisaIdentifier); Unicode (Windows) LPWSTR GetVisaIdentifier();
INT SetVisaIdentifier(LPCWSTR lpszVisaIdentifier);
char* dpaymentssdk_fdmsrcecommerce_getvisaidentifier(void* lpObj);
int dpaymentssdk_fdmsrcecommerce_setvisaidentifier(void* lpObj, const char* lpszVisaIdentifier);
QString GetVisaIdentifier();
int SetVisaIdentifier(QString qsVisaIdentifier);
Default Value
""
Remarks
First Data will require the Agent Identification Service from all Third Party Servicers (TPS) or Merchant Servicers (MS). Each Visa Agent Identifier in the chain is composed of the following pieces:
First (up to) 10 bytes: | The Business Identifier (BID) provided by Visa to Third Party Servicers (TPS). This value may be less than 10 bytes. |
Final 12 bytes: | Text representation of the hexadecimal Visa secret Agent Unique Account Result (AUAR). {0x01, 0x02, 0x03, 0x04, 0x05, 0xFF} will be represented as "0102030405FF". |
A VisaIdentifier (Agent Identification Service - AUAR) is required for Visa transactions. A VisaIdentifier value is assigned by Visa as part of their Trusted Agent Program (TAP). Therefore it is suggested that you contact your FDMS certification analyst as they should be able to provide you with further information and put you in contact with the required party at Visa. Unfortunately more specific information on this matter cannot be provided as we do not handle live customer data and thus are not required to register in this particular program. However below is some additional information in regards to the requirements of a Visa Identifier.
Any merchant that transmits, processes, or stores cardholder data on server(s) that you own, manage, or operate on behalf of your clients (who are other merchant account holders) must meet the PCI Data Security Standard and follow additional steps to register as a service provider. Applicable services commonly include webhosting, software as a service, or collecting payment on behalf of a client. Any company providing these services must register with Visa's Third Party Agent (TAP) program.
You can register for the Visa Third Party Agent Program at http://usa.visa.com/merchants/risk_management/third-party-registration.html
If you find that you are not required to register with this program you can send all spaces for the BID and all zeros for the AUAR for instance:
" 000000000000"
Data Type
String
AuthOnly Method (FDMSRcECommerce Class)
Performs an authorization request.
Syntax
ANSI (Cross Platform) int AuthOnly(); Unicode (Windows) INT AuthOnly();
int dpaymentssdk_fdmsrcecommerce_authonly(void* lpObj);
int AuthOnly();
Remarks
This method performs an authorization request. This transaction places a hold on the funds. To capture the funds the Capture method must be called.
After calling this method call GetDetailAggregate to generate a detail aggregate. The detail aggregate should be saved for use with Capture or Reverse later.
When ready to Capture or Reverse the transaction call SetDetailAggregate to the previously stored detail aggregate before calling the method.
After this method returns check the value of ResponseCode to determine if the transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
ECommerce AuthOnly Code Example
fdmsrcecommerce.IndustryType = FdmsrcecommerceIndustryTypes.feitEcommerce;
fdmsrcecommerce.TPPID = "AAA000";
fdmsrcecommerce.MerchantTerminalNumber = "00000001";
fdmsrcecommerce.MerchantId = "1234";
fdmsrcecommerce.GroupId = "20001";
fdmsrcecommerce.DatawireId = "00011122233344455566";
fdmsrcecommerce.ApplicationId = "RAPIDCONNECTVXN";
fdmsrcecommerce.URL = "https://stg.dw.us.fdcnet.biz/rc";
fdmsrcecommerce.STAN = "112";
fdmsrcecommerce.TransactionNumber = "120013";
fdmsrcecommerce.OrderNumber = "12000503";
fdmsrcecommerce.ReferenceNumber = "123";
fdmsrcecommerce.Card.Number = "36185900055556";
fdmsrcecommerce.Card.ExpMonth = 4;
fdmsrcecommerce.Card.ExpYear = 2016;
fdmsrcecommerce.Card.CVVData = "123";
fdmsrcecommerce.TransactionAmount = "272000";
fdmsrcecommerce.CustomerAddress = "1307 Broad Hollow Road";
fdmsrcecommerce.CustomerZip = "11747";
fdmsrcecommerce.AuthOnly();
//Save the detail aggregate to use with Capture or Reverse later
string aggregate = fdmsrcecommerce.GetDetailAggregate();
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Capture Method (FDMSRcECommerce Class)
Captures a previously authorized transaction.
Syntax
ANSI (Cross Platform) int Capture(); Unicode (Windows) INT Capture();
int dpaymentssdk_fdmsrcecommerce_capture(void* lpObj);
int Capture();
Remarks
This method captures a previously authorized transaction. Before calling this method call SetDetailAggregate to specify the detail aggregate from the original AuthOnly transaction.
After this method returns check the value of ResponseCode to determine if the transaction was successful.
FDMS Recommendations:
Vendors/Gateways, who systematically send all Capture transactions during their end of day processing or at a specific time for their entire chain, must configure/program their systems to send the Capture transactions for all locations or merchants varying times of day based on the MerchantId or MerchantTerminalNumber (whichever provides a more random value).
To assist with implementing this logic, FDMS Rapid Connect recommends sending the Capture transactions based on the MerchantTerminalNumber in each location. For example If the last digit of the MerchantTerminalNumber is 0, set the time for the Capture transactions to be sent as xx:00 (xx=hh:00=mm). The time for the MerchantTerminalNumber ending with 1 would be xx:05. The time for the MerchantTerminalNumber ending with 2 would be xx:10. All remaining MerchantTerminalNumbers would follow this same logic. This logic would be applied across the entire chain or merchant base, to ensure that all Captures for all merchants are not systematically sent to First Data at the same time. FDMS recommends that the software calculate the offset of time based on the MerchantId or MerchantTerminalNumber, and not rely on a user to specify the time as noted above.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
ECommerce AuthOnly and Capture Code Example
fdmsrcecommerce.IndustryType = FdmsrcecommerceIndustryTypes.feitEcommerce;
fdmsrcecommerce.TPPID = "AAA000";
fdmsrcecommerce.MerchantTerminalNumber = "00000001";
fdmsrcecommerce.MerchantId = "1234";
fdmsrcecommerce.MerchantURL = "mywebsite";
fdmsrcecommerce.GroupId = "20001";
fdmsrcecommerce.DatawireId = "00011122233344455566";
fdmsrcecommerce.ApplicationId = "RAPIDCONNECTVXN";
fdmsrcecommerce.URL = "https://stg.dw.us.fdcnet.biz/rc";
fdmsrcecommerce.STAN = "112";
fdmsrcecommerce.TransactionNumber = "120013";
fdmsrcecommerce.OrderNumber = "12000503";
fdmsrcecommerce.ReferenceNumber = "123";
fdmsrcecommerce.Card.Number = "36185900055556";
fdmsrcecommerce.Card.ExpMonth = 4;
fdmsrcecommerce.Card.ExpYear = 2016;
fdmsrcecommerce.Card.CVVData = "123";
fdmsrcecommerce.TransactionAmount = "272000";
fdmsrcecommerce.CustomerAddress = "1307 Broad Hollow Road";
fdmsrcecommerce.CustomerZip = "11747";
fdmsrcecommerce.AuthOnly();
//Save the detail aggregate to use with Capture
string aggregate = fdmsrcecommerce.GetDetailAggregate();
//Capture
fdmsrcecommerce = new Fdmsrcecommerce();
fdmsrcecommerce.IndustryType = FdmsrcecommerceIndustryTypes.feitEcommerce;
fdmsrcecommerce.TPPID = "AAA000";
fdmsrcecommerce.MerchantTerminalNumber = "00000001";
fdmsrcecommerce.MerchantId = "1234";
fdmsrcecommerce.GroupId = "20001";
fdmsrcecommerce.DatawireId = "00011122233344455566";
fdmsrcecommerce.ApplicationId = "RAPIDCONNECTVXN";
fdmsrcecommerce.URL = "https://stg.dw.us.fdcnet.biz/rc";
fdmsrcecommerce.MerchantURL = "4dpayments"; //Required for capture
fdmsrcecommerce.STAN = "113";
fdmsrcecommerce.TransactionNumber = "120014";
fdmsrcecommerce.SetDetailAggregate(aggregate);
fdmsrcecommerce.Capture();
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Config Method (FDMSRcECommerce Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* dpaymentssdk_fdmsrcecommerce_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Credit Method (FDMSRcECommerce Class)
Submits a credit transaction.
Syntax
ANSI (Cross Platform) int Credit(); Unicode (Windows) INT Credit();
int dpaymentssdk_fdmsrcecommerce_credit(void* lpObj);
int Credit();
Remarks
This method credits funds to the card. This is not based on a previous transaction. This may be used to return funds to a card if a previous transaction has already been settled. To void or cancel a transaction before it has been settled call Reverse instead.
After this method returns check the value of ResponseCode to determine if the transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
ECommerce Credit Code Example
fdmsrcecommerce.IndustryType = FdmsrcecommerceIndustryTypes.feitEcommerce;
fdmsrcecommerce.TPPID = "AAA000";
fdmsrcecommerce.MerchantTerminalNumber = "00000001";
fdmsrcecommerce.MerchantId = "1234";
fdmsrcecommerce.GroupId = "20001";
fdmsrcecommerce.DatawireId = "00011122233344455566";
fdmsrcecommerce.ApplicationId = "RAPIDCONNECTVXN";
fdmsrcecommerce.URL = "https://stg.dw.us.fdcnet.biz/rc";
fdmsrcecommerce.STAN = "112";
fdmsrcecommerce.TransactionNumber = "120013";
fdmsrcecommerce.OrderNumber = "12000503";
fdmsrcecommerce.ReferenceNumber = "123";
fdmsrcecommerce.STAN = "112";
fdmsrcecommerce.TransactionNumber = "123";
fdmsrcecommerce.ReferenceNumber = "123456";
fdmsrcecommerce.OrderNumber = "1234";
fdmsrcecommerce.Card.Number = "36185900055556";
fdmsrcecommerce.Card.ExpMonth = 4;
fdmsrcecommerce.Card.ExpYear = 2016;
fdmsrcecommerce.TransactionAmount = "1200";
fdmsrcecommerce.Credit();
;
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
GetDetailAggregate Method (FDMSRcECommerce Class)
Returns a detail aggregate containing details of this transaction, which is used for Capture or Reverse transactions or settlement when using Terminal Capture mode.
Syntax
ANSI (Cross Platform) char* GetDetailAggregate(); Unicode (Windows) LPWSTR GetDetailAggregate();
char* dpaymentssdk_fdmsrcecommerce_getdetailaggregate(void* lpObj);
QString GetDetailAggregate();
Remarks
This method will return a detail aggregate representing the transaction. After calling AuthOnly or Sale call this method to obtain a detail aggregate. The aggregate will be required when calling Capture or Reverse.
When using Terminal Capture Settlement Mode this aggregate must be passed to the FDMSRcSettle class's DetailAggregate array property in order to settle the transaction. If you wish to view or change any part of the aggregate (such as adding a gratuity or additional info for an Installment payment), you may use the FDMSRcDetailrecord class to do so.
Note: This method may only be called after a successful authorization. If the authorization was not successful the method fails with an error.
To set the aggregate before calling Capture Reverse or SendSettlement call SetDetailAggregate. Save this aggregate in a secure location.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
HostTotals Method (FDMSRcECommerce Class)
Performs a Host Totals request.
Syntax
ANSI (Cross Platform) int HostTotals(); Unicode (Windows) INT HostTotals();
int dpaymentssdk_fdmsrcecommerce_hosttotals(void* lpObj);
int HostTotals();
Remarks
This method performs a Host Totals transaction submitted to request a Host Totals Report for a particular day.
You need to set the required merchant password and report type fields using the HostTotalsPassword and HostTotalsType configuration settings, respectively.
ECommerce HostTotals Code Example
fdmsrcecommerce.TPPID = "AAA000";
fdmsrcecommerce.MerchantTerminalNumber = "00000001";
fdmsrcecommerce.MerchantId = "1234";
fdmsrcecommerce.GroupId = "20001";
fdmsrcecommerce.DatawireId = "00011122233344455566";
fdmsrcecommerce.ApplicationId = "RAPIDCONNECTVXN";
fdmsrcecommerce.URL = "https://stg.dw.us.fdcnet.biz/rc";
fdmsrcecommerce.STAN = "112";
fdmsrcecommerce.TransactionNumber = "120013";
fdmsrcecommerce.Config("CurrencyCode=840");
fdmsrcecommerce.Config("HostTotalsType=0");
fdmsrcecommerce.Config("HostTotalsPassword=111111");
fdmsrcecommerce.HostTotals();
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Interrupt Method (FDMSRcECommerce Class)
Interrupts the current action.
Syntax
ANSI (Cross Platform) int Interrupt(); Unicode (Windows) INT Interrupt();
int dpaymentssdk_fdmsrcecommerce_interrupt(void* lpObj);
int Interrupt();
Remarks
This method interrupts any processing that the class is currently executing.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (FDMSRcECommerce Class)
Clears all properties to their default values.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int dpaymentssdk_fdmsrcecommerce_reset(void* lpObj);
int Reset();
Remarks
This method clears all properties to their default values.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reverse Method (FDMSRcECommerce Class)
Reverses a transaction.
Syntax
ANSI (Cross Platform) int Reverse(); Unicode (Windows) INT Reverse();
int dpaymentssdk_fdmsrcecommerce_reverse(void* lpObj);
int Reverse();
Remarks
This method reverses a transaction that has not been settled.
To void/reverse a Sale or AuthOnly transaction first set ReversalTransactionType to specify the type of original transaction that is being reversed. Next set ReversalType to frtFullReversal and call this method.
If the previous transaction did not receive a response and the state of the transaction is uncertain you may perform a Timeout Reversal. To perform a timeout reversal set ReversalTransactionType to specify the type of original transaction that is being reversed. Next set ReversalType to frtTimeoutReversal and call this method.
Timeout Reversals are applicable to the following transaction types:
Full Reversals are applicable to the following transaction types:
After this method returns check the value of ResponseCode to determine if the transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
ECommerce Sale and Reverse Code Example
fdmsrcecommerce.IndustryType = FdmsrcecommerceIndustryTypes.feitEcommerce;
fdmsrcecommerce.TPPID = "AAA000";
fdmsrcecommerce.MerchantTerminalNumber = "00000001";
fdmsrcecommerce.MerchantId = "1234";
fdmsrcecommerce.MerchantURL = "mywebsite";
fdmsrcecommerce.GroupId = "20001";
fdmsrcecommerce.DatawireId = "00011122233344455566";
fdmsrcecommerce.ApplicationId = "RAPIDCONNECTVXN";
fdmsrcecommerce.URL = "https://stg.dw.us.fdcnet.biz/rc";
fdmsrcecommerce.STAN = "112";
fdmsrcecommerce.TransactionNumber = "123";
fdmsrcecommerce.ReferenceNumber = "123456";
fdmsrcecommerce.OrderNumber = "1234";
fdmsrcecommerce.Card.Number = "36185900055556";
fdmsrcecommerce.Card.ExpMonth = 4;
fdmsrcecommerce.Card.ExpYear = 2016;
fdmsrcecommerce.Card.CVVData = "123";
fdmsrcecommerce.CustomerAddress = "1307 Broad Hollow Road";
fdmsrcecommerce.CustomerZip = "11747";
fdmsrcecommerce.TransactionAmount = "1200";
fdmsrcecommerce.Sale();
string aggregate = fdmsrcecommerce.GetDetailAggregate();
//Reverse
fdmsrcecommerce = new Fdmsrcecommerce();
fdmsrcecommerce.IndustryType = FdmsrcecommerceIndustryTypes.feitEcommerce;
fdmsrcecommerce.TPPID = "AAA000";
fdmsrcecommerce.MerchantTerminalNumber = "00000001";
fdmsrcecommerce.MerchantId = "1234";
fdmsrcecommerce.GroupId = "20001";
fdmsrcecommerce.DatawireId = "00011122233344455566";
fdmsrcecommerce.ApplicationId = "RAPIDCONNECTVXN";
fdmsrcecommerce.URL = "https://stg.dw.us.fdcnet.biz/rc";
fdmsrcecommerce.STAN = "112";
fdmsrcecommerce.TransactionNumber = "123";
fdmsrcecommerce.ReferenceNumber = "123456";
fdmsrcecommerce.OrderNumber = "1234";
//Provide the detail aggregate from the sale.
fdmsrcecommerce.SetDetailAggregate(aggregate);
fdmsrcecommerce.ReversalTransactionType = FdmsrcecommerceReversalTransactionTypes.frttSale;
fdmsrcecommerce.ReversalType = FdmsrcecommerceReversalTypes.fertFullReversal;
fdmsrcecommerce.Reverse();
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Sale Method (FDMSRcECommerce Class)
Performs a sale transaction.
Syntax
ANSI (Cross Platform) int Sale(); Unicode (Windows) INT Sale();
int dpaymentssdk_fdmsrcecommerce_sale(void* lpObj);
int Sale();
Remarks
This method performs a sale transaction. Once a sale is performed no further action is needed, the funds will automatically be captured by FDMS.
After this method returns check the value of ResponseCode to determine if the transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
ECommerce Sale Code Example
fdmsrcecommerce.IndustryType = FdmsrcecommerceIndustryTypes.feitEcommerce;
fdmsrcecommerce.TPPID = "AAA000";
fdmsrcecommerce.MerchantTerminalNumber = "00000001";
fdmsrcecommerce.MerchantId = "1234";
fdmsrcecommerce.MerchantURL = "mywebsite";
fdmsrcecommerce.GroupId = "20001";
fdmsrcecommerce.DatawireId = "00011122233344455566";
fdmsrcecommerce.ApplicationId = "RAPIDCONNECTVXN";
fdmsrcecommerce.URL = "https://stg.dw.us.fdcnet.biz/rc";
fdmsrcecommerce.STAN = "112";
fdmsrcecommerce.TransactionNumber = "120013";
fdmsrcecommerce.OrderNumber = "12000503";
fdmsrcecommerce.ReferenceNumber = "123";
fdmsrcecommerce.Card.Number = "36185900055556";
fdmsrcecommerce.Card.ExpMonth = 4;
fdmsrcecommerce.Card.ExpYear = 2016;
fdmsrcecommerce.Card.CVVData = "123";
fdmsrcecommerce.CustomerAddress = "1307 Broad Hollow Road";
fdmsrcecommerce.CustomerZip = "11747";
fdmsrcecommerce.TransactionAmount = "1200";
fdmsrcecommerce.Sale();
//Save the detail aggregate to use with Capture or Reverse later
string aggregate = fdmsrcecommerce.GetDetailAggregate();
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetDetailAggregate Method (FDMSRcECommerce Class)
Specifies the detail aggregate before calling Capture or Reverse.
Syntax
ANSI (Cross Platform) int SetDetailAggregate(const char* lpszaggregate); Unicode (Windows) INT SetDetailAggregate(LPCWSTR lpszaggregate);
int dpaymentssdk_fdmsrcecommerce_setdetailaggregate(void* lpObj, const char* lpszaggregate);
int SetDetailAggregate(const QString& qsaggregate);
Remarks
This method specifies the detail aggregate from the original AuthOnly or Sale transaction. This must be set before calling Capture or Reverse.
The aggregate specified here should have been obtained from the GetDetailAggregate method after the original AuthOnly or Sale transaction.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
VerifyCard Method (FDMSRcECommerce Class)
Performs a zero dollar verification of the card.
Syntax
ANSI (Cross Platform) int VerifyCard(); Unicode (Windows) INT VerifyCard();
int dpaymentssdk_fdmsrcecommerce_verifycard(void* lpObj);
int VerifyCard();
Remarks
This method performs a card verification without charging any funds. This can be used to simply verify if the card is valid, or perform AVS and CVV checks without actually charging any funds to the card.
When calling this method TransactionAmount must be set to 0. Set either CustomerAddress or CustomerZip to perform AVS checks. Set CardCVVData to perform CVV checks.
The following combinations are supported:
Card Type | Verification | w/ AVS | w/ CVV | w/ AVS and CVV | Swiped w/ AVS |
Visa | Y | Y | Y | N | Y |
MasterCard | Y | Y | Y | Y | Y |
American Express | N | Y | N | N | Y |
Discover | Y | Y | Y | Y | Y |
JCB (Domestic US) | N | N | N | N | N |
Diners Club | Y | Y | Y | Y | Y |
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
ECommerce VerifyCard Code Example
fdmsrcecommerce.IndustryType = FdmsrcecommerceIndustryTypes.feitEcommerce;
fdmsrcecommerce.TPPID = "AAA000";
fdmsrcecommerce.MerchantTerminalNumber = "00000001";
fdmsrcecommerce.MerchantId = "1234";
fdmsrcecommerce.GroupId = "20001";
fdmsrcecommerce.DatawireId = "00011122233344455566";
fdmsrcecommerce.ApplicationId = "RAPIDCONNECTVXN";
fdmsrcecommerce.URL = "https://stg.dw.us.fdcnet.biz/rc";
fdmsrcecommerce.STAN = "112";
fdmsrcecommerce.TransactionNumber = "1234";
fdmsrcecommerce.ReferenceNumber = "1212";
fdmsrcecommerce.OrderNumber = "123";
fdmsrcecommerce.Card.Number = "5424181111112236";
fdmsrcecommerce.Card.ExpMonth = 4;
fdmsrcecommerce.Card.ExpYear = 2016;
fdmsrcecommerce.Card.CVVData = "123";
fdmsrcecommerce.TransactionAmount = "0";
fdmsrcecommerce.CustomerAddress = "1307 Broad Hollow Road";
fdmsrcecommerce.CustomerZip = "11747";
fdmsrcecommerce.VerifyCard();
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Connected Event (FDMSRcECommerce Class)
This event is fired immediately after a connection completes (or fails).
Syntax
ANSI (Cross Platform) virtual int FireConnected(FDMSRcECommerceConnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } FDMSRcECommerceConnectedEventParams;
Unicode (Windows) virtual INT FireConnected(FDMSRcECommerceConnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } FDMSRcECommerceConnectedEventParams;
#define EID_FDMSRCECOMMERCE_CONNECTED 1 virtual INT DPAYMENTSSDK_CALL FireConnected(INT &iStatusCode, LPSTR &lpszDescription);
class FDMSRcECommerceConnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Connected(FDMSRcECommerceConnectedEventParams *e);
// Or, subclass FDMSRcECommerce and override this emitter function. virtual int FireConnected(FDMSRcECommerceConnectedEventParams *e) {...}
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
DataPacketIn Event (FDMSRcECommerce Class)
Fired when receiving a data packet from the transaction server.
Syntax
ANSI (Cross Platform) virtual int FireDataPacketIn(FDMSRcECommerceDataPacketInEventParams *e);
typedef struct {
const char *DataPacket; int lenDataPacket; int reserved; } FDMSRcECommerceDataPacketInEventParams;
Unicode (Windows) virtual INT FireDataPacketIn(FDMSRcECommerceDataPacketInEventParams *e);
typedef struct {
LPCSTR DataPacket; INT lenDataPacket; INT reserved; } FDMSRcECommerceDataPacketInEventParams;
#define EID_FDMSRCECOMMERCE_DATAPACKETIN 2 virtual INT DPAYMENTSSDK_CALL FireDataPacketIn(LPSTR &lpDataPacket, INT &lenDataPacket);
class FDMSRcECommerceDataPacketInEventParams { public: const QByteArray &DataPacket(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void DataPacketIn(FDMSRcECommerceDataPacketInEventParams *e);
// Or, subclass FDMSRcECommerce and override this emitter function. virtual int FireDataPacketIn(FDMSRcECommerceDataPacketInEventParams *e) {...}
Remarks
This event fires when a packet is received. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or to extract additional response properties beyond the scope of this class.
DataPacketOut Event (FDMSRcECommerce Class)
Fired when sending a data packet to the transaction server.
Syntax
ANSI (Cross Platform) virtual int FireDataPacketOut(FDMSRcECommerceDataPacketOutEventParams *e);
typedef struct {
const char *DataPacket; int lenDataPacket; int reserved; } FDMSRcECommerceDataPacketOutEventParams;
Unicode (Windows) virtual INT FireDataPacketOut(FDMSRcECommerceDataPacketOutEventParams *e);
typedef struct {
LPCSTR DataPacket; INT lenDataPacket; INT reserved; } FDMSRcECommerceDataPacketOutEventParams;
#define EID_FDMSRCECOMMERCE_DATAPACKETOUT 3 virtual INT DPAYMENTSSDK_CALL FireDataPacketOut(LPSTR &lpDataPacket, INT &lenDataPacket);
class FDMSRcECommerceDataPacketOutEventParams { public: const QByteArray &DataPacket(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void DataPacketOut(FDMSRcECommerceDataPacketOutEventParams *e);
// Or, subclass FDMSRcECommerce and override this emitter function. virtual int FireDataPacketOut(FDMSRcECommerceDataPacketOutEventParams *e) {...}
Remarks
This event fires right before each data packet is sent. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or may be modified to support additional features beyond the scope of this class.
Disconnected Event (FDMSRcECommerce Class)
This event is fired when a connection is closed.
Syntax
ANSI (Cross Platform) virtual int FireDisconnected(FDMSRcECommerceDisconnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } FDMSRcECommerceDisconnectedEventParams;
Unicode (Windows) virtual INT FireDisconnected(FDMSRcECommerceDisconnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } FDMSRcECommerceDisconnectedEventParams;
#define EID_FDMSRCECOMMERCE_DISCONNECTED 4 virtual INT DPAYMENTSSDK_CALL FireDisconnected(INT &iStatusCode, LPSTR &lpszDescription);
class FDMSRcECommerceDisconnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Disconnected(FDMSRcECommerceDisconnectedEventParams *e);
// Or, subclass FDMSRcECommerce and override this emitter function. virtual int FireDisconnected(FDMSRcECommerceDisconnectedEventParams *e) {...}
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
Error Event (FDMSRcECommerce Class)
Fired when information is available about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(FDMSRcECommerceErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } FDMSRcECommerceErrorEventParams;
Unicode (Windows) virtual INT FireError(FDMSRcECommerceErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } FDMSRcECommerceErrorEventParams;
#define EID_FDMSRCECOMMERCE_ERROR 5 virtual INT DPAYMENTSSDK_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class FDMSRcECommerceErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(FDMSRcECommerceErrorEventParams *e);
// Or, subclass FDMSRcECommerce and override this emitter function. virtual int FireError(FDMSRcECommerceErrorEventParams *e) {...}
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
SSLServerAuthentication Event (FDMSRcECommerce Class)
Fired after the server presents its certificate to the client.
Syntax
ANSI (Cross Platform) virtual int FireSSLServerAuthentication(FDMSRcECommerceSSLServerAuthenticationEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } FDMSRcECommerceSSLServerAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSLServerAuthentication(FDMSRcECommerceSSLServerAuthenticationEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } FDMSRcECommerceSSLServerAuthenticationEventParams;
#define EID_FDMSRCECOMMERCE_SSLSERVERAUTHENTICATION 6 virtual INT DPAYMENTSSDK_CALL FireSSLServerAuthentication(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class FDMSRcECommerceSSLServerAuthenticationEventParams { public: const QByteArray &CertEncoded(); const QString &CertSubject(); const QString &CertIssuer(); const QString &Status(); bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLServerAuthentication(FDMSRcECommerceSSLServerAuthenticationEventParams *e);
// Or, subclass FDMSRcECommerce and override this emitter function. virtual int FireSSLServerAuthentication(FDMSRcECommerceSSLServerAuthenticationEventParams *e) {...}
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (FDMSRcECommerce Class)
Fired when secure connection progress messages are available.
Syntax
ANSI (Cross Platform) virtual int FireSSLStatus(FDMSRcECommerceSSLStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } FDMSRcECommerceSSLStatusEventParams;
Unicode (Windows) virtual INT FireSSLStatus(FDMSRcECommerceSSLStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } FDMSRcECommerceSSLStatusEventParams;
#define EID_FDMSRCECOMMERCE_SSLSTATUS 7 virtual INT DPAYMENTSSDK_CALL FireSSLStatus(LPSTR &lpszMessage);
class FDMSRcECommerceSSLStatusEventParams { public: const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLStatus(FDMSRcECommerceSSLStatusEventParams *e);
// Or, subclass FDMSRcECommerce and override this emitter function. virtual int FireSSLStatus(FDMSRcECommerceSSLStatusEventParams *e) {...}
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
Status Event (FDMSRcECommerce Class)
Shows the progress of the FDMS/Datawire connection.
Syntax
ANSI (Cross Platform) virtual int FireStatus(FDMSRcECommerceStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } FDMSRcECommerceStatusEventParams;
Unicode (Windows) virtual INT FireStatus(FDMSRcECommerceStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } FDMSRcECommerceStatusEventParams;
#define EID_FDMSRCECOMMERCE_STATUS 8 virtual INT DPAYMENTSSDK_CALL FireStatus(LPSTR &lpszMessage);
class FDMSRcECommerceStatusEventParams { public: const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Status(FDMSRcECommerceStatusEventParams *e);
// Or, subclass FDMSRcECommerce and override this emitter function. virtual int FireStatus(FDMSRcECommerceStatusEventParams *e) {...}
Remarks
The event is fired for informational and logging purposes only. Used to track the progress of the connection.
Config Settings (FDMSRcECommerce Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.FDMSRcECommerce Config Settings
Note: When this field is returned in a transaction response, the AccountUpdaterCardStatus field will contain the value of AcctExpDate.
This field will not be present in a transaction that contains the AccountUpdaterToken field.
Value | Description |
CloseAcctAdv | Closed Account Advice |
ConChAdv | Contact Cardholder Advice |
AcctExpDate | Account Number Only Change, or Both Account Number and Expiration Date Change |
ExpDateOnly | Expiration Date Only Change |
Note: When this field is returned in a transaction response with either the value of CloseAcctAdv or ConChAdv, the AccountUpdaterCardNumber, AccountUpdaterExpirationDate and AccountUpdaterToken fields will not be present in the transaction response.
Yes | Account update requested |
Info | Informational only fields requested |
Note: This setting should be used when CardInputMode has the value of 10 ("Credential on File"), IndustryType is feitEcommerce (0) or feitMOTO (1), and the card type is Visa or MasterCard.
Value | Description |
VAU001 | Transaction did not qualify for Real Time VAU because the transaction contains token |
VAU002 | Real Time VAU is supported only for Visa branded PAN |
VAU003 | Real Time VAU is not supported for this network |
VAU004 | Transaction is not original purchase |
VAU005 | Transaction cantain CVV2 |
VAU006 | Transaction is not a qualifying transaction type |
VAU007 | Real Time VAU is not supported for this MCC |
VAU008 | Acquier or processor is not activated for for Real Time VAU |
VAU009 | Issuer does not support Real Time VAU |
VAU010 | Issuer or Visa blocked the merchant |
VAU011 | Preauthorized Payment Cancellation Service (PPCS) stop-payment order for this transaction |
VAU012 | Credentials in the authorization request is the latest VAU data |
Note: This field will not be present in a transaction that contains the AccountUpdaterCardNumber field.
Value | Visa | Mastercard | Discover | |
P | X | X | Preferred Rate/Customer Status (Lodging or Auto Rental) | |
I | X | X | X | Incremental Authorization |
Y (Default) | X | Transaction requests participation | ||
R | X | Card-not-present, AVS not required (permitted for certain MCCs only) |
1 | Re-authorization (Visa and Discover only) |
2 | Resubmission (Visa and Discover only) |
3 | Estimated Authorization (Visa only) |
4 | Credential on File (Visa, Discover, Amex, and Mastercard only) |
0 | Preauthorization - The Settlement amount may be different than the amount authorized. |
1 | Final Authorization -The settlement amount must equal the approved authorized amount. |
Note: When this field is set to '1' in the original transaction, you cannot send a Partial Reversal subsequent transaction. Set the AuthorizationIndicator to '0' when the settlement amount may be different than the approved amount authorized.
0 | Timeout - Response Provided by STIP, Timed Out by Switch |
1 | Visa Stand-In Processing - Response Provided by STIP, Transaction Amount was Below Issuer Limit or Below Sliding Dollar Amount |
2 | Suppress Inquiry Mode - Response Provided by STIP, Issuer is in Suppress Inquiry (SI) Mode |
3 | Issuer Unavailable - Response Provided by STIP for One of the Following Reasons: Issuer was Not Available for Processing (for reasons other than being in SI Mode) or CCV or iCCV was Invalid and Visa has Acted on the Negative Results |
4 | Issuer - Response Provided by Issuer |
Y | Card information is requested |
Value | Description |
A | Amex |
D | Discover |
M | MasterCard |
V | Visa |
Value | Description |
P | Debit - PIN Only without EBT |
E | Debit - PIN Only with EBT |
C | Credit Hybrid (meaning it has PIN capability also) |
H | Debit Hybrid (PIN and Signature) |
S | Signature Only (not PIN Capable) |
X | True Credit (No PIN / Signature Capability) |
J | US Commercial Debit - Signature Only, No PIN Access |
K | US Commercial Debit - PIN Capable |
L | Non-US Consumer Debit - No PIN Access |
M | Non-US Commercial Debit - No PIN Access |
N | Non-US Consumer Debit - PIN Capable |
O | Non-US Commercial Debit - PIN Capable |
R | Private Label (MasterCard) |
U | Reloadable Prepaid (Amex Only) |
V | Stored Value Prepaid (Amex Only) |
Note: For a list of possible returned values see "Appendix A - Sample Association Product IDs" in the latest "RC UMF Specifications".
00 | Unspecified |
01 | Manual (Key entered) |
03 | Barcode |
04 | OCR (Optical Character Reader) |
05 | Integrated Circuit Read (CVV data Reliable) |
07 | Contactless Integrated Circuit Read (Reliable) |
08 | AMEX Digital Wallet |
09 | MasterCard remote chip entry |
10 | Credential on File |
79 | EMV fallback to manual entry |
80 | EMV fallback to Magnetic Stripe entry |
82 | Contactless Mobile Commerce |
86 | EMV Transaction switched from Contactless to Contact entry |
90 | Magnetic Stripe - Track Read |
91 | Contactless Magnetic Stripe Read |
95 | Integrated Circuit Read (CVV data unreliable) |
This should not be set unless there is a specific reason to do so.
Possible values are:
0 | Invalid or unknown prefix, card type not known |
1 | Visa |
2 | MasterCard |
3 | American Express |
4 | Discover |
5 | Diners |
6 | JCB |
7 | Visa Electron |
8 | Maestro |
9 | China Union Pay |
Valid values are:
Customer Initiated Transaction (CIT)
Value | Description |
C101 | Credential on File |
C102 | Standing Order (variable amount, fixed frequency) |
C103 | Subscription (fixed amount and fixed frequency) |
C104 | Installment |
Merchant Initiated Transaction (MIT)
Value | Description |
M101 | Unscheduled Credential on File |
M102 | Standing Order (variable amount, fixed frequency) |
M103 | Subscription (fixed amount and fixed frequency) |
M104 | Installment |
Merchant Initiated Transaction (MIT) - Industry Practice
Value | Description |
M205 | Partial Shipment |
M206 | Related/Delayed Charge |
M207 | No show Charge |
M208 | Resubmission |
0 | Card |
1 | Mobile Network Operator (MNO) controlled removable secure element (SIM or UICC) personalized for use with a Mobile Phone or Smartphone |
2 | Key Fob |
3 | Watch |
4 | Mobile Tag |
5 | Wristband |
6 | Mobile Phone Case or Sleeve |
7 | Mobile Phone or Smartphone with a fixed (non-removable) secure element controlled by the MNO, for example, code division multiple accesses (CDMA). |
8 | Removable secure element not controlled by the MNO, for example, memory card personalized for use with a Mobile Phone or Smartphone. |
9 | Mobile Phone or Smartphone with a fixed (non- removable) secure element not controlled by the MNO. |
10 | MNO controlled removable secure element (SIM or UICC) personalized for use with a Tablet or E-Book reader. |
11 | Tablet or E-Book reader with a fixed (non- removable) secure element controlled by the MNO. |
12 | Removable secure element not controlled by the MNO, for example, (SD Card) personalized for use with a Tablet or E- Book reader. |
13 | Tablet or E-Book with fixed (non- removable) secure element not controlled by the MNO |
01 | Merchant is 3-D Secure capable and the cardholder information is fully authenticated. |
02 | Merchant is 3-D Secure capable but the cardholder was not authenticated. Use this value when authentication was attempted but the issuer is not participating in 3-D Secure, the cardholder is not participating in 3-D Secure, or the authentication server was not available. |
03 | 3-D Secure was not attempted. |
0 (default) | Close Batch Report |
1 | Previous Day Report |
Possible values are:
True | Scheduled |
False | Unscheduled |
Note: This field has limited platform availability. For more information, please contact your Account Representative.
The default value is False
Note: If setting MCSC, you need to set as well the MCSN configuration setting. MCSC cannot be smaller than MCSN.
Note: If setting MCSN, you need to set as well the MCSC configuration setting.
class.Config("StoredCredentialIndicator=S"); // S - Subsequent
class.Config("IsCOFScheduled=False"); // Unscheduled
class.Config("AuthIndicator=4"); // Credential on File
class.Config("TransactionInitiation=1"); // Merchant initiated
class.Config("MITTransactionId=" + transId); // TransactionId saved from the Response of the initial COF transaction
class.AuthOnly();
1 | Mail Order |
2 | Telephone Order |
00 | Cardholder Present, Card Present |
01 | Cardholder Present, Unspecified |
02 | Cardholder Present, Unattended Device |
03 | Cardholder Present, Suspect Fraud |
04 | Cardholder Not Present - Recurring |
05 | Cardholder Present, Card Not Present |
06 | Cardholder Present, Identity Verified |
08 | Cardholder Not Present, Mail Order/Telephone Order |
59 | Cardholder Not Present, Ecommerce |
71 | Cardholder Present, Magnetic Stripe Could Not Be Read |
Value | Description |
1 | EMV 3-D Secure Version 2.1 |
2 | EMV 3-D Secure Version 2.2 |
3 | EMV 3-D Secure Version 2.3 |
4 | EMV 3-D Secure Version 2.4 |
5 | EMV 3-D Secure Version 2.5 |
6 | EMV 3-D Secure Version 2.6 |
7 | EMV 3-D Secure Version 2.7 |
8 | EMV 3-D Secure Version 2.8 |
9 | EMV 3-D Secure Version 2.9 |
I | Initial |
S | Subsequent |
Note: This field is mandatory in a transaction where AuthIndicator value is "4" (Credential on File).
This field must be present with the value of "S" (Subsequent) when the CardInputMode config value is "10" (Credential on File).
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
0 | Terminal has no capture capability or no terminal used |
1 | Terminal has card capture capability |
Note: If set to 0 track data must not be specified.
00 | Unspecified |
01 | Terminal not used |
02 | Magnetic stripe only |
03 | Magnetic stripe and key entry |
04 | Magnetic stripe, key entry, and chip |
05 | Bar code |
06 | Proximity terminal - contactless chip / RFID |
07 | OCR |
08 | Chip only |
09 | Chip and magnetic stripe |
10 | Manual entry only |
11 | Proximity terminal - contactless magnetic stripe |
12 | Hybrid - Magnetic stripe, Integrated Circuit Card Reader, and contactless capabilities |
13 | Terminal does not read card data |
Note: A value of 04, 06, 08, 09, or 12 cannot be specified unless the client is certified and the device is enabled for EMV.
0 | On Premises; Used in a Card Present environment |
1 | Off Premises; Used in a Card not Present environment |
Note: For MOTO and eCommerce transactions the value is set to 1 by default.
0 | Unspecified |
1 | PIN entry capability |
2 | No PIN entry capability |
3 | PIN Pad Inoperative |
4 | PIN verified by terminal device |
0 | Terminal is not tax prompt capable |
1 | Terminal is tax prompt capable |
1 | Transaction initiated by Merchant |
2 | Transaction initiated by Terminal |
3 | Transaction initiated by Customer |
Note: This field is mandatory in a transaction where AuthIndicator value is "4" (Credential on File) or ACI value is "I" (Incremental Authorization).
0 (default) | TransArmor security is not used. |
1 | TransArmor Encryption and Tokenization. The Card data will be encrypted using the specified TransArmorKey in the initial authorization. All subsequent requests (including settlement) will use the returned TransArmorToken. The type of encryption used is RSA and is currently the only supported encryption type. |
2 | TransArmor Tokenization only. The Card data will not be encrypted. A TransArmorToken will be returned for the transaction and will be used in all subsequent requests (including settlement). |
Note: Your merchant account must be configured to use TransArmor. The configuration is 'Mode' specific and thus you must inform FDMS which type of TransArmor Security Level you wish to use.
0 | UCAF data collection is not supported at the merchant's web site. |
1 | UCAF data collection is supported by the merchant, and UCAF data may be available. |
2 | The merchant supports UCAF data collection and the data field was populated. |
HTTP Config Settings
When True, the class adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".
The default value is True.
If set to True (default), the class will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the class fails with an error if the server does not support HTTP/2.
The default value is True.
This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.
The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".
The default value is False.
If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the class fails with an error.
Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.
Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.
A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).
The default value is 0 (Never). In this case, redirects are never followed, and the class fails with an error instead.
Following are the valid options:
- 0 - Never
- 1 - Always
- 2 - Same Scheme
- "1.0"
- "1.1" (default)
- "2.0"
- "3.0"
When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.
HTTP/2 Notes
When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.
If the server does not support HTTP/2, the class will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.
HTTP/3 Notes
HTTP/3 is supported only in .NET and Java.
When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.
The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example:
Sat, 29 Oct 2017 19:43:31 GMT.
The default value for KeepAlive is false.
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data are logged. |
3 (Debug) | Debug data are logged. |
The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.
The value 2 (Verbose) logs additional information about the request and response.
The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).
The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .
Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.
This configuration setting is useful for extending the functionality of the class beyond what is provided.
.NET
Http http = new Http();
http.Config("TransferredRequest=on");
http.PostData = "body";
http.Post("http://someserver.com");
Console.WriteLine(http.Config("TransferredRequest"));
C++
HTTP http;
http.Config("TransferredRequest=on");
http.SetPostData("body", 5);
http.Post("http://someserver.com");
printf("%s\r\n", http.Config("TransferredRequest"));
Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.
The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001. In the C++ Edition for Windows, the *W version of the class must be used. For instance, DNSW or HTTPW.
Note: This setting is applicable only to Mac/iOS editions.
When True (default), the class will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.
Override the default with the name and version of your software.
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Name or IP address of firewall (optional).If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Name or IP address of firewall (optional).If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Password to be used if authentication is to be used when connecting through the firewall.If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Password to be used if authentication is to be used when connecting through the firewall.If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
The TCP port for the FirewallHost;.The FirewallPort is set automatically when FirewallType is set to a valid value.Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
The TCP port for the FirewallHost;.The FirewallPort is set automatically when FirewallType is set to a valid value.Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Determines the type of firewall to connect through.The appropriate values are as follows:0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Determines the type of firewall to connect through.The appropriate values are as follows:0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
A user name if authentication is to be used connecting through a firewall.If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
A user name if authentication is to be used connecting through a firewall.If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.Note: This value is not applicable in macOS.
Note: This value is not applicable in macOS.
The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.Note: This value is not applicable in macOS.
Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.
The number of keep-alive packets to be sent before the remotehost is considered disconnected.When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the number of times that the keep-alive packets will be sent before the remote host is considered disconnected. The system default if this value is not specified here is 9.Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.
Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.
The number of keep-alive packets to be sent before the remotehost is considered disconnected.When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the number of times that the keep-alive packets will be sent before the remote host is considered disconnected. The system default if this value is not specified here is 9.Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
When set to True, connections are terminated gracefully.This property controls how a connection is closed. The default is True.In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
When set to True, connections are terminated gracefully.This property controls how a connection is closed. The default is True.In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
The name of the local host through which connections are initiated or accepted. The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
The name of the local host through which connections are initiated or accepted. The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
The port in the local host where the class binds. This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
The port in the local host where the class binds. This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
The maximum amount of data to accumulate when no EOL is found.MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
The maximum amount of data to accumulate when no EOL is found.MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
A semicolon separated list of hosts and IPs to bypass when using a proxy.This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:www.google.com;www.nsoftware.com
www.google.com;www.nsoftware.com
A semicolon separated list of hosts and IPs to bypass when using a proxy.This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
Determines whether or not the keep alive socket option is enabled.If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.Note: This value is not applicable in Java.
Note: This value is not applicable in Java.
Determines whether or not the keep alive socket option is enabled.If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.Note: This value is not applicable in Java.
By default, this config is set to false.
Whether or not to delay when sending packets. When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.By default, this config is set to false.
By default, this config is set to false.
Whether or not to delay when sending packets. When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.By default, this config is set to false.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
Controls whether SSL packets are logged when using the internal security API.When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
Controls whether SSL packets are logged when using the internal security API.When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The path to a directory containing CA certificates.This functionality is available only when the provider is OpenSSL.The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The path to a directory containing CA certificates.This functionality is available only when the provider is OpenSSL.The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
Name of the file containing the list of CA's trusted by your application.This functionality is available only when the provider is OpenSSL.The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
Name of the file containing the list of CA's trusted by your application.This functionality is available only when the provider is OpenSSL.The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
A string that controls the ciphers to be used by SSL.This functionality is available only when the provider is OpenSSL.The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
A string that controls the ciphers to be used by SSL.This functionality is available only when the provider is OpenSSL.The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
The data to seed the pseudo random number generator (PRNG).This functionality is available only when the provider is OpenSSL.By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
The data to seed the pseudo random number generator (PRNG).This functionality is available only when the provider is OpenSSL.By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to true, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
If set to true, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
If set to true, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
If set to true, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
The paths to CA certificate files on Unix/Linux.This setting specifies the paths on disk to CA certificate files on Unix/Linux.The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
The paths to CA certificate files on Unix/Linux.This setting specifies the paths on disk to CA certificate files on Unix/Linux.The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificate to use during SSL client authentication.This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificate to use during SSL client authentication.This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
The minimum cipher strength used for bulk encryption. This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
The minimum cipher strength used for bulk encryption. This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
The cipher suite to be used in an SSL negotiation.The enabled cipher suites to be used in SSL negotiation.By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
The cipher suite to be used in an SSL negotiation.The enabled cipher suites to be used in SSL negotiation.By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
Used to enable/disable the supported security protocols.Used to enable/disable the supported security protocols.Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
Used to enable/disable the supported security protocols.Used to enable/disable the supported security protocols.Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This setting is only applicable when SSLProvider is set to Internal.
Whether the renegotiation_info SSL extension is supported.This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.This setting is only applicable when SSLProvider is set to Internal.
This setting is only applicable when SSLProvider is set to Internal.
Whether the renegotiation_info SSL extension is supported.This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.This setting is only applicable when SSLProvider is set to Internal.
If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
Whether the entire certificate chain is included in the SSLServerAuthentication event.This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
Whether the entire certificate chain is included in the SSLServerAuthentication event.This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
The location of a file where per-session secrets are written for debugging purposes.This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
The location of a file where per-session secrets are written for debugging purposes.This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
Flags that control certificate verification.The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
Flags that control certificate verification.The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificate to use during SSL server certificate validation.This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificate to use during SSL server certificate validation.This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
The supported groups for (EC)DHE key exchange.This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
The supported groups for (EC)DHE key exchange.This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for UDP ports.
Determines whether timeouts are inactivity timeouts or absolute timeouts.If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.Note: This option is not valid for UDP ports.
Note: This option is not valid for UDP ports.
Determines whether timeouts are inactivity timeouts or absolute timeouts.If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.Note: This option is not valid for UDP ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the incoming queue of the socket. This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the incoming queue of the socket. This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the outgoing queue of the socket.This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the outgoing queue of the socket.This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (FDMSRcECommerce Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
FDMSRcECommerce Errors
432 Invalid index. | |
501 Invalid length for this property. | |
502 Invalid data format for this property. | |
503 Value is out of range. | |
504 Credit card digit check failed. | |
505 Card date invalid. | |
506 Card expired. | |
519 Corrupt response. | |
520 Response payload empty. | |
521 Response truncated. | |
526 Invalid timeout value. | |
593 A property required for this transaction is missing. | |
529 Error in XML response. | |
530 Status code received in response indicates an error condition. | |
531 Return code received in response indicates an error condition. | |
532 Cannot generate detail aggregate - this transaction was not successfully authorized. | |
533 Internal error constructing payload. |
The class may also return one of the following error codes, which are inherited from other classes.
HTTP Errors
118 Firewall Error. Error description contains detailed message. | |
143 Busy executing current method. | |
151 HTTP protocol error. The error message has the server response. | |
152 No server specified in URL | |
153 Specified URLScheme is invalid. | |
155 Range operation is not supported by server. | |
156 Invalid cookie index (out of range). | |
301 Interrupted. | |
302 Can't open AttachedFile. |
The class may also return one of the following error codes, which are inherited from other classes.
TCPClient Errors
100 You cannot change the RemotePort at this time. A connection is in progress. | |
101 You cannot change the RemoteHost (Server) at this time. A connection is in progress. | |
102 The RemoteHost address is invalid (0.0.0.0). | |
104 Already connected. If you want to reconnect, close the current connection first. | |
106 You cannot change the LocalPort at this time. A connection is in progress. | |
107 You cannot change the LocalHost at this time. A connection is in progress. | |
112 You cannot change MaxLineLength at this time. A connection is in progress. | |
116 RemotePort cannot be zero. Please specify a valid service port number. | |
117 You cannot change the UseConnection option while the class is active. | |
135 Operation would block. | |
201 Timeout. | |
211 Action impossible in control's present state. | |
212 Action impossible while not connected. | |
213 Action impossible while listening. | |
301 Timeout. | |
302 Could not open file. | |
434 Unable to convert string to selected CodePage. | |
1105 Already connecting. If you want to reconnect, close the current connection first. | |
1117 You need to connect first. | |
1119 You cannot change the LocalHost at this time. A connection is in progress. | |
1120 Connection dropped by remote host. |
SSL Errors
270 Cannot load specified security library. | |
271 Cannot open certificate store. | |
272 Cannot find specified certificate. | |
273 Cannot acquire security credentials. | |
274 Cannot find certificate chain. | |
275 Cannot verify certificate chain. | |
276 Error during handshake. | |
280 Error verifying certificate. | |
281 Could not find client certificate. | |
282 Could not find server certificate. | |
283 Error encrypting data. | |
284 Error decrypting data. |
TCP/IP Errors
10004 [10004] Interrupted system call. | |
10009 [10009] Bad file number. | |
10013 [10013] Access denied. | |
10014 [10014] Bad address. | |
10022 [10022] Invalid argument. | |
10024 [10024] Too many open files. | |
10035 [10035] Operation would block. | |
10036 [10036] Operation now in progress. | |
10037 [10037] Operation already in progress. | |
10038 [10038] Socket operation on non-socket. | |
10039 [10039] Destination address required. | |
10040 [10040] Message too long. | |
10041 [10041] Protocol wrong type for socket. | |
10042 [10042] Bad protocol option. | |
10043 [10043] Protocol not supported. | |
10044 [10044] Socket type not supported. | |
10045 [10045] Operation not supported on socket. | |
10046 [10046] Protocol family not supported. | |
10047 [10047] Address family not supported by protocol family. | |
10048 [10048] Address already in use. | |
10049 [10049] Can't assign requested address. | |
10050 [10050] Network is down. | |
10051 [10051] Network is unreachable. | |
10052 [10052] Net dropped connection or reset. | |
10053 [10053] Software caused connection abort. | |
10054 [10054] Connection reset by peer. | |
10055 [10055] No buffer space available. | |
10056 [10056] Socket is already connected. | |
10057 [10057] Socket is not connected. | |
10058 [10058] Can't send after socket shutdown. | |
10059 [10059] Too many references, can't splice. | |
10060 [10060] Connection timed out. | |
10061 [10061] Connection refused. | |
10062 [10062] Too many levels of symbolic links. | |
10063 [10063] File name too long. | |
10064 [10064] Host is down. | |
10065 [10065] No route to host. | |
10066 [10066] Directory not empty | |
10067 [10067] Too many processes. | |
10068 [10068] Too many users. | |
10069 [10069] Disc Quota Exceeded. | |
10070 [10070] Stale NFS file handle. | |
10071 [10071] Too many levels of remote in path. | |
10091 [10091] Network subsystem is unavailable. | |
10092 [10092] WINSOCK DLL Version out of range. | |
10093 [10093] Winsock not loaded yet. | |
11001 [11001] Host not found. | |
11002 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
11003 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
11004 [11004] Valid name, no data record (check DNS setup). |