FDMSRcDebit Class

Properties   Methods   Events   Config Settings   Errors  

The FDMSRcDebit class is an advanced tool used to authorize debit cards in a Retail environment, where the customer is purchasing products or services in person. This class makes authorizing debit card transactions with a customer PIN very easy.

Syntax

FDMSRcDebit

Remarks

This class connects to the First Data Merchant Services (FDMS) processor, by way of the Datawire VXN transaction transport network. Transactions originating with these classs go through Datawire, to the FDMS processor where the transaction is authorized. The result is then returned back through Datawire and received by the class. This class can be integrated into web pages or stand-alone Point Of Sale applications. Because all SSL communications are handled inside the class, any application or web page can be deployed without the need for expensive dedicated SSL servers.

The FDMSRcDebit class makes authorizing debit transactions (where the customer is present and inputs his/her PIN number) very easy by adding an additional layer of abstraction between the programmer and the protocol. There is no need to deal with raw sockets, TLS/SSL handshakes, or data packet formatting. The steps to setting up the class and sending transactions are outlined below:

Datawire Setup

First, you must register and activate your account with Datawire. FDMS Rapid Connect will provide you with the following values:

The FDMSRegister class must be used to activate the merchant and receive a DatawireId. Once you acquire the DatawireId and receive your transaction URLs through ServiceDiscovery, you may begin to authorize transactions. For instance:

FDMSRegister.FDMSPlatform = FdmsregisterFDMSPlatforms.fpRapidConnect; FDMSRegister.MerchantNumber = "000000999990"; FDMSRegister.MerchantTerminalNumber = "555555"; FDMSRegister.Config("GroupId=20001"); //Required for Rapid Connect FDMSRegister.TransactionNumber = "1"; //any unique number will do. FDMSRegister.URL = "https://stagingsupport.datawire.net/staging_expresso/SRS.do"; FDMSRegister.Register(); FDMSRegister.TransactionNumber = FDMSRegister.TransactionNumber + 1; FDMSRegister.Activate(); FDMSRegister.ServiceDiscovery(FDMSRegister.PrimaryDiscoveryURL); for (int i = 0; i < FDMSRegister.ServiceProviders.Length; i++) { FDMSRegister.Ping(FDMSRegister.ServiceProviders[i]); Console.WriteLine(FDMSRegister.ServiceProviders[i] + " = " + FDMSRegister.PingResponseTime); }

To authorize a credit, debit, ebt or FSA/HSA card set the MerchantId, MerchantTerminalNumber, and GroupId properties with the values supplied by FDMS Rapid Connect. Set the DatawireId property with the value retrieved by the FDMSRegister class after activating your merchant account. Set the URL property with one of the URLs you retrieved during ServiceDiscovery.

Transaction Processing

To begin processing transactions first set the required merchant values. For instance: debit.TPPID = "AAA000"; debit.MerchantTerminalNumber = "00000001"; debit.MerchantId = "1234"; debit.GroupId = "20001"; debit.DatawireId = "00011122233344455566"; debit.ApplicationId = "RAPIDCONNECTVXN"; debit.URL = "https://stg.dw.us.fdcnet.biz/rc";

Next specify transaction specific information. These values uniquely identify the transaction to Datawire and FDMS. debit.STAN = "112"; debit.TransactionNumber = "1234"; debit.ReferenceNumber = "1212"; debit.OrderNumber = "123"; Then specify customer card and address information along with the transaction amount: debit.Card.MagneticStripe = "4003010001234572=17041011234567440"; debit.EncryptedPIN = "7BD8948B328B21E5"; debit.KSN = "876543210F008400029"; debit.TransactionAmount = "1200"; //$12.00

Finally, submit the transaction by calling the Sale method.

debit.Sale();

The ResponseCode property indicates the result of the transaction. A code of 000 indicates success. For all other values please see the Response Codes section. Additional Response properties such as ResponseApprovalCode, ResponseAuthorizedAmount, ResponseText, ResponseAVSResult, ResponseCVVResult, and more, provide further details about the transaction response.

To perform subsequent operations on a transaction, such as calling Reverse to reverse a Sale, or calling Capture to capture a previous AuthOnly transaction the GetDetailAggregate method must be used to get details about the original transaction. This aggregate must be stored securely, it will contain cardholder information that is required for subsequent transactions. For instance:

debit.Sale(); //Save the detail aggregate to use with Reverse string aggregate = debit.GetDetailAggregate(); //The aggregate must then be stored securely. //At a later time the aggregate is retrieved in order to perform a reversal. //Reverse debit = new Fdmsrcdebit(); ... //Specify the detail aggregate from the original transaction debit.SetDetailAggregate(aggregate); debit.ReversalTransactionType = FdmsrcdebitReversalTransactionTypes.frttSale; debit.ReversalType = FdmsrcdebitReversalTypes.fdrtFullReversal; debit.Reverse();

Transaction Types

In addition to a basic sale transaction, additional transaction types exist for other common operations. Not all transaction types are applicable for all classs. Check the method list for applicable transaction types.

AuthOnly An authorization that must be Captured later.
BalanceInquiry Inquire about available balance.
Capture Captures a previous AuthOnly transaction for settlement.
Credit Credits funds to the cardholder. This is not based on a previous transaction.
Reverse Reverse a previous transaction. This is also used for timeout reversals.
Sale A basic sale, no other steps are required to complete the payment.
VerifyCard Verifies that a card is valid.
HostTotals Requests a Host Totals Report for a particular day.
VoucherClear Performs an online force-post entry of a voice-authorized Food Benefit or eWIC transaction.

Note: FDMS Rapid Connect is a host capture system. No explicit calls are needed to settle or otherwise manage the batch.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

ApplicationIdIdentifies the merchant application to the Datawire System.
InstallmentDescriptionThe merchant's description of an Installment Bill Payment Transaction.
InstallmentInvoiceNumberThe Invoice Number of an Installment Bill Payment Transaction.
InstallmentTypeThe type of the Installment payment.
MerchantAdviceCodeThis property contains a code which may be returned by the issuer to provide additional information for a card not present transaction.
MITAmountThe amount of the Recurring or Installment payment.
MITAmountTypeIdentifies the type of the Recurring or Installment Payment amount.
MITFrequencyThis property indicates the frequency of a Recurring or Installment payment.
MITPaymentCurrencyContains the Installment Payment Currency represented as a 3 digit value.
MITRecurringPaymentTypeThis property contains the type of Recurring Payment.
MITRegistrationRefNumThis property contains a unique Reference Number for the Recurring Payment transaction.
MITSequenceIndicatorIdentifies the sequence of the transactions when multiple Installment payments will be submitted.
MITTotalPaymentAmountThis property contains the Total Installment Amount.
MITTotalPaymentCountThe number of Recurring payments or Installments per the Cardholder agreement with the Merchant.
MITUniqueIDThis property is used to uniquely identify each of the Recurring or Installment Payment.
MITValidationFlagIndicates the validation source for the validity of a transaction.
MITValidationRefThis property contains a cryptogram generated by the validation source for each cardholder account, for an Issuer to validate a transaction.
TransactionIndicatorSpecifies the type of Bill Payment being made.
CardTypeType of credit card being used in this transaction.
CardCVVDataThree digit security code on back of card (optional).
CardCVVPresenceIndicates the presence of the card verification value.
CardEntryDataSourceThis property contains a 1-character code identifying the source of the customer data.
CardExpMonthExpiration month of the credit card specified in Number .
CardExpYearExpiration year of the credit card specified in Number .
CardIsEncryptedDetermines whether data set to the Number or MagneticStripe properties is validated.
CardMagneticStripeTrack data read off of the card's magnetic stripe.
CardNumberCustomer's credit card number for the transaction.
CashBackOptional cash back amount to return to the customer.
DatawireIdIdentifies the merchant to the Datawire System.
EMVDataThe EMV Data returned from a Pin Pad after reading an EMV card.
EncryptedPINDUKPT DES encrypted pin block, retrieved from a PIN pad.
GroupIdThe Id assigned by FDMS to identify the merchant or group of merchants.
IndustryTypeThe merchant's industry type.
KSNClear-text Key Sequence Number retrieved from a PIN pad.
MerchantIdA unique Id used to identify the merchant within the FDMS and Datawire systems.
MerchantTerminalNumberUsed to identify a unique terminal within a merchant location.
OrderNumberA merchant assigned order number to uniquely reference the transaction.
ProxyAuthSchemeThis property is used to tell the class which type of authorization to perform when connecting to the proxy.
ProxyAutoDetectThis property tells the class whether or not to automatically detect and use proxy system settings, if available.
ProxyPasswordThis property contains a password if authentication is to be used for the proxy.
ProxyPortThis property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
ProxyServerIf a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
ProxySSLThis property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
ProxyUserThis property contains a user name, if authentication is to be used for the proxy.
ReferenceNumberA value assigned by the merchant to uniquely reference a transaction and any subsequent related transactions.
ResponseApprovalCodeThe Approval Code returned from the server after a successful authorization.
ResponseAuthorizedAmountThe amount actually charged to the card.
ResponseAuthorizingNetworkIdThis property indicates the network Id as returned by the host, if available.
ResponseAuthorizingNetworkNameThis property indicates the authorizing network name as returned by the host, when available.
ResponseAVSResultContains the Address Verification System result code.
ResponseBalanceContains the remaining available balance left on the card.
ResponseCardLevelResultThis property is only applicable to Visa card.
ResponseCodeContains the 3 digit response code indicating success or reason of failure.
ResponseCommercialCardIndicates whether the credit card charged is a corporate commercial card.
ResponseCVVResultContains the returned CVV result code (if CVV data was sent in the request).
ResponseDatawireReturnCodeContains an error code providing more details about the DatawireStatus received.
ResponseDatawireStatusStatus of the communication with Datawire.
ResponseEMVDataContains the EMV data returns in the response (if any).
ResponsePOSDataThis property holds transaction specific information returned by the issuer (if any).
ResponseReturnedACIReturned Authorization Characteristics Indicator contains CPS qualification status.
ResponseRoutingIndicatorIndicates whether the transaction was processed as Credit or Debit.
ResponseSettlementDateThe date the transaction will be settled in the format MMDD.
ResponseTextThis property may hold additional text which describes the reason for a decline, the property in error, etc.
ResponseTransactionDateThe transaction date returned from the server in yyyyMMddHHmmss format.
ResponseTransactionIdCard issuer's Transaction Reference Number.
ReversalTransactionTypeThe type of transaction to reverse.
ReversalTypeThe type of reversal.
SettlementModeIndicates whether the class uses Host Capture (0) or Terminal Capture (1) system.
SSLAcceptServerCertEncodedThis is the certificate (PEM/base64 encoded).
SSLCertEncodedThis is the certificate (PEM/base64 encoded).
SSLCertStoreThis is the name of the certificate store for the client certificate.
SSLCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLCertStoreTypeThis is the type of certificate store for this certificate.
SSLCertSubjectThis is the subject of the certificate used for client authentication.
SSLProviderThis specifies the SSL/TLS implementation to use.
SSLServerCertEncodedThis is the certificate (PEM/base64 encoded).
STANThe merchant assigned System Trace Audit Number(STAN).
TimeoutA timeout for the class.
TPPIDThird Party Processor Identifier assigned by FDMS.
TransactionAmountThe transaction amount to be authorized.
TransactionNumberUniquely identifies the transaction.
URLLocation of the Datawire server to which transactions are sent.
VisaIdentifierAdditional merchant identification field used when authorizing Visa transactions.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

BalanceInquiryPerforms a Balance Inquiry Request using the specified Card data.
ConfigSets or retrieves a configuration setting.
CreditSubmits a credit transaction.
GetDetailAggregateReturns a detail aggregate containing details of this transaction, which is used for Capture or Reverse transactions or settlement when using Terminal Capture mode.
HostTotalsPerforms a Host Totals request.
InterruptInterrupts the current action.
ResetClears all properties to their default values.
ReverseReverses a transaction.
SalePerforms a sale transaction.
SetDetailAggregateSpecifies the detail aggregate before calling Capture or Reverse.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ConnectedThis event is fired immediately after a connection completes (or fails).
DataPacketInFired when receiving a data packet from the transaction server.
DataPacketOutFired when sending a data packet to the transaction server.
DisconnectedThis event is fired when a connection is closed.
ErrorInformation about errors during data delivery.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusShows the progress of the secure connection.
StatusShows the progress of the FDMS/Datawire connection.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AllowPartialAuthsIndicates whether partial authorizations are supported.
AltMerchantAddressThe alternative merchant address.
AltMerchantCityThe alternative merchant city.
AltMerchantCountryCodeThe alternative merchant country code.
AltMerchantEmailThe alternative merchant email.
AltMerchantNameThe alternative merchant name.
AltMerchantStateThe alternative merchant state.
AltMerchantZipThe alternative merchant zip code.
AuthIndicatorIndicate the type of authorization requested.
AuthorizationIndicatorIndicates whether the authorization is a final authorization.
AuthSourceIndicates the source of the decision for the Visa transaction.
CardInputModeThe method used to input the card details.
CardTypeSpecifies the type of card.
ClientTimeoutIndicates timeout client application will wait for response.
CurrencyCodeCurrency Code for this transaction.
DebugTraceWhether to enable debug logging.
DeviceTypeIndicatorDefines the form factor used at the POS for MasterCard PayPass transactions.
GetTransArmorTokenAllows you to retrieve a TransArmor Token for a specified card.
HostTotalsPasswordThe merchant password required in Host Totals requests.
HostTotalsTypeIndicates the Host Totals Report type requested.
IsDeferredAuthIndicates whether the transaction is a Deferred Authorization.
IsOnlineRefundIndicates whether a transaction is Online Refund Authorization.
LocalTransactionDateThe local date of the transaction.
MerchantCategoryCodeThe 4 digit Merchant Category Code (MCC).
PayeeAcctNumThe Account Number of the Payee (Biller).
PayeeIdThe Payee Id.
PayeePhoneNumThe Phone Number of the Payee (Biller).
POSConditionCodeThe POS condition code.
POSIdIdentifies the specific point of sale device.
TerminalCardCapabilityThe terminal's card capture capability.
TerminalEntryCapabilityThe terminal's entry mode capability.
TerminalLocationIndicatorThe terminal's location.
TerminalPinCapabilityThe terminal's PIN capability.
TerminalTaxCapabilityThe terminal's ability to prompt for tax.
TotalAuthorizedAmountTotal Authorized Amount.
TransArmorKeySpecifies the TransArmor key used to perform the encryption.
TransArmorKeyIdSpecifies the Id of the TransArmor key used to perform the encryption.
TransArmorModeSpecifies the TransArmor Security Level to use.
TransArmorProviderIdThe Id of the Provider that issued a TransArmorToken.
TransArmorTokenA TransArmor Token used in place of a card number or magnetic stripe data.
TransArmorTokenTypeThe FDMS assigned token type.
TransArmorTokenTypeSpecifies the type of TransArmor token that will be used.
TransArmorUpdateIndicatorIndicates whether your TransArmorKey needs to be updated.
UpdateTransArmorKeyAllows you to update your TransArmor Key.
UTCTransactionDateThe UTC date of the transaction.
VoiceApprovalCodeThe voice approval.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the class.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the class will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the class.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the class.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UsePlatformHTTPClientWhether or not to use the platform HTTP client.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
ConnectionTimeoutSets a separate timeout value for establishing a connection.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveRetryCountThe number of keep-alive packets to be sent before the remotehost is considered disconnected.
KeepAliveRetryCountThe number of keep-alive packets to be sent before the remotehost is considered disconnected.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseInternalSecurityAPITells the class whether or not to use the system security libraries or an internal implementation.

ApplicationId Property (FDMSRcDebit Class)

Identifies the merchant application to the Datawire System.

Syntax

ANSI (Cross Platform)
char* GetApplicationId();
int SetApplicationId(const char* lpszApplicationId); Unicode (Windows) LPWSTR GetApplicationId();
INT SetApplicationId(LPCWSTR lpszApplicationId);
char* dpaymentssdk_fdmsrcdebit_getapplicationid(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setapplicationid(void* lpObj, const char* lpszApplicationId);
QString GetApplicationId();
int SetApplicationId(QString qsApplicationId);

Default Value

"NSOFTDIRECTPXML"

Remarks

The Application Id identifies the application that has generated and is sending the transaction. This is a 15 character alphanumeric code that identifies each application and is provided by the Datawire Secure Transport Vendor Integration Team

This property may be validated along with the DatawireId as connection credentials.

The default value of this property is a value used for testing with Rapid Connect. You may be required to have a new ApplicationId assigned for the software you create with this class.

Data Type

String

InstallmentDescription Property (FDMSRcDebit Class)

The merchant's description of an Installment Bill Payment Transaction.

Syntax

ANSI (Cross Platform)
char* GetInstallmentDescription();
int SetInstallmentDescription(const char* lpszInstallmentDescription); Unicode (Windows) LPWSTR GetInstallmentDescription();
INT SetInstallmentDescription(LPCWSTR lpszInstallmentDescription);
char* dpaymentssdk_fdmsrcdebit_getinstallmentdescription(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setinstallmentdescription(void* lpObj, const char* lpszInstallmentDescription);
QString GetInstallmentDescription();
int SetInstallmentDescription(QString qsInstallmentDescription);

Default Value

""

Remarks

The merchant's description of an Installment Bill Payment Transaction.

This field is only sent in an 'Installment' or 'Recurring' transaction.

The maximum length of this field is 15 characters.

Data Type

String

InstallmentInvoiceNumber Property (FDMSRcDebit Class)

The Invoice Number of an Installment Bill Payment Transaction.

Syntax

ANSI (Cross Platform)
char* GetInstallmentInvoiceNumber();
int SetInstallmentInvoiceNumber(const char* lpszInstallmentInvoiceNumber); Unicode (Windows) LPWSTR GetInstallmentInvoiceNumber();
INT SetInstallmentInvoiceNumber(LPCWSTR lpszInstallmentInvoiceNumber);
char* dpaymentssdk_fdmsrcdebit_getinstallmentinvoicenumber(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setinstallmentinvoicenumber(void* lpObj, const char* lpszInstallmentInvoiceNumber);
QString GetInstallmentInvoiceNumber();
int SetInstallmentInvoiceNumber(QString qsInstallmentInvoiceNumber);

Default Value

""

Remarks

The Invoice Number of an Installment Bill Payment Transaction.

This field is only sent in an 'Installment' or 'Recurring' transaction.

The maximum length of this field is 12 characters.

Data Type

String

InstallmentType Property (FDMSRcDebit Class)

The type of the Installment payment.

Syntax

ANSI (Cross Platform)
int GetInstallmentType();
int SetInstallmentType(int iInstallmentType); Unicode (Windows) INT GetInstallmentType();
INT SetInstallmentType(INT iInstallmentType);

Possible Values

IT_UNSPECIFIED(0), 
IT_MERCHANT(1),
IT_THIRD_PARTY(2),
IT_ISSUER(3)
int dpaymentssdk_fdmsrcdebit_getinstallmenttype(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setinstallmenttype(void* lpObj, int iInstallmentType);
int GetInstallmentType();
int SetInstallmentType(int iInstallmentType);

Default Value

0

Remarks

The type of the Installment payment.

This field is required for all Discover, Diners (including JCB - US Domestic) Installment transactions TransactionIndicator value 3 (tiInstallment) and it is applicable to ECommerce, MOTO, and Retail transactions. Possible values are:

0 (itUnspecified - default) Unspecified - the field is not sent in the request.
1 (itMerchant) Merchant - Merchant Installment Payment
2 (itThirdParty) ThirdParty - Third Party Installment Payment
3 (itIssuer) Issuer - Issuer Installment Payment

Data Type

Integer

MerchantAdviceCode Property (FDMSRcDebit Class)

This property contains a code which may be returned by the issuer to provide additional information for a card not present transaction.

Syntax

ANSI (Cross Platform)
char* GetMerchantAdviceCode();

Unicode (Windows)
LPWSTR GetMerchantAdviceCode();
char* dpaymentssdk_fdmsrcdebit_getmerchantadvicecode(void* lpObj);
QString GetMerchantAdviceCode();

Default Value

""

Remarks

This field contains a code which may be returned by the issuer to provide additional information for a card not present transaction.

The following values are defined:

Response CodeMeaning
01 New account information available
02 Try again later (must wait 72 hours before sending the recurring transaction again)
03 Do not try again
04 Token requirements are not fulfilled for this token type
05 Card account closed or fraud
06 Cardholder canceled recurring payment
07 Cancel specific payment
21 Do not honor - Issuer has blocked recurring payment service / Payment Cancellation
22 Merchant does not qualify for product code
24 Retry after 1 hour
25 Retry after 24 hours
26 Retry after 2 days
27 Retry after 4 days
28 Retry after 6 days
29 Retry after 8 days
30 Retry after 10 days

This property is read-only.

Data Type

String

MITAmount Property (FDMSRcDebit Class)

The amount of the Recurring or Installment payment.

Syntax

ANSI (Cross Platform)
char* GetMITAmount();
int SetMITAmount(const char* lpszMITAmount); Unicode (Windows) LPWSTR GetMITAmount();
INT SetMITAmount(LPCWSTR lpszMITAmount);
char* dpaymentssdk_fdmsrcdebit_getmitamount(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmitamount(void* lpObj, const char* lpszMITAmount);
QString GetMITAmount();
int SetMITAmount(QString qsMITAmount);

Default Value

""

Remarks

The amount of the Recurring or Installment payment.

This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'.

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.

The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.

Data Type

String

MITAmountType Property (FDMSRcDebit Class)

Identifies the type of the Recurring or Installment Payment amount.

Syntax

ANSI (Cross Platform)
int GetMITAmountType();
int SetMITAmountType(int iMITAmountType); Unicode (Windows) INT GetMITAmountType();
INT SetMITAmountType(INT iMITAmountType);

Possible Values

AT_UNSPECIFIED(0), 
AT_FIXED(1),
AT_VARIABLE(2)
int dpaymentssdk_fdmsrcdebit_getmitamounttype(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmitamounttype(void* lpObj, int iMITAmountType);
int GetMITAmountType();
int SetMITAmountType(int iMITAmountType);

Default Value

0

Remarks

Identifies the type of the Recurring or Installment Payment amount.

The following values are defined:

0 (atUnspecified - default) Unspecified - the field is not sent in the request.
1 (atFixed) Fixed - subscription (e.g. monthly newspaper subscription)
2 (atVariable) Variable - standing order (e.g. monthly utility payment)

Data Type

Integer

MITFrequency Property (FDMSRcDebit Class)

This property indicates the frequency of a Recurring or Installment payment.

Syntax

ANSI (Cross Platform)
int GetMITFrequency();
int SetMITFrequency(int iMITFrequency); Unicode (Windows) INT GetMITFrequency();
INT SetMITFrequency(INT iMITFrequency);

Possible Values

FREQ_UNSPECIFIED(0), 
FREQ_DAILY(1),
FREQ_WEEKLY(2),
FREQ_BIWEEKLY(3),
FREQ_MONTHLY(4),
FREQ_QUARTERLY(5),
FREQ_BIANNUALLY(6),
FREQ_ANNUALLY(7),
FREQ_UNSCHEDULED(8),
FREQ_TEN_DAYS(9),
FREQ_TWICE_WEEKLY(10),
FREQ_EVERY_TWO_MONTHS(11),
FREQ_TRIMESTER(12)
int dpaymentssdk_fdmsrcdebit_getmitfrequency(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmitfrequency(void* lpObj, int iMITFrequency);
int GetMITFrequency();
int SetMITFrequency(int iMITFrequency);

Default Value

0

Remarks

This field indicates the frequency of a Recurring or Installment payment.

The following values are defined:

0 (freqUnspecified - default) Unspecified - the field is not sent in the request.
1 (freqDaily) Daily
2 (freqWeekly) Weekly
3 (freqBiweekly) Biweekly / Fortnightly
4 (freqMonthly) Monthly
5 (freqQuarterly) Quarterly
6 (freqBiannually) Half-Yearly (Biannually)
7 (freqAnnually) Annually
8 (freqUnscheduled) Unscheduled (Type of MIT)
9 (freqTenDays) Ten days
10 (freqTwiceWeekly) Twice weekly
11 (freqEveryTwoMonths) Every two months
12 (freqTrimester) Trimester

This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'.

When the Card Type is 'Discover', 'JCB', or 'Diners', the valid values are 1, 2, 3, 4, 5, 6, 7, or 8.

For Visa Recurring transactions, valid values are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12.

For Visa Installment transactions, valid values are 2, 3, or 4.

Data Type

Integer

MITPaymentCurrency Property (FDMSRcDebit Class)

Contains the Installment Payment Currency represented as a 3 digit value.

Syntax

ANSI (Cross Platform)
char* GetMITPaymentCurrency();
int SetMITPaymentCurrency(const char* lpszMITPaymentCurrency); Unicode (Windows) LPWSTR GetMITPaymentCurrency();
INT SetMITPaymentCurrency(LPCWSTR lpszMITPaymentCurrency);
char* dpaymentssdk_fdmsrcdebit_getmitpaymentcurrency(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmitpaymentcurrency(void* lpObj, const char* lpszMITPaymentCurrency);
QString GetMITPaymentCurrency();
int SetMITPaymentCurrency(QString qsMITPaymentCurrency);

Default Value

"840"

Remarks

Contains the Installment Payment Currency represented as a 3 digit value.

This field is only applicable when Card Type is 'Visa'. For US Dollars, use "840".

Data Type

String

MITRecurringPaymentType Property (FDMSRcDebit Class)

This property contains the type of Recurring Payment.

Syntax

ANSI (Cross Platform)
int GetMITRecurringPaymentType();
int SetMITRecurringPaymentType(int iMITRecurringPaymentType); Unicode (Windows) INT GetMITRecurringPaymentType();
INT SetMITRecurringPaymentType(INT iMITRecurringPaymentType);

Possible Values

RPT_UNSPECIFIED(0), 
RPT_REGISTRATION(1),
RPT_SUBSEQUENT(2),
RPT_MODIFICATION(3),
RPT_CANCELLATION(4)
int dpaymentssdk_fdmsrcdebit_getmitrecurringpaymenttype(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmitrecurringpaymenttype(void* lpObj, int iMITRecurringPaymentType);
int GetMITRecurringPaymentType();
int SetMITRecurringPaymentType(int iMITRecurringPaymentType);

Default Value

0

Remarks

This field contains the type of Recurring Payment.

This field is only applicable when Card Type is 'Visa'. The following values are defined:

0 (rptUnspecified - default) Unspecified - the field is not sent in the request.
1 (rptRegistration) Registration / first transaction
2 (rptSubsequent) Subsequent transaction
3 (rptModification) Modification
4 (rptCancellation) Cancellation

Data Type

Integer

MITRegistrationRefNum Property (FDMSRcDebit Class)

This property contains a unique Reference Number for the Recurring Payment transaction.

Syntax

ANSI (Cross Platform)
char* GetMITRegistrationRefNum();
int SetMITRegistrationRefNum(const char* lpszMITRegistrationRefNum); Unicode (Windows) LPWSTR GetMITRegistrationRefNum();
INT SetMITRegistrationRefNum(LPCWSTR lpszMITRegistrationRefNum);
char* dpaymentssdk_fdmsrcdebit_getmitregistrationrefnum(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmitregistrationrefnum(void* lpObj, const char* lpszMITRegistrationRefNum);
QString GetMITRegistrationRefNum();
int SetMITRegistrationRefNum(QString qsMITRegistrationRefNum);

Default Value

""

Remarks

This field contains a unique Reference Number for the Recurring Payment transaction.

This field is only applicable when Card Type is 'Visa'.

The maximum length of this field is 35 characters.

Data Type

String

MITSequenceIndicator Property (FDMSRcDebit Class)

Identifies the sequence of the transactions when multiple Installment payments will be submitted.

Syntax

ANSI (Cross Platform)
int GetMITSequenceIndicator();
int SetMITSequenceIndicator(int iMITSequenceIndicator); Unicode (Windows) INT GetMITSequenceIndicator();
INT SetMITSequenceIndicator(INT iMITSequenceIndicator);
int dpaymentssdk_fdmsrcdebit_getmitsequenceindicator(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmitsequenceindicator(void* lpObj, int iMITSequenceIndicator);
int GetMITSequenceIndicator();
int SetMITSequenceIndicator(int iMITSequenceIndicator);

Default Value

0

Remarks

Identifies the sequence of the transactions when multiple Installment payments will be submitted.

This field should be populated in ascending order and is only applicable when Card Type is 'Discover', 'JCB', or 'Diners'.

Valid values for this field are numbers from 0 to 99.

Data Type

Integer

MITTotalPaymentAmount Property (FDMSRcDebit Class)

This property contains the Total Installment Amount.

Syntax

ANSI (Cross Platform)
char* GetMITTotalPaymentAmount();
int SetMITTotalPaymentAmount(const char* lpszMITTotalPaymentAmount); Unicode (Windows) LPWSTR GetMITTotalPaymentAmount();
INT SetMITTotalPaymentAmount(LPCWSTR lpszMITTotalPaymentAmount);
char* dpaymentssdk_fdmsrcdebit_getmittotalpaymentamount(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmittotalpaymentamount(void* lpObj, const char* lpszMITTotalPaymentAmount);
QString GetMITTotalPaymentAmount();
int SetMITTotalPaymentAmount(QString qsMITTotalPaymentAmount);

Default Value

""

Remarks

This field contains the Total Installment Amount.

This field is only applicable for Visa Installment transactions. Note : The total amount cannot exceed USD 500,000.

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.

The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.

Data Type

String

MITTotalPaymentCount Property (FDMSRcDebit Class)

The number of Recurring payments or Installments per the Cardholder agreement with the Merchant.

Syntax

ANSI (Cross Platform)
char* GetMITTotalPaymentCount();
int SetMITTotalPaymentCount(const char* lpszMITTotalPaymentCount); Unicode (Windows) LPWSTR GetMITTotalPaymentCount();
INT SetMITTotalPaymentCount(LPCWSTR lpszMITTotalPaymentCount);
char* dpaymentssdk_fdmsrcdebit_getmittotalpaymentcount(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmittotalpaymentcount(void* lpObj, const char* lpszMITTotalPaymentCount);
QString GetMITTotalPaymentCount();
int SetMITTotalPaymentCount(QString qsMITTotalPaymentCount);

Default Value

""

Remarks

The number of Recurring payments or Installments per the Cardholder agreement with the Merchant.

The following values are defined:

Value Description
01 to 99Installment Count
UD Not Defined
UC Until Canceled

This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'. For Discover, the valid values should be from 02 to 99, UD and UC. For Visa, the valid values should be from 01 to 99. Note: For Visa recurring payments, value of '99' means that recurring payments are authorized until canceled or that the Number of Recurring Payments is not defined.

When this field is sent for Visa or Discover (including JCB - US Domestic Only and Diners), the Bill Payment Transaction Indicator must be present with the value of 'Recurring' or 'Installment'. For Discover (including JCB - US Domestic Only and Diners) installment transactions, this field can only be sent when the Installment Type field contains the value of 'Merchant' or 'ThirdParty'. For Discover (including JCB - US Domestic Only and Diners) installment transactions, this field must be sent for ALL Installment transactions for a series of payments, and the original CIT transaction must be initiated with 3DS.

The maximum length of this field is 2 characters.

Data Type

String

MITUniqueID Property (FDMSRcDebit Class)

This property is used to uniquely identify each of the Recurring or Installment Payment.

Syntax

ANSI (Cross Platform)
char* GetMITUniqueID();
int SetMITUniqueID(const char* lpszMITUniqueID); Unicode (Windows) LPWSTR GetMITUniqueID();
INT SetMITUniqueID(LPCWSTR lpszMITUniqueID);
char* dpaymentssdk_fdmsrcdebit_getmituniqueid(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmituniqueid(void* lpObj, const char* lpszMITUniqueID);
QString GetMITUniqueID();
int SetMITUniqueID(QString qsMITUniqueID);

Default Value

""

Remarks

This field is used to uniquely identify each of the Recurring or Installment Payment. This ID is used to reference authorization transactions.

This field is only applicable when Card Type is 'Discover', 'JCB' or 'Diners'.

The maximum length of this field is 14 characters.

Data Type

String

MITValidationFlag Property (FDMSRcDebit Class)

Indicates the validation source for the validity of a transaction.

Syntax

ANSI (Cross Platform)
int GetMITValidationFlag();
int SetMITValidationFlag(int iMITValidationFlag); Unicode (Windows) INT GetMITValidationFlag();
INT SetMITValidationFlag(INT iMITValidationFlag);

Possible Values

VF_UNSPECIFIED(0), 
VF_VALIDATED(1),
VF_NOT_VALIDATED(2)
int dpaymentssdk_fdmsrcdebit_getmitvalidationflag(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmitvalidationflag(void* lpObj, int iMITValidationFlag);
int GetMITValidationFlag();
int SetMITValidationFlag(int iMITValidationFlag);

Default Value

0

Remarks

Indicates the validation source for the validity of a transaction.

This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'.

The following values are defined:

0 (vfUnspecified - default) Unspecified - the field is not sent in the request.
1 (vfValidated) Validated Card Transaction
2 (vfNotValidated) Not Validated Card Transaction

Data Type

Integer

MITValidationRef Property (FDMSRcDebit Class)

This property contains a cryptogram generated by the validation source for each cardholder account, for an Issuer to validate a transaction.

Syntax

ANSI (Cross Platform)
char* GetMITValidationRef();
int SetMITValidationRef(const char* lpszMITValidationRef); Unicode (Windows) LPWSTR GetMITValidationRef();
INT SetMITValidationRef(LPCWSTR lpszMITValidationRef);
char* dpaymentssdk_fdmsrcdebit_getmitvalidationref(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmitvalidationref(void* lpObj, const char* lpszMITValidationRef);
QString GetMITValidationRef();
int SetMITValidationRef(QString qsMITValidationRef);

Default Value

""

Remarks

This field contains a cryptogram generated by the validation source for each cardholder account, for an Issuer to validate a transaction.

This field is only applicable when Card Type is 'Discover', 'JCB', or 'Diners'.

The maximum length of this field is 20 characters.

Data Type

String

TransactionIndicator Property (FDMSRcDebit Class)

Specifies the type of Bill Payment being made.

Syntax

ANSI (Cross Platform)
int GetTransactionIndicator();
int SetTransactionIndicator(int iTransactionIndicator); Unicode (Windows) INT GetTransactionIndicator();
INT SetTransactionIndicator(INT iTransactionIndicator);

Possible Values

TI_UNSPECIFIED(0), 
TI_SINGLE_TRANSACTION(1),
TI_RECURRING(2),
TI_INSTALLMENT(3),
TI_DEFERRED_BILLING(4)
int dpaymentssdk_fdmsrcdebit_gettransactionindicator(void* lpObj);
int dpaymentssdk_fdmsrcdebit_settransactionindicator(void* lpObj, int iTransactionIndicator);
int GetTransactionIndicator();
int SetTransactionIndicator(int iTransactionIndicator);

Default Value

0

Remarks

Specifies the type of Bill Payment being made.

This property contains the type of bill payment being made. This is applicable to ECommerce, MOTO, and Retail transactions. Possible values are:

0 (tiUnspecified - default) Unspecified - the field is not sent in the request.
1 (tiSingleTransaction) Single transaction
2 (tiRecurring) Recurring transaction
3 (tiInstallment) Installment transaction
4 (tiDeferredBilling) Deferred Billing transaction

To settle an Installment transaction, you must use the FDMSRcDetailrecord class to add the number of this installment and the total count of all installments to be made. For instance, if the purchase was for "Three easy payments of $19.95", and this is the first payment, then the installment number will be 1, and the installment count 3. An example is included below:

FDMSRcECommerce.Config("BillPaymentType=3") // 3=Installment FDMSRcECommerce.TransactionAmount = "1995" FDMSRcECommerce.AuthOnly() FDMSRcDetailRecord.ParseAggregate(FDMSRcECommerce.GetDetailAggregate()) FDMSRcDetailRecord.InstallmentCount = 3 FDMSRcDetailRecord.InstallmentNumber = 1 FDMSRcSettle.DetailRecordAggregate(5) = FDMSRcDetailRecord.GetDetailAggregate()

Data Type

Integer

CardType Property (FDMSRcDebit Class)

Type of credit card being used in this transaction.

Syntax

ANSI (Cross Platform)
int GetCardType();
int SetCardType(int iCardType); Unicode (Windows) INT GetCardType();
INT SetCardType(INT iCardType);

Possible Values

CT_UNKNOWN(0), 
CT_VISA(1),
CT_MASTER_CARD(2),
CT_AMEX(3),
CT_DISCOVER(4),
CT_DINERS(5),
CT_JCB(6),
CT_VISA_ELECTRON(7),
CT_MAESTRO(8),
CT_LASER(10)
int dpaymentssdk_fdmsrcdebit_getcardtype(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setcardtype(void* lpObj, int iCardType);
int GetCardType();
int SetCardType(int iCardType);

Default Value

0

Remarks

Type of credit card being used in this transaction. This property contains the customer's credit card type. This is automatically computed after the Number is set, but it can also be changed manually. A list of valid card types is included below.

ctUnknown (0) Invalid or unknown prefix, card type not known.
ctVisa (1) Visa or Delta Card.
ctMasterCard (2) MasterCard.
ctAMEX (3) American Express Card.
ctDiscover (4) Discover Card.
ctDiners (5) Diners Club or Carte Blanche Card.
ctJCB (6) JCB Card.
ctVisaElectron (7) Visa Electron Card (runs as a Visa for most gateways)
ctMaestro (8) Maestro Card
ctLaser (10) Laser Card (Ireland)

This property is not available at design time.

Data Type

Integer

CardCVVData Property (FDMSRcDebit Class)

Three digit security code on back of card (optional).

Syntax

ANSI (Cross Platform)
char* GetCardCVVData();
int SetCardCVVData(const char* lpszCardCVVData); Unicode (Windows) LPWSTR GetCardCVVData();
INT SetCardCVVData(LPCWSTR lpszCardCVVData);
char* dpaymentssdk_fdmsrcdebit_getcardcvvdata(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setcardcvvdata(void* lpObj, const char* lpszCardCVVData);
QString GetCardCVVData();
int SetCardCVVData(QString qsCardCVVData);

Default Value

""

Remarks

Three digit security code on back of card (optional).

This alphanumeric property contains the three digit Visa "Card Verification Value" (CVV), MasterCard "Card Verification Code" (CVC), or four-digit American Express "Card Identification Number" (CID). This value appears as additional characters embossed on the card signature line following the credit card account number on the back of the credit card. This is an optional property which can be used to determine if the customer is actually in possession of the credit card.

Even if the CVVData is incorrect, the transaction may still be authorized. It is up to the merchant to examine the ResponseCVVResult property and decide whether to honor the transaction or not.

Note: When set to a non-empty value, CVVPresence will be automatically set to cvpProvided. If set to empty string (""), CVVPresence will be automatically set to cvpNotProvided.

This property is not available at design time.

Data Type

String

CardCVVPresence Property (FDMSRcDebit Class)

Indicates the presence of the card verification value.

Syntax

ANSI (Cross Platform)
int GetCardCVVPresence();
int SetCardCVVPresence(int iCardCVVPresence); Unicode (Windows) INT GetCardCVVPresence();
INT SetCardCVVPresence(INT iCardCVVPresence);

Possible Values

CVP_NOT_PROVIDED(0), 
CVP_PROVIDED(1),
CVP_ILLEGIBLE(2),
CVP_NOT_ON_CARD(3)
int dpaymentssdk_fdmsrcdebit_getcardcvvpresence(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setcardcvvpresence(void* lpObj, int iCardCVVPresence);
int GetCardCVVPresence();
int SetCardCVVPresence(int iCardCVVPresence);

Default Value

0

Remarks

Indicates the presence of the card verification value.

This property is used to indicate the presence of CVVData.

The class will automatically set this value to cvpProvided when a CVVData value is specified. You can explicitly specify the CVVPresence indicator by setting this property.

Available values are:

  • cvpNotProvided (0)
  • cvpProvided (1)
  • cvpIllegible (2)
  • cvpNotOnCard (3)

This property is not available at design time.

Data Type

Integer

CardEntryDataSource Property (FDMSRcDebit Class)

This property contains a 1-character code identifying the source of the customer data.

Syntax

ANSI (Cross Platform)
int GetCardEntryDataSource();
int SetCardEntryDataSource(int iCardEntryDataSource); Unicode (Windows) INT GetCardEntryDataSource();
INT SetCardEntryDataSource(INT iCardEntryDataSource);

Possible Values

EDS_TRACK_1(0), 
EDS_TRACK_2(1),
EDS_MANUAL_ENTRY_TRACK_1CAPABLE(2),
EDS_MANUAL_ENTRY_TRACK_2CAPABLE(3),
EDS_MANUAL_ENTRY_NO_CARD_READER(4),
EDS_TRACK_1CONTACTLESS(5),
EDS_TRACK_2CONTACTLESS(6),
EDS_MANUAL_ENTRY_CONTACTLESS_CAPABLE(7),
EDS_IVR(8),
EDS_KIOSK(9)
int dpaymentssdk_fdmsrcdebit_getcardentrydatasource(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setcardentrydatasource(void* lpObj, int iCardEntryDataSource);
int GetCardEntryDataSource();
int SetCardEntryDataSource(int iCardEntryDataSource);

Default Value

0

Remarks

This property contains a 1-character code identifying the source of the customer data. The table below shows all supported values for this property.

edsTrack1 (0) Full Magnetic stripe read and transmit, Track 1.
edsTrack2 (1) Full magnetic stripe read and transmit, Track 2.
edsManualEntryTrack1Capable (2) Manually keyed, Track 1 capable.
edsManualEntryTrack2Capable (3)Manually keyed, Track 2 capable.
edsManualEntryNoCardReader (4)Manually keyed, terminal has no card reading capability (use this for e-commerce and MOTO transactions).
edsTrack1Contactless (5)Full magnetic stripe read (Track 1 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only).
edsTrack2Contactless (6)Full magnetic stripe read (Track 2 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only).
edsManualEntryContactlessCapable (7)Manually keyed, Chip Card read capable terminal (Visa, MasterCard, and JCB transactions only).
edsIVR (8)Interactive Voice Response processing. This is applicable to Mail Order/Telephone Order (MOTO) transactions. (Number, ExpMonth, and ExpYear are sent).
edsKiosk (9)Automated kiosk transaction. Track1 or Track2 data must be sent in MagneticStripe, the transaction cannot be manually entered.

Below is a list of processors and their support EntryDataSource values:

FDMS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable, edsIVR, edsKiosk

FDMSOmaha - All EntryDataSources applicable

FDMS Rapid Connect - All EntryDataSources applicable

Global - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsIVR, edsKiosk

PTech - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable

TSYS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack2Contactless, edsManualEntryContactlessCapable

TSYSHC - Values are based on Industry type.

TSYSHCBenefit edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable
TSYSHCECommerce edsManualEntryNoCardReader
TSYSHCRetail edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable

This property is not available at design time.

Data Type

Integer

CardExpMonth Property (FDMSRcDebit Class)

Expiration month of the credit card specified in Number .

Syntax

ANSI (Cross Platform)
int GetCardExpMonth();
int SetCardExpMonth(int iCardExpMonth); Unicode (Windows) INT GetCardExpMonth();
INT SetCardExpMonth(INT iCardExpMonth);
int dpaymentssdk_fdmsrcdebit_getcardexpmonth(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setcardexpmonth(void* lpObj, int iCardExpMonth);
int GetCardExpMonth();
int SetCardExpMonth(int iCardExpMonth);

Default Value

1

Remarks

Expiration month of the credit card specified in Number.

This property contains the expiration date of the customer's credit card, and must be in the range 1 - 12.

This property is not available at design time.

Data Type

Integer

CardExpYear Property (FDMSRcDebit Class)

Expiration year of the credit card specified in Number .

Syntax

ANSI (Cross Platform)
int GetCardExpYear();
int SetCardExpYear(int iCardExpYear); Unicode (Windows) INT GetCardExpYear();
INT SetCardExpYear(INT iCardExpYear);
int dpaymentssdk_fdmsrcdebit_getcardexpyear(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setcardexpyear(void* lpObj, int iCardExpYear);
int GetCardExpYear();
int SetCardExpYear(int iCardExpYear);

Default Value

2000

Remarks

Expiration year of the credit card specified in Number.

This property contains the expiration date of the customer's credit card. This property must be in the range 0 - 99, or 2000 - 2099. Any date before the year 2000 or after 2099 cannot be specified.

This property is not available at design time.

Data Type

Integer

CardIsEncrypted Property (FDMSRcDebit Class)

Determines whether data set to the Number or MagneticStripe properties is validated.

Syntax

ANSI (Cross Platform)
int GetCardIsEncrypted();
int SetCardIsEncrypted(int bCardIsEncrypted); Unicode (Windows) BOOL GetCardIsEncrypted();
INT SetCardIsEncrypted(BOOL bCardIsEncrypted);
int dpaymentssdk_fdmsrcdebit_getcardisencrypted(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setcardisencrypted(void* lpObj, int bCardIsEncrypted);
bool GetCardIsEncrypted();
int SetCardIsEncrypted(bool bCardIsEncrypted);

Default Value

FALSE

Remarks

Determines whether data set to the Number or MagneticStripe fields is validated.

By default, when the Number or MagneticStripe fields are set, the value will be validated and normalized. For instance, "4444-33332222 1111" will be normalized as "4444333322221111" and MagneticStripe data will be parsed for the track specified by EntryDataSource. However, any other non-numerical data entered will cause an exception to be thrown. It may be useful in some gateways to send other data in the Number or MagneticStripe fields, and this can be accomplished by setting IsEncrypted to true. However, please note that in doing so automatic calculation of the CardType may be affected, and the card number will not be verified.

This property is not available at design time.

Data Type

Boolean

CardMagneticStripe Property (FDMSRcDebit Class)

Track data read off of the card's magnetic stripe.

Syntax

ANSI (Cross Platform)
char* GetCardMagneticStripe();
int SetCardMagneticStripe(const char* lpszCardMagneticStripe); Unicode (Windows) LPWSTR GetCardMagneticStripe();
INT SetCardMagneticStripe(LPCWSTR lpszCardMagneticStripe);
char* dpaymentssdk_fdmsrcdebit_getcardmagneticstripe(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setcardmagneticstripe(void* lpObj, const char* lpszCardMagneticStripe);
QString GetCardMagneticStripe();
int SetCardMagneticStripe(QString qsCardMagneticStripe);

Default Value

""

Remarks

Track data read off of the card's magnetic stripe.

If EntryDataSource is not one of the manually entered enumerations, then this property must be set with the track1 or track2 data from the magnetic stripe on the back of the customer's credit card. This includes everything after but not including the start sentinel (% or ;) and up to but not including the end sentinel (?) and LRC check character. You may only set this property with track 1 or track 2 data, and may not pass both. Use the EntryDataSource property to indicate which track you are sending.

The following example shows how to set the MagneticStripe and EntryDataSource properties if the data read off the card is "%B4788250000028291^TSYS^05121015432112345678?;4788250000028291=05121015432112345678?"

class.CardMagneticStripe = "B4788250000028291^TSYS^05121015432112345678" class.CardEntryDataSource = edsTrack1 or class.CardMagneticStripe = "4788250000028291=05121015432112345678" class.CardEntryDataSource = edsTrack2

Industry regulations do not allow merchants or processors to store track data in any form of persistent storage. Failure to abide by this regulation can result in significant fines and other penalties.

This property is not available at design time.

Data Type

String

CardNumber Property (FDMSRcDebit Class)

Customer's credit card number for the transaction.

Syntax

ANSI (Cross Platform)
char* GetCardNumber();
int SetCardNumber(const char* lpszCardNumber); Unicode (Windows) LPWSTR GetCardNumber();
INT SetCardNumber(LPCWSTR lpszCardNumber);
char* dpaymentssdk_fdmsrcdebit_getcardnumber(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setcardnumber(void* lpObj, const char* lpszCardNumber);
QString GetCardNumber();
int SetCardNumber(QString qsCardNumber);

Default Value

""

Remarks

Customer's credit card number for the transaction.

If you're sending the transaction with MagneticStripe data, this property should be left empty.

This property is not available at design time.

Data Type

String

CashBack Property (FDMSRcDebit Class)

Optional cash back amount to return to the customer.

Syntax

ANSI (Cross Platform)
char* GetCashBack();
int SetCashBack(const char* lpszCashBack); Unicode (Windows) LPWSTR GetCashBack();
INT SetCashBack(LPCWSTR lpszCashBack);
char* dpaymentssdk_fdmsrcdebit_getcashback(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setcashback(void* lpObj, const char* lpszCashBack);
QString GetCashBack();
int SetCashBack(QString qsCashBack);

Default Value

""

Remarks

This property specifies the amount of CashBack requested. This property is valid for Debit, EBT, and Credit (Discover Only) transactions.

Note: The CashBack amount for Discover cannot be greater than $100.00 and must be less than the purchase amount. For example, if the purchase is $50.00, the maximum CashBack amount is $50.00.

For cash back transactions, the TransactionAmount must contain the sum total of the purchase amount PLUS the CashBack amount. If the purchase is for $10 and the customer requests $20 cash back, CashBack should be set to "2000" and TransactionAmount must contain "3000".

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.

The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.

Data Type

String

DatawireId Property (FDMSRcDebit Class)

Identifies the merchant to the Datawire System.

Syntax

ANSI (Cross Platform)
char* GetDatawireId();
int SetDatawireId(const char* lpszDatawireId); Unicode (Windows) LPWSTR GetDatawireId();
INT SetDatawireId(LPCWSTR lpszDatawireId);
char* dpaymentssdk_fdmsrcdebit_getdatawireid(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setdatawireid(void* lpObj, const char* lpszDatawireId);
QString GetDatawireId();
int SetDatawireId(QString qsDatawireId);

Default Value

""

Remarks

The Datawire Id is a unique customer identifier generated by Datawire and returned to the client after successfully registering the merchant (using the FDMSRegister class). This Id (which is sent in all subsequent transactions) allows a transaction, to pass through the Datawire system and be correctly routed to the FDMS Payment processor.

The maximum length for this property is 32 characters.

Data Type

String

EMVData Property (FDMSRcDebit Class)

The EMV Data returned from a Pin Pad after reading an EMV card.

Syntax

ANSI (Cross Platform)
char* GetEMVData();
int SetEMVData(const char* lpszEMVData); Unicode (Windows) LPWSTR GetEMVData();
INT SetEMVData(LPCWSTR lpszEMVData);
char* dpaymentssdk_fdmsrcdebit_getemvdata(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setemvdata(void* lpObj, const char* lpszEMVData);
QString GetEMVData();
int SetEMVData(QString qsEMVData);

Default Value

""

Remarks

This configuration setting takes the entire TLV (tag-length-value) response received from a Pin Pad after reading an EMV card. The class will send this data in an authorization request.

Retail EMV Example Fdmsrcretail fdmsrcretail = new Fdmsrcretail(); fdmsrcretail.IndustryType = FdmsrcretailIndustryTypes.fritRetail; fdmsrcretail.TPPID = "AAA000"; fdmsrcretail.MerchantTerminalNumber = "00000001"; fdmsrcretail.MerchantId = "1234"; fdmsrcretail.GroupId = "20001"; fdmsrcretail.DatawireId = "00011122233344455566"; fdmsrcretail.VisaIdentifier = "01000000000000"; fdmsrcretail.ApplicationId = "RAPIDCONNECTVXN"; fdmsrcretail.URL = "https://stg.dw.us.fdcnet.biz/rc"; fdmsrcretail.STAN = "112"; fdmsrcretail.TransactionNumber = "120013"; fdmsrcretail.ReferenceNumber = "123456"; fdmsrcretail.OrderNumber = "12000503"; fdmsrcretail.Card.MagneticStripe = "4761739001010010=15122011143804489"; fdmsrcretail.Card.EntryDataSource = EntryDataSources.edsTrack2; fdmsrcretail.TransactionAmount = "250"; fdmsrcretail.EMVData = "9F4005F000F0A0019F...F7906123456789012"; fdmsrcretail.Sale();

Data Type

String

EncryptedPIN Property (FDMSRcDebit Class)

DUKPT DES encrypted pin block, retrieved from a PIN pad.

Syntax

ANSI (Cross Platform)
char* GetEncryptedPIN();
int SetEncryptedPIN(const char* lpszEncryptedPIN); Unicode (Windows) LPWSTR GetEncryptedPIN();
INT SetEncryptedPIN(LPCWSTR lpszEncryptedPIN);
char* dpaymentssdk_fdmsrcdebit_getencryptedpin(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setencryptedpin(void* lpObj, const char* lpszEncryptedPIN);
QString GetEncryptedPIN();
int SetEncryptedPIN(QString qsEncryptedPIN);

Default Value

""

Remarks

A 16-byte encrypted PIN and associated KSN are required for all debit Sale and Credit transactions. These values must be retrieved from a certified DUKPT DES pin pad device.

This value is required for all transactions except Full Reversals.

Debit Sale Example debit.TPPID = "AAA000"; debit.MerchantTerminalNumber = "00000001"; debit.MerchantId = "1234"; debit.GroupId = "20001"; debit.DatawireId = "00011122233344455566"; debit.ApplicationId = "RAPIDCONNECTVXN"; debit.URL = "https://stg.dw.us.fdcnet.biz/rc"; debit.STAN = "112"; debit.TransactionNumber = "1234"; debit.ReferenceNumber = "1212"; debit.OrderNumber = "123"; debit.Card.MagneticStripe = "4003010001234572=17041011234567440"; debit.EncryptedPIN = "7BD8948B328B21E5"; debit.KSN = "876543210F008400029"; debit.TransactionAmount = "1200"; debit.Sale();

Data Type

String

GroupId Property (FDMSRcDebit Class)

The Id assigned by FDMS to identify the merchant or group of merchants.

Syntax

ANSI (Cross Platform)
char* GetGroupId();
int SetGroupId(const char* lpszGroupId); Unicode (Windows) LPWSTR GetGroupId();
INT SetGroupId(LPCWSTR lpszGroupId);
char* dpaymentssdk_fdmsrcdebit_getgroupid(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setgroupid(void* lpObj, const char* lpszGroupId);
QString GetGroupId();
int SetGroupId(QString qsGroupId);

Default Value

""

Remarks

This property specifies the FDMS assigned group Id. This Id identifies the merchant or group of merchants. This property is required.

Data Type

String

IndustryType Property (FDMSRcDebit Class)

The merchant's industry type.

Syntax

ANSI (Cross Platform)
int GetIndustryType();
int SetIndustryType(int iIndustryType); Unicode (Windows) INT GetIndustryType();
INT SetIndustryType(INT iIndustryType);

Possible Values

FDIT_RETAIL(0), 
FDIT_RESTAURANT(1)
int dpaymentssdk_fdmsrcdebit_getindustrytype(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setindustrytype(void* lpObj, int iIndustryType);
int GetIndustryType();
int SetIndustryType(int iIndustryType);

Default Value

0

Remarks

The merchant's industry type. Possible values are:

0 (fditRetail - default) Retail
1 (fditRestaurant) Restaurant

Data Type

Integer

KSN Property (FDMSRcDebit Class)

Clear-text Key Sequence Number retrieved from a PIN pad.

Syntax

ANSI (Cross Platform)
char* GetKSN();
int SetKSN(const char* lpszKSN); Unicode (Windows) LPWSTR GetKSN();
INT SetKSN(LPCWSTR lpszKSN);
char* dpaymentssdk_fdmsrcdebit_getksn(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setksn(void* lpObj, const char* lpszKSN);
QString GetKSN();
int SetKSN(QString qsKSN);

Default Value

""

Remarks

A 19 or 20-byte Key Sequence Number (KSN) and associated EncryptedPIN are required for all debit Sale and Credit transactions. These values must be retrieved from a certified DUKPT DES pin pad device. A 20-byte Key Sequence Number consists of a 1-byte pad character ('F'), a 9-byte Base Derivation Key Id (BDK ID), a 5-byte device Id, and a 5-byte transaction counter. If this property is set with a Key Sequence Number less than 20 bytes in length, the class will pad it on the left with 'F' characters.

This value is required for all transactions except Full Reversals.

Debit Sale Example debit.TPPID = "AAA000"; debit.MerchantTerminalNumber = "00000001"; debit.MerchantId = "1234"; debit.GroupId = "20001"; debit.DatawireId = "00011122233344455566"; debit.ApplicationId = "RAPIDCONNECTVXN"; debit.URL = "https://stg.dw.us.fdcnet.biz/rc"; debit.STAN = "112"; debit.TransactionNumber = "1234"; debit.ReferenceNumber = "1212"; debit.OrderNumber = "123"; debit.Card.MagneticStripe = "4003010001234572=17041011234567440"; debit.EncryptedPIN = "7BD8948B328B21E5"; debit.KSN = "876543210F008400029"; debit.TransactionAmount = "1200"; debit.Sale();

Data Type

String

MerchantId Property (FDMSRcDebit Class)

A unique Id used to identify the merchant within the FDMS and Datawire systems.

Syntax

ANSI (Cross Platform)
char* GetMerchantId();
int SetMerchantId(const char* lpszMerchantId); Unicode (Windows) LPWSTR GetMerchantId();
INT SetMerchantId(LPCWSTR lpszMerchantId);
char* dpaymentssdk_fdmsrcdebit_getmerchantid(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmerchantid(void* lpObj, const char* lpszMerchantId);
QString GetMerchantId();
int SetMerchantId(QString qsMerchantId);

Default Value

""

Remarks

This property holds the Merchant Id assigned by FDMS. The value is an alphanumeric value up to 16 characters in length.

This property is required.

Data Type

String

MerchantTerminalNumber Property (FDMSRcDebit Class)

Used to identify a unique terminal within a merchant location.

Syntax

ANSI (Cross Platform)
char* GetMerchantTerminalNumber();
int SetMerchantTerminalNumber(const char* lpszMerchantTerminalNumber); Unicode (Windows) LPWSTR GetMerchantTerminalNumber();
INT SetMerchantTerminalNumber(LPCWSTR lpszMerchantTerminalNumber);
char* dpaymentssdk_fdmsrcdebit_getmerchantterminalnumber(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setmerchantterminalnumber(void* lpObj, const char* lpszMerchantTerminalNumber);
QString GetMerchantTerminalNumber();
int SetMerchantTerminalNumber(QString qsMerchantTerminalNumber);

Default Value

""

Remarks

This property contains a number assigned by FDMS to uniquely identify a terminal within a merchant location. The value is numeric and may be up to 8 digits in length.

This property is required.

Data Type

String

OrderNumber Property (FDMSRcDebit Class)

A merchant assigned order number to uniquely reference the transaction.

Syntax

ANSI (Cross Platform)
char* GetOrderNumber();
int SetOrderNumber(const char* lpszOrderNumber); Unicode (Windows) LPWSTR GetOrderNumber();
INT SetOrderNumber(LPCWSTR lpszOrderNumber);
char* dpaymentssdk_fdmsrcdebit_getordernumber(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setordernumber(void* lpObj, const char* lpszOrderNumber);
QString GetOrderNumber();
int SetOrderNumber(QString qsOrderNumber);

Default Value

""

Remarks

This property holds a merchant assigned order number that uniquely identifies the transaction. This must hold a numeric value up to 8 digits in length. This value cannot be all zeros.

This value is required for ECommerce and MOTO transactions. This value is optional for Retail transactions.

Data Type

String

ProxyAuthScheme Property (FDMSRcDebit Class)

This property is used to tell the class which type of authorization to perform when connecting to the proxy.

Syntax

ANSI (Cross Platform)
int GetProxyAuthScheme();
int SetProxyAuthScheme(int iProxyAuthScheme); Unicode (Windows) INT GetProxyAuthScheme();
INT SetProxyAuthScheme(INT iProxyAuthScheme);

Possible Values

AUTH_BASIC(0), 
AUTH_DIGEST(1),
AUTH_PROPRIETARY(2),
AUTH_NONE(3),
AUTH_NTLM(4),
AUTH_NEGOTIATE(5)
int dpaymentssdk_fdmsrcdebit_getproxyauthscheme(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setproxyauthscheme(void* lpObj, int iProxyAuthScheme);
int GetProxyAuthScheme();
int SetProxyAuthScheme(int iProxyAuthScheme);

Default Value

0

Remarks

This property is used to tell the class which type of authorization to perform when connecting to the proxy. This is used only when the User and Password properties are set.

AuthScheme should be set to authNone (3) when no authentication is expected.

By default, AuthScheme is authBasic (0), and if the User and Password properties are set, the component will attempt basic authentication.

If AuthScheme is set to authDigest (1), digest authentication will be attempted instead.

If AuthScheme is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.

If AuthScheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this property will clear the values of User and Password.

Data Type

Integer

ProxyAutoDetect Property (FDMSRcDebit Class)

This property tells the class whether or not to automatically detect and use proxy system settings, if available.

Syntax

ANSI (Cross Platform)
int GetProxyAutoDetect();
int SetProxyAutoDetect(int bProxyAutoDetect); Unicode (Windows) BOOL GetProxyAutoDetect();
INT SetProxyAutoDetect(BOOL bProxyAutoDetect);
int dpaymentssdk_fdmsrcdebit_getproxyautodetect(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setproxyautodetect(void* lpObj, int bProxyAutoDetect);
bool GetProxyAutoDetect();
int SetProxyAutoDetect(bool bProxyAutoDetect);

Default Value

FALSE

Remarks

This property tells the class whether or not to automatically detect and use proxy system settings, if available. The default value is false.

Data Type

Boolean

ProxyPassword Property (FDMSRcDebit Class)

This property contains a password if authentication is to be used for the proxy.

Syntax

ANSI (Cross Platform)
char* GetProxyPassword();
int SetProxyPassword(const char* lpszProxyPassword); Unicode (Windows) LPWSTR GetProxyPassword();
INT SetProxyPassword(LPCWSTR lpszProxyPassword);
char* dpaymentssdk_fdmsrcdebit_getproxypassword(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setproxypassword(void* lpObj, const char* lpszProxyPassword);
QString GetProxyPassword();
int SetProxyPassword(QString qsProxyPassword);

Default Value

""

Remarks

This property contains a password if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password properties are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password properties are used to authenticate through NTLM negotiation.

Data Type

String

ProxyPort Property (FDMSRcDebit Class)

This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).

Syntax

ANSI (Cross Platform)
int GetProxyPort();
int SetProxyPort(int iProxyPort); Unicode (Windows) INT GetProxyPort();
INT SetProxyPort(INT iProxyPort);
int dpaymentssdk_fdmsrcdebit_getproxyport(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setproxyport(void* lpObj, int iProxyPort);
int GetProxyPort();
int SetProxyPort(int iProxyPort);

Default Value

80

Remarks

This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). See the description of the Server property for details.

Data Type

Integer

ProxyServer Property (FDMSRcDebit Class)

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

Syntax

ANSI (Cross Platform)
char* GetProxyServer();
int SetProxyServer(const char* lpszProxyServer); Unicode (Windows) LPWSTR GetProxyServer();
INT SetProxyServer(LPCWSTR lpszProxyServer);
char* dpaymentssdk_fdmsrcdebit_getproxyserver(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setproxyserver(void* lpObj, const char* lpszProxyServer);
QString GetProxyServer();
int SetProxyServer(QString qsProxyServer);

Default Value

""

Remarks

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the Server property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the Server property is set to the corresponding address. If the search is not successful, an error is returned.

Data Type

String

ProxySSL Property (FDMSRcDebit Class)

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.

Syntax

ANSI (Cross Platform)
int GetProxySSL();
int SetProxySSL(int iProxySSL); Unicode (Windows) INT GetProxySSL();
INT SetProxySSL(INT iProxySSL);

Possible Values

PS_AUTOMATIC(0), 
PS_ALWAYS(1),
PS_NEVER(2),
PS_TUNNEL(3)
int dpaymentssdk_fdmsrcdebit_getproxyssl(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setproxyssl(void* lpObj, int iProxySSL);
int GetProxySSL();
int SetProxySSL(int iProxySSL);

Default Value

0

Remarks

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the class will use the psTunnel option. If the URL is an http URL, the class will use the psNever option.
psAlways (1)The connection is always SSL enabled.
psNever (2)The connection is not SSL enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

Data Type

Integer

ProxyUser Property (FDMSRcDebit Class)

This property contains a user name, if authentication is to be used for the proxy.

Syntax

ANSI (Cross Platform)
char* GetProxyUser();
int SetProxyUser(const char* lpszProxyUser); Unicode (Windows) LPWSTR GetProxyUser();
INT SetProxyUser(LPCWSTR lpszProxyUser);
char* dpaymentssdk_fdmsrcdebit_getproxyuser(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setproxyuser(void* lpObj, const char* lpszProxyUser);
QString GetProxyUser();
int SetProxyUser(QString qsProxyUser);

Default Value

""

Remarks

This property contains a user name, if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password properties are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password properties are used to authenticate through NTLM negotiation.

Data Type

String

ReferenceNumber Property (FDMSRcDebit Class)

A value assigned by the merchant to uniquely reference a transaction and any subsequent related transactions.

Syntax

ANSI (Cross Platform)
char* GetReferenceNumber();
int SetReferenceNumber(const char* lpszReferenceNumber); Unicode (Windows) LPWSTR GetReferenceNumber();
INT SetReferenceNumber(LPCWSTR lpszReferenceNumber);
char* dpaymentssdk_fdmsrcdebit_getreferencenumber(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setreferencenumber(void* lpObj, const char* lpszReferenceNumber);
QString GetReferenceNumber();
int SetReferenceNumber(QString qsReferenceNumber);

Default Value

""

Remarks

This value is a merchant assigned 12 digit value. The value must be unique within a day for a given merchant id and terminal id. When performing a Capture or Reverse transaction this must be the same as the original transaction.

Data Type

String

ResponseApprovalCode Property (FDMSRcDebit Class)

The Approval Code returned from the server after a successful authorization.

Syntax

ANSI (Cross Platform)
char* GetResponseApprovalCode();

Unicode (Windows)
LPWSTR GetResponseApprovalCode();
char* dpaymentssdk_fdmsrcdebit_getresponseapprovalcode(void* lpObj);
QString GetResponseApprovalCode();

Default Value

""

Remarks

The Approval Code returned from the server after a successful authorization.

This value holds the approval code returned by the authorizer. This value will contain up to 8 characters. Only alphanumeric characters and spaces will be returned.

This property is read-only and not available at design time.

Data Type

String

ResponseAuthorizedAmount Property (FDMSRcDebit Class)

The amount actually charged to the card.

Syntax

ANSI (Cross Platform)
char* GetResponseAuthorizedAmount();

Unicode (Windows)
LPWSTR GetResponseAuthorizedAmount();
char* dpaymentssdk_fdmsrcdebit_getresponseauthorizedamount(void* lpObj);
QString GetResponseAuthorizedAmount();

Default Value

""

Remarks

The amount actually charged to the card.

This value holds the amount charged to the card. In the case of a partial authorization this will be different than the amount specified in TransactionAmount.

You must collect the remainder via another form of payment, or Reverse the authorization if the customer does not have an additional form of payment.

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.

The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.

This property is read-only.

Data Type

String

ResponseAuthorizingNetworkId Property (FDMSRcDebit Class)

This property indicates the network Id as returned by the host, if available.

Syntax

ANSI (Cross Platform)
char* GetResponseAuthorizingNetworkId();

Unicode (Windows)
LPWSTR GetResponseAuthorizingNetworkId();
char* dpaymentssdk_fdmsrcdebit_getresponseauthorizingnetworkid(void* lpObj);
QString GetResponseAuthorizingNetworkId();

Default Value

""

Remarks

This field indicates the network Id as returned by the host, if available.

This value is up to 3 alphanumeric characters.

This property is read-only.

Data Type

String

ResponseAuthorizingNetworkName Property (FDMSRcDebit Class)

This property indicates the authorizing network name as returned by the host, when available.

Syntax

ANSI (Cross Platform)
char* GetResponseAuthorizingNetworkName();

Unicode (Windows)
LPWSTR GetResponseAuthorizingNetworkName();
char* dpaymentssdk_fdmsrcdebit_getresponseauthorizingnetworkname(void* lpObj);
QString GetResponseAuthorizingNetworkName();

Default Value

""

Remarks

This field indicates the authorizing network name as returned by the host, when available.

This property is read-only.

Data Type

String

ResponseAVSResult Property (FDMSRcDebit Class)

Contains the Address Verification System result code.

Syntax

ANSI (Cross Platform)
char* GetResponseAVSResult();

Unicode (Windows)
LPWSTR GetResponseAVSResult();
char* dpaymentssdk_fdmsrcdebit_getresponseavsresult(void* lpObj);
QString GetResponseAVSResult();

Default Value

""

Remarks

Contains the Address Verification System result code.

This one character field contains the Address Verification System (AVS) result code. This property is populated if a value is present in the response. An AVS result code can provide additional information concerning the authentication of a particular transaction for which cardholder address verification was requested. Possible AVS codes are listed in the table below.

Visa Card AVS Codes

CodeDescription
A Street address matches, postal code does not match
B Street addresses match; postal code not verified due to incompatible formats
C Street address and postal code not verified
D Street address and postal code match (International only)
F Street address and postal code match (UK)
G Address information not verified for international transaction. Issuer is not an AVS Participant, or, AVS data was present in the request but the issuer did not return an AVS result, or no address on file (International only)
I Address verification service not performed (International only)
M Street address and postal codes match (International only)
N No match; neither the street addresses nor the postal codes match
P Postal code matches; street address not verified
R Retry, system unavailable to process
S Service not supported
U Address information is unavailable
Y Both postal code and address match
Z Postal code matches, Street address does not match or Street address not included in request

MasterCard AVS Codes

A Street address matches, postal code does not match
E Error: Transaction ineligible for address verification or edit error found in the message that prevents AVS from being performed
N No match; neither the street addresses nor the postal codes match
R Retry, system unavailable to process
S Service not supported
U Address information is unavailable
W U.S. - Street Address does not match, nine digit postal code matches; For address outside the U.S., postal code matches, address does not
X Exact: U.S. - Address and 9-digit postal code match; For address outside the U.S., postal code matches, address does not
Y Yes: Address and 5-digit postal code match for US address
Z Five digit postal code matches, address does not match

Amex AVS Codes

A Street address matches, postal code does not match
N No match; neither the street addresses nor the postal code matches
R Retry, system unavailable to process
S Service not supported
U Address information is unavailable
Y Both postal code and address match
Z Nine or five digit postal code matches, address does not match
L Card member Name and Billing Postal Code match
M Card member Name, Billing Address and Postal Code match
O Card member Name and Billing Address match
K Card member Name matches
D Card member Name incorrect, Billing Postal Code matches
E Card member Name incorrect, Billing Address and Postal Code match
F Card member Name incorrect, Billing Address matches
W No, Card member Name, Billing Address and Postal Code are all incorrect

Discover or JCB

A Both address and five digit postal code match
G Address information not verified for international transaction
N No match; neither the street addresses nor the postal code matches
R Retry, system unable to process
S Service not supported
T No data received from Issuer
W Nine digit postal code matches, address does not match
X All digits match (nine digit zip code)
Y Street address matches, postal code does not match
Z Five digit postal code matches, address does not match

This property is read-only.

Data Type

String

ResponseBalance Property (FDMSRcDebit Class)

Contains the remaining available balance left on the card.

Syntax

ANSI (Cross Platform)
char* GetResponseBalance();

Unicode (Windows)
LPWSTR GetResponseBalance();
char* dpaymentssdk_fdmsrcdebit_getresponsebalance(void* lpObj);
QString GetResponseBalance();

Default Value

""

Remarks

Contains the remaining available balance left on the card.

This balance amount will only be returned for prepaid cards.

This property is read-only and not available at design time.

Data Type

String

ResponseCardLevelResult Property (FDMSRcDebit Class)

This property is only applicable to Visa card.

Syntax

ANSI (Cross Platform)
char* GetResponseCardLevelResult();

Unicode (Windows)
LPWSTR GetResponseCardLevelResult();
char* dpaymentssdk_fdmsrcdebit_getresponsecardlevelresult(void* lpObj);
QString GetResponseCardLevelResult();

Default Value

""

Remarks

This property is only applicable to Visa card. This property holds a two character value returned by Visa to designate the type of card product used to process the transaction.

This property is read-only and not available at design time.

Data Type

String

ResponseCode Property (FDMSRcDebit Class)

Contains the 3 digit response code indicating success or reason of failure.

Syntax

ANSI (Cross Platform)
char* GetResponseCode();

Unicode (Windows)
LPWSTR GetResponseCode();
char* dpaymentssdk_fdmsrcdebit_getresponsecode(void* lpObj);
QString GetResponseCode();

Default Value

""

Remarks

Contains the 3 digit response code indicating success or reason of failure.

This property contains a 3 digit code indicating success or the reason of failure. A value of 000 indicates approval. For all other values please see the Response Codes section.

This property is read-only.

Data Type

String

ResponseCommercialCard Property (FDMSRcDebit Class)

Indicates whether the credit card charged is a corporate commercial card.

Syntax

ANSI (Cross Platform)
int GetResponseCommercialCard();

Unicode (Windows)
INT GetResponseCommercialCard();

Possible Values

RCCT_NOT_COMMERCIAL(0), 
RCCT_PURCHASE_CARD(1),
RCCT_CORPORATE_CARD(2),
RCCT_BUSINESS_CARD(3),
RCCT_UNKNOWN(4)
int dpaymentssdk_fdmsrcdebit_getresponsecommercialcard(void* lpObj);
int GetResponseCommercialCard();

Default Value

0

Remarks

Indicates whether the credit card charged is a corporate commercial card.

This is only applicable to Visa cards. Visa Business, corporate, and purchasing cards are subsets of commercial cards. Therefore, the user should send Level 2 (and possibly Level 3) data when calling Capture when this property indicates a commercial card was used. The following table indicates the type of commercial card:

fccNotCommercial (0)Card presented for authorization is not a commercial card
fccPurchaseCard (1)Card presented for authorization is a Visa Purchasing Card.
fccCorporateCard (2)Card presented for authorization is a Visa Corporate Card.
fccBusinessCard (3)Card presented for authorization is a Visa Business Card.
fccUnknown (4)Unable to obtain information from processor.

Note: Tax amounts should be included with the Level2 or Level3 data when calling Capture in order to receive the best interchange rate.

This property is read-only.

Data Type

Integer

ResponseCVVResult Property (FDMSRcDebit Class)

Contains the returned CVV result code (if CVV data was sent in the request).

Syntax

ANSI (Cross Platform)
char* GetResponseCVVResult();

Unicode (Windows)
LPWSTR GetResponseCVVResult();
char* dpaymentssdk_fdmsrcdebit_getresponsecvvresult(void* lpObj);
QString GetResponseCVVResult();

Default Value

""

Remarks

Contains the returned CVV result code (if CVV data was sent in the request).

If a CVV value was sent in the authorization, this property will contain the host returned Card Verification Value result code. This property is populated if a value is present in the response. The following is a list of current result codes:

Match Values match
NoMtch Values do not match
NotPrc Not processed
NotPrv Value not provided
NotPrt Issuer not participating
Unknwn Unknown

This property is read-only.

Data Type

String

ResponseDatawireReturnCode Property (FDMSRcDebit Class)

Contains an error code providing more details about the DatawireStatus received.

Syntax

ANSI (Cross Platform)
char* GetResponseDatawireReturnCode();

Unicode (Windows)
LPWSTR GetResponseDatawireReturnCode();
char* dpaymentssdk_fdmsrcdebit_getresponsedatawirereturncode(void* lpObj);
QString GetResponseDatawireReturnCode();

Default Value

""

Remarks

Contains an error code providing more details about the DatawireStatus received.

When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the DatawireStatus will be "OK" and the DatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.

The ApprovalCode contains the actual transaction result that was returned by FDMS.

The following is a list of possible Datawire return codes:

000 Transaction successfully passed through the Datawire system to the FDMS Payment Processor and back.
200 Host Busy - The processor's Host is busy and is currently unable to service this request.
201 Host Unavailable - The processor's Host is currently unavailable. For example, the server is sending NAK.
202 Host Connect Error - Could not connect to the processor's Host.
203 Host Drop - The processor's Host disconnected during the transaction before sending a response.
204 Host Comm Error - An error was encountered while communicating with the processor's Host.
205 No Response - No response from the processor's Host
206 Host Send Error - An error has encountered when sending the request to the processor, and the Host daemon cannot continue sending packets to the processor because the connection is broken.
405 Vxn Timeout - The request could not be processed.
505 Network Error - The request could not be processed.

This property is read-only.

Data Type

String

ResponseDatawireStatus Property (FDMSRcDebit Class)

Status of the communication with Datawire.

Syntax

ANSI (Cross Platform)
char* GetResponseDatawireStatus();

Unicode (Windows)
LPWSTR GetResponseDatawireStatus();
char* dpaymentssdk_fdmsrcdebit_getresponsedatawirestatus(void* lpObj);
QString GetResponseDatawireStatus();

Default Value

""

Remarks

Status of the communication with Datawire.

When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the DatawireStatus will be "OK" and the DatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.

The ApprovalCode contains the actual FDMS Transaction Result that was returned.

The following is a list of possible Datawire response status codes:

OKTransaction has successfully passed through the Datawire system to the FDMS Payment processor and back.
AuthenticationErrorDatawireId in the request was not successfully authenticated.
UnknownServiceIDServiceId part of the URL (in the Service Discovery or Ping request) is unknown.
WrongSessionContextThe SessionContext element of the Session Transaction request does not match the SessionContext returned by the InitiateSession response (applicable to the FDMSSettle class).
AccessDeniedGenerally, occurs when you try to register a merchant after a merchant has already been activated to use the Datawire VXN.
FailedYour Merchant Registration has failed. Contact tech.support@datawire.net for more information.
RetryRegistration is not yet complete. You must send the Registration request again.
TimeoutNo response from the Service Provider was received during the expected period of time.
XMLErrorRequest contains some XML error, such as malformed XML, violation of this DTD, etc.
OtherErrorUnspecified error occurred.
008Network Error

This property is read-only.

Data Type

String

ResponseEMVData Property (FDMSRcDebit Class)

Contains the EMV data returns in the response (if any).

Syntax

ANSI (Cross Platform)
char* GetResponseEMVData();

Unicode (Windows)
LPWSTR GetResponseEMVData();
char* dpaymentssdk_fdmsrcdebit_getresponseemvdata(void* lpObj);
QString GetResponseEMVData();

Default Value

""

Remarks

Contains the EMV data returns in the response (if any).

This property is only applicable to Retail and Debit transactions.

This property is read-only and not available at design time.

Data Type

String

ResponsePOSData Property (FDMSRcDebit Class)

This property holds transaction specific information returned by the issuer (if any).

Syntax

ANSI (Cross Platform)
char* GetResponsePOSData();

Unicode (Windows)
LPWSTR GetResponsePOSData();
char* dpaymentssdk_fdmsrcdebit_getresponseposdata(void* lpObj);
QString GetResponsePOSData();

Default Value

""

Remarks

This property holds transaction specific information returned by the issuer (if any). This is only applicable to MasterCard, Discover, and AmEx card transactions.

This property is read-only and not available at design time.

Data Type

String

ResponseReturnedACI Property (FDMSRcDebit Class)

Returned Authorization Characteristics Indicator contains CPS qualification status.

Syntax

ANSI (Cross Platform)
char* GetResponseReturnedACI();

Unicode (Windows)
LPWSTR GetResponseReturnedACI();
char* dpaymentssdk_fdmsrcdebit_getresponsereturnedaci(void* lpObj);
QString GetResponseReturnedACI();

Default Value

""

Remarks

Returned Authorization Characteristics Indicator contains CPS qualification status.

This one character field contains the returned Authorization Characteristics Indicator (ACI) for Visa transactions. This value provides information concerning the transaction's Customer Payment Service (CPS) qualification status. It is not recommended that the Point of Sale (POS) system attempt to interpret the meaning of this value.

Possible returned ACI values are:

ValueDescription
A Card Present
B Tokenized Ecommerce via mobile device (Payment Token)
C Card present with merchant name and location data (cardholder activated)
E Card present with merchant name and location data
F Card not present, Account Funding
I Incremental Authorization
J Card not present Recurring bill payment transaction
K Key Entered Transaction (error while reading magnetic stripe data)
N Not a custom payment service transaction
P Card-not-present (preferred customer participation)
R Card-not-present, AVS not required
S Card not present, e-commerce 3-D secure attempt
T Transaction cannot participate in CPS programs
U Card not present, 3-D secure
V Card-not-present, AVS requested
W Card not present, e-commerce non-3-D secure

This property is read-only.

Data Type

String

ResponseRoutingIndicator Property (FDMSRcDebit Class)

Indicates whether the transaction was processed as Credit or Debit.

Syntax

ANSI (Cross Platform)
char* GetResponseRoutingIndicator();

Unicode (Windows)
LPWSTR GetResponseRoutingIndicator();
char* dpaymentssdk_fdmsrcdebit_getresponseroutingindicator(void* lpObj);
QString GetResponseRoutingIndicator();

Default Value

""

Remarks

Indicates whether the transaction was processed as Credit or Debit. Possible values are:

ValueMeaning
CCredit
DDebit

This property is read-only.

Data Type

String

ResponseSettlementDate Property (FDMSRcDebit Class)

The date the transaction will be settled in the format MMDD.

Syntax

ANSI (Cross Platform)
char* GetResponseSettlementDate();

Unicode (Windows)
LPWSTR GetResponseSettlementDate();
char* dpaymentssdk_fdmsrcdebit_getresponsesettlementdate(void* lpObj);
QString GetResponseSettlementDate();

Default Value

""

Remarks

The date the transaction will be settled in the format MMDD.

This property is read-only.

Data Type

String

ResponseText Property (FDMSRcDebit Class)

This property may hold additional text which describes the reason for a decline, the property in error, etc.

Syntax

ANSI (Cross Platform)
char* GetResponseText();

Unicode (Windows)
LPWSTR GetResponseText();
char* dpaymentssdk_fdmsrcdebit_getresponsetext(void* lpObj);
QString GetResponseText();

Default Value

""

Remarks

This property may hold additional text which describes the reason for a decline, the field in error, etc. Applications should not be coded to the text in this property as it is subject to change.

This property is read-only.

Data Type

String

ResponseTransactionDate Property (FDMSRcDebit Class)

The transaction date returned from the server in yyyyMMddHHmmss format.

Syntax

ANSI (Cross Platform)
char* GetResponseTransactionDate();

Unicode (Windows)
LPWSTR GetResponseTransactionDate();
char* dpaymentssdk_fdmsrcdebit_getresponsetransactiondate(void* lpObj);
QString GetResponseTransactionDate();

Default Value

""

Remarks

The transaction date returned from the server in yyyyMMddHHmmss format.

This 15 digit field contains the transaction date and time returned by the Rapid Connect system. This is not a local datetime, it is the time according the Rapid Connect system.

This property is read-only.

Data Type

String

ResponseTransactionId Property (FDMSRcDebit Class)

Card issuer's Transaction Reference Number.

Syntax

ANSI (Cross Platform)
char* GetResponseTransactionId();

Unicode (Windows)
LPWSTR GetResponseTransactionId();
char* dpaymentssdk_fdmsrcdebit_getresponsetransactionid(void* lpObj);
QString GetResponseTransactionId();

Default Value

""

Remarks

Card issuer's Transaction Reference Number.

This property contains a Visa Transaction Id, MasterCard BankNet data, American Express Transaction Id, or Discover Network Result Indicator (NRID). If returned in the response, this property should be printed on the receipt.

This property is read-only and not available at design time.

Data Type

String

ReversalTransactionType Property (FDMSRcDebit Class)

The type of transaction to reverse.

Syntax

ANSI (Cross Platform)
int GetReversalTransactionType();
int SetReversalTransactionType(int iReversalTransactionType); Unicode (Windows) INT GetReversalTransactionType();
INT SetReversalTransactionType(INT iReversalTransactionType);

Possible Values

FRTT_AUTH_ONLY(0), 
FRTT_CAPTURE(1),
FRTT_CREDIT(2),
FRTT_SALE(3)
int dpaymentssdk_fdmsrcdebit_getreversaltransactiontype(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setreversaltransactiontype(void* lpObj, int iReversalTransactionType);
int GetReversalTransactionType();
int SetReversalTransactionType(int iReversalTransactionType);

Default Value

0

Remarks

This property specifies the type of transaction to reverse. Possible values are:

0 (frttAuthOnly - default AuthOnly.
1 (frttCapture) Capture. Only applicable when ReversalType is set to frtTimeoutReversal.
2 (frttCredit) Credit. Only applicable when ReversalType is set to frtTimeoutReversal.
3 (frttSale) Sale.

Data Type

Integer

ReversalType Property (FDMSRcDebit Class)

The type of reversal.

Syntax

ANSI (Cross Platform)
int GetReversalType();
int SetReversalType(int iReversalType); Unicode (Windows) INT GetReversalType();
INT SetReversalType(INT iReversalType);

Possible Values

FDRT_FULL_REVERSAL(0), 
FDRT_TIMEOUT_REVERSAL(1)
int dpaymentssdk_fdmsrcdebit_getreversaltype(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setreversaltype(void* lpObj, int iReversalType);
int GetReversalType();
int SetReversalType(int iReversalType);

Default Value

0

Remarks

This property specifies the type of reversal. Possible values are:

0 (fdrtFullReversal - default) Full Reversal
1 (fdrtTimeoutReversal) Timeout Reversal

Timeout Reversals are applicable to the following transaction types:

Full Reversals are applicable to the following transaction types:

Data Type

Integer

SettlementMode Property (FDMSRcDebit Class)

Indicates whether the class uses Host Capture (0) or Terminal Capture (1) system.

Syntax

ANSI (Cross Platform)
int GetSettlementMode();
int SetSettlementMode(int iSettlementMode); Unicode (Windows) INT GetSettlementMode();
INT SetSettlementMode(INT iSettlementMode);

Possible Values

SMI_HOST_CAPTURE(0), 
SMI_TERMINAL_CAPTURE(1)
int dpaymentssdk_fdmsrcdebit_getsettlementmode(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setsettlementmode(void* lpObj, int iSettlementMode);
int GetSettlementMode();
int SetSettlementMode(int iSettlementMode);

Default Value

0

Remarks

Possible values are:

0 (smiHostCapture - default) Host Capture
1 (smiTerminalCapture) Terminal Capture

Host-Capture means that you authorize your transactions using the AuthOnly or Sale methods, and you process refunds and capture outstanding authorizations with the Credit and Capture methods. FDMS Rapid Connect handles all batch management.

Terminal-Capture means that you handle all of the batch management yourself. This is necessary for the Hotel/Lodging IndustryType, because the final settlement amount may be more than (or less than) the amount that was originally authorized. For instance, a customer may stay longer or shorter than originally planned, or incur additional charges (mini bar, telephone call, room service, etc), and the settlement amount must be adjusted accordingly.

All industry types may be processed in Terminal Capture mode. However, Hotel/Lodging transactions MUST be authorized and settled in Terminal Capture mode. Attempting to authorize a Hotel/Lodging transaction with the Host Capture mode will cause the class fails with an error.

Data Type

Integer

SSLAcceptServerCertEncoded Property (FDMSRcDebit Class)

This is the certificate (PEM/base64 encoded).

Syntax

ANSI (Cross Platform)
int GetSSLAcceptServerCertEncoded(char* &lpSSLAcceptServerCertEncoded, int &lenSSLAcceptServerCertEncoded);
int SetSSLAcceptServerCertEncoded(const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded); Unicode (Windows) INT GetSSLAcceptServerCertEncoded(LPSTR &lpSSLAcceptServerCertEncoded, INT &lenSSLAcceptServerCertEncoded);
INT SetSSLAcceptServerCertEncoded(LPCSTR lpSSLAcceptServerCertEncoded, INT lenSSLAcceptServerCertEncoded);
int dpaymentssdk_fdmsrcdebit_getsslacceptservercertencoded(void* lpObj, char** lpSSLAcceptServerCertEncoded, int* lenSSLAcceptServerCertEncoded);
int dpaymentssdk_fdmsrcdebit_setsslacceptservercertencoded(void* lpObj, const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded);
QByteArray GetSSLAcceptServerCertEncoded();
int SetSSLAcceptServerCertEncoded(QByteArray qbaSSLAcceptServerCertEncoded);

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The Store and Subject properties also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

This property is not available at design time.

Data Type

Binary String

SSLCertEncoded Property (FDMSRcDebit Class)

This is the certificate (PEM/base64 encoded).

Syntax

ANSI (Cross Platform)
int GetSSLCertEncoded(char* &lpSSLCertEncoded, int &lenSSLCertEncoded);
int SetSSLCertEncoded(const char* lpSSLCertEncoded, int lenSSLCertEncoded); Unicode (Windows) INT GetSSLCertEncoded(LPSTR &lpSSLCertEncoded, INT &lenSSLCertEncoded);
INT SetSSLCertEncoded(LPCSTR lpSSLCertEncoded, INT lenSSLCertEncoded);
int dpaymentssdk_fdmsrcdebit_getsslcertencoded(void* lpObj, char** lpSSLCertEncoded, int* lenSSLCertEncoded);
int dpaymentssdk_fdmsrcdebit_setsslcertencoded(void* lpObj, const char* lpSSLCertEncoded, int lenSSLCertEncoded);
QByteArray GetSSLCertEncoded();
int SetSSLCertEncoded(QByteArray qbaSSLCertEncoded);

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The Store and Subject properties also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

This property is not available at design time.

Data Type

Binary String

SSLCertStore Property (FDMSRcDebit Class)

This is the name of the certificate store for the client certificate.

Syntax

ANSI (Cross Platform)
int GetSSLCertStore(char* &lpSSLCertStore, int &lenSSLCertStore);
int SetSSLCertStore(const char* lpSSLCertStore, int lenSSLCertStore); Unicode (Windows) INT GetSSLCertStore(LPSTR &lpSSLCertStore, INT &lenSSLCertStore);
INT SetSSLCertStore(LPCSTR lpSSLCertStore, INT lenSSLCertStore);
int dpaymentssdk_fdmsrcdebit_getsslcertstore(void* lpObj, char** lpSSLCertStore, int* lenSSLCertStore);
int dpaymentssdk_fdmsrcdebit_setsslcertstore(void* lpObj, const char* lpSSLCertStore, int lenSSLCertStore);
QByteArray GetSSLCertStore();
int SetSSLCertStore(QByteArray qbaSSLCertStore);

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The StoreType property denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject property to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject property for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

Data Type

Binary String

SSLCertStorePassword Property (FDMSRcDebit Class)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

ANSI (Cross Platform)
char* GetSSLCertStorePassword();
int SetSSLCertStorePassword(const char* lpszSSLCertStorePassword); Unicode (Windows) LPWSTR GetSSLCertStorePassword();
INT SetSSLCertStorePassword(LPCWSTR lpszSSLCertStorePassword);
char* dpaymentssdk_fdmsrcdebit_getsslcertstorepassword(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setsslcertstorepassword(void* lpObj, const char* lpszSSLCertStorePassword);
QString GetSSLCertStorePassword();
int SetSSLCertStorePassword(QString qsSSLCertStorePassword);

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Data Type

String

SSLCertStoreType Property (FDMSRcDebit Class)

This is the type of certificate store for this certificate.

Syntax

ANSI (Cross Platform)
int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType); Unicode (Windows) INT GetSSLCertStoreType();
INT SetSSLCertStoreType(INT iSSLCertStoreType);

Possible Values

CST_USER(0), 
CST_MACHINE(1),
CST_PFXFILE(2),
CST_PFXBLOB(3),
CST_JKSFILE(4),
CST_JKSBLOB(5),
CST_PEMKEY_FILE(6),
CST_PEMKEY_BLOB(7),
CST_PUBLIC_KEY_FILE(8),
CST_PUBLIC_KEY_BLOB(9),
CST_SSHPUBLIC_KEY_BLOB(10),
CST_P7BFILE(11),
CST_P7BBLOB(12),
CST_SSHPUBLIC_KEY_FILE(13),
CST_PPKFILE(14),
CST_PPKBLOB(15),
CST_XMLFILE(16),
CST_XMLBLOB(17),
CST_JWKFILE(18),
CST_JWKBLOB(19),
CST_SECURITY_KEY(20),
CST_BCFKSFILE(21),
CST_BCFKSBLOB(22),
CST_PKCS11(23),
CST_AUTO(99)
int dpaymentssdk_fdmsrcdebit_getsslcertstoretype(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setsslcertstoretype(void* lpObj, int iSSLCertStoreType);
int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType);

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS11 dll. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

SSLCertSubject Property (FDMSRcDebit Class)

This is the subject of the certificate used for client authentication.

Syntax

ANSI (Cross Platform)
char* GetSSLCertSubject();
int SetSSLCertSubject(const char* lpszSSLCertSubject); Unicode (Windows) LPWSTR GetSSLCertSubject();
INT SetSSLCertSubject(LPCWSTR lpszSSLCertSubject);
char* dpaymentssdk_fdmsrcdebit_getsslcertsubject(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setsslcertsubject(void* lpObj, const char* lpszSSLCertSubject);
QString GetSSLCertSubject();
int SetSSLCertSubject(QString qsSSLCertSubject);

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

Data Type

String

SSLProvider Property (FDMSRcDebit Class)

This specifies the SSL/TLS implementation to use.

Syntax

ANSI (Cross Platform)
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider); Unicode (Windows) INT GetSSLProvider();
INT SetSSLProvider(INT iSSLProvider);

Possible Values

SSLP_AUTOMATIC(0), 
SSLP_PLATFORM(1),
SSLP_INTERNAL(2)
int dpaymentssdk_fdmsrcdebit_getsslprovider(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setsslprovider(void* lpObj, int iSSLProvider);
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider);

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, on Windows the class will use the platform implementation. On Linux/macOS the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used on all platforms.

Data Type

Integer

SSLServerCertEncoded Property (FDMSRcDebit Class)

This is the certificate (PEM/base64 encoded).

Syntax

ANSI (Cross Platform)
int GetSSLServerCertEncoded(char* &lpSSLServerCertEncoded, int &lenSSLServerCertEncoded);

Unicode (Windows)
INT GetSSLServerCertEncoded(LPSTR &lpSSLServerCertEncoded, INT &lenSSLServerCertEncoded);
int dpaymentssdk_fdmsrcdebit_getsslservercertencoded(void* lpObj, char** lpSSLServerCertEncoded, int* lenSSLServerCertEncoded);
QByteArray GetSSLServerCertEncoded();

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The Store and Subject properties also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

This property is read-only and not available at design time.

Data Type

Binary String

STAN Property (FDMSRcDebit Class)

The merchant assigned System Trace Audit Number(STAN).

Syntax

ANSI (Cross Platform)
char* GetSTAN();
int SetSTAN(const char* lpszSTAN); Unicode (Windows) LPWSTR GetSTAN();
INT SetSTAN(LPCWSTR lpszSTAN);
char* dpaymentssdk_fdmsrcdebit_getstan(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setstan(void* lpObj, const char* lpszSTAN);
QString GetSTAN();
int SetSTAN(QString qsSTAN);

Default Value

""

Remarks

This property represents a six digit number assigned by the merchant to uniquely reference the transaction. This number must be unique within a day per Merchant ID and Terminal ID.

Valid values are from 000001 to 999999 inclusive.

Data Type

String

Timeout Property (FDMSRcDebit Class)

A timeout for the class.

Syntax

ANSI (Cross Platform)
int GetTimeout();
int SetTimeout(int iTimeout); Unicode (Windows) INT GetTimeout();
INT SetTimeout(INT iTimeout);
int dpaymentssdk_fdmsrcdebit_gettimeout(void* lpObj);
int dpaymentssdk_fdmsrcdebit_settimeout(void* lpObj, int iTimeout);
int GetTimeout();
int SetTimeout(int iTimeout);

Default Value

30

Remarks

If Timeout is set to a positive value, and an operation cannot be completed immediately, the class will return with an error after Timeout seconds.

The default value for Timeout is 30 (seconds).

Data Type

Integer

TPPID Property (FDMSRcDebit Class)

Third Party Processor Identifier assigned by FDMS.

Syntax

ANSI (Cross Platform)
char* GetTPPID();
int SetTPPID(const char* lpszTPPID); Unicode (Windows) LPWSTR GetTPPID();
INT SetTPPID(LPCWSTR lpszTPPID);
char* dpaymentssdk_fdmsrcdebit_gettppid(void* lpObj);
int dpaymentssdk_fdmsrcdebit_settppid(void* lpObj, const char* lpszTPPID);
QString GetTPPID();
int SetTPPID(QString qsTPPID);

Default Value

""

Remarks

The Third Party Processor Identifier (TPPID. Also sometimes referred to as a "Vendor Id") is assigned by FDMS to each third party who is processing transactions. Each merchant will receive a TPPID from FDMS.

The default value is "" (empty string). This should be set to the FDMS assigned TPPID.

A VisaIdentifier is also required for Visa transactions.

Data Type

String

TransactionAmount Property (FDMSRcDebit Class)

The transaction amount to be authorized.

Syntax

ANSI (Cross Platform)
char* GetTransactionAmount();
int SetTransactionAmount(const char* lpszTransactionAmount); Unicode (Windows) LPWSTR GetTransactionAmount();
INT SetTransactionAmount(LPCWSTR lpszTransactionAmount);
char* dpaymentssdk_fdmsrcdebit_gettransactionamount(void* lpObj);
int dpaymentssdk_fdmsrcdebit_settransactionamount(void* lpObj, const char* lpszTransactionAmount);
QString GetTransactionAmount();
int SetTransactionAmount(QString qsTransactionAmount);

Default Value

""

Remarks

This property contains the transaction amount to be authorized.

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.

The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.

Data Type

String

TransactionNumber Property (FDMSRcDebit Class)

Uniquely identifies the transaction.

Syntax

ANSI (Cross Platform)
char* GetTransactionNumber();
int SetTransactionNumber(const char* lpszTransactionNumber); Unicode (Windows) LPWSTR GetTransactionNumber();
INT SetTransactionNumber(LPCWSTR lpszTransactionNumber);
char* dpaymentssdk_fdmsrcdebit_gettransactionnumber(void* lpObj);
int dpaymentssdk_fdmsrcdebit_settransactionnumber(void* lpObj, const char* lpszTransactionNumber);
QString GetTransactionNumber();
int SetTransactionNumber(QString qsTransactionNumber);

Default Value

""

Remarks

The TransactionNumber (otherwise known as the Client Reference Number, or ClientRef) uniquely identifies the packet sent by the application to the Datawire system. This parameter stores some unique token of information, and is used to match the response to the initial request sent. For example, the client application could use a static counter that is increased with the each executed request.

For all classs except FDMSGiftCard the maximum length of this property is 14 alphanumeric characters.

The FDMS recommended format is "tttttttVnnnnrrr" where ttttttt is a 7 digit transaction id, V is a constant, and nnn is a 3 digit version number and rrr is a 3 digit revision number. The 6 digit version number is typically static but unique for an application (Example: Version 2.5 = tttttttV002500).

For the Rapid Connect platform, the 6 character version number should be your Project/TPPID value. The entire TransactionNumber must be unique within a 24 hour time period.

The FDMSGiftCard also passes this value to the FDMS Closed Loop Gift Card system as a transaction id, and therefore the following restrictions are enforced: The maximum length is 7 characters. If the first character is an 'X', the remaining characters must be in the range '0' through 'F', indicating a hexadecimal number. Otherwise the FDMS Closed Loop Gift Card system only allows digits in this property.

Data Type

String

URL Property (FDMSRcDebit Class)

Location of the Datawire server to which transactions are sent.

Syntax

ANSI (Cross Platform)
char* GetURL();
int SetURL(const char* lpszURL); Unicode (Windows) LPWSTR GetURL();
INT SetURL(LPCWSTR lpszURL);
char* dpaymentssdk_fdmsrcdebit_geturl(void* lpObj);
int dpaymentssdk_fdmsrcdebit_seturl(void* lpObj, const char* lpszURL);
QString GetURL();
int SetURL(QString qsURL);

Default Value

"https://staging1.datawire.net/sd/"

Remarks

This is the URL to which all authorization and settlement transactions are sent. This URL is acquired by using the FDMSRegister class. Once you Register and Activate the merchant using the FDMSRegister class, you may then do a Service Discovery. After sending a Service Discovery transaction, the Datawire system will return a list of transaction URLs. The URL from this list with the shortest round-trip transit time from a ping is the URL you should use here.

Note: By default, this property is populated with the Datawire Staging (test) server, and is not the correct URL to use in a production environment. In a production environment, this URL is supplied by the FDMSRegister class.

Data Type

String

VisaIdentifier Property (FDMSRcDebit Class)

Additional merchant identification field used when authorizing Visa transactions.

Syntax

ANSI (Cross Platform)
char* GetVisaIdentifier();
int SetVisaIdentifier(const char* lpszVisaIdentifier); Unicode (Windows) LPWSTR GetVisaIdentifier();
INT SetVisaIdentifier(LPCWSTR lpszVisaIdentifier);
char* dpaymentssdk_fdmsrcdebit_getvisaidentifier(void* lpObj);
int dpaymentssdk_fdmsrcdebit_setvisaidentifier(void* lpObj, const char* lpszVisaIdentifier);
QString GetVisaIdentifier();
int SetVisaIdentifier(QString qsVisaIdentifier);

Default Value

""

Remarks

First Data will require the Agent Identification Service from all Third Party Servicers (TPS) or Merchant Servicers (MS). Each Visa Agent Identifier in the chain is composed of the following pieces:

First (up to) 10 bytes: The Business Identifier (BID) provided by Visa to Third Party Servicers (TPS). This value may be less than 10 bytes.
Final 12 bytes: Text representation of the hexadecimal Visa secret Agent Unique Account Result (AUAR). {0x01, 0x02, 0x03, 0x04, 0x05, 0xFF} will be represented as "0102030405FF".
If there are multiple visa identifiers they may be added by setting VisaIdentifier with a comma-delimited list. There can be a maximum of three entries in this list.

A VisaIdentifier (Agent Identification Service - AUAR) is required for Visa transactions. A VisaIdentifier value is assigned by Visa as part of their Trusted Agent Program (TAP). Therefore it is suggested that you contact your FDMS certification analyst as they should be able to provide you with further information and put you in contact with the required party at Visa. Unfortunately more specific information on this matter cannot be provided as we do not handle live customer data and thus are not required to register in this particular program. However below is some additional information in regards to the requirements of a Visa Identifier.

Any merchant that transmits, processes, or stores cardholder data on server(s) that you own, manage, or operate on behalf of your clients (who are other merchant account holders) must meet the PCI Data Security Standard and follow additional steps to register as a service provider. Applicable services commonly include webhosting, software as a service, or collecting payment on behalf of a client. Any company providing these services must register with Visa's Third Party Agent (TAP) program.

You can register for the Visa Third Party Agent Program at http://usa.visa.com/merchants/risk_management/third-party-registration.html

If you find that you are not required to register with this program you can send all spaces for the BID and all zeros for the AUAR for instance: " 000000000000"

Data Type

String

BalanceInquiry Method (FDMSRcDebit Class)

Performs a Balance Inquiry Request using the specified Card data.

Syntax

ANSI (Cross Platform)
int BalanceInquiry();

Unicode (Windows)
INT BalanceInquiry();
int dpaymentssdk_fdmsrcdebit_balanceinquiry(void* lpObj);
int BalanceInquiry();

Remarks

This methods allows you to perform a Balance Inquiry Request using the specified Card data. The balance amount will be returned via ResponseBalance. Note that Balance Inquiries do not place a hold on a cardholder's funds and are not captured.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Config Method (FDMSRcDebit Class)

Sets or retrieves a configuration setting.

Syntax

ANSI (Cross Platform)
char* Config(const char* lpszConfigurationString);

Unicode (Windows)
LPWSTR Config(LPCWSTR lpszConfigurationString);
char* dpaymentssdk_fdmsrcdebit_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

Credit Method (FDMSRcDebit Class)

Submits a credit transaction.

Syntax

ANSI (Cross Platform)
int Credit();

Unicode (Windows)
INT Credit();
int dpaymentssdk_fdmsrcdebit_credit(void* lpObj);
int Credit();

Remarks

This method credits funds to the card. This is not based on a previous transaction. This may be used to return funds to a card if a previous transaction has already been settled. To void or cancel a transaction before it has been settled call Reverse instead.

After this method returns check the value of ResponseCode to determine if the transaction was successful.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).

Debit Credit Example debit.TPPID = "AAA000"; debit.MerchantTerminalNumber = "00000001"; debit.MerchantId = "1234"; debit.GroupId = "20001"; debit.DatawireId = "00011122233344455566"; debit.ApplicationId = "RAPIDCONNECTVXN"; debit.URL = "https://stg.dw.us.fdcnet.biz/rc"; debit.STAN = "112"; debit.TransactionNumber = "1234"; debit.ReferenceNumber = "1212"; debit.OrderNumber = "123"; debit.Card.MagneticStripe = "4003010001234572=17041011234567440"; debit.EncryptedPIN = "7BD8948B328B21E5"; debit.KSN = "876543210F008400029"; debit.TransactionAmount = "1200"; debit.Credit();

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

GetDetailAggregate Method (FDMSRcDebit Class)

Returns a detail aggregate containing details of this transaction, which is used for Capture or Reverse transactions or settlement when using Terminal Capture mode.

Syntax

ANSI (Cross Platform)
char* GetDetailAggregate();

Unicode (Windows)
LPWSTR GetDetailAggregate();
char* dpaymentssdk_fdmsrcdebit_getdetailaggregate(void* lpObj);
QString GetDetailAggregate();

Remarks

This method will return a detail aggregate representing the transaction. After calling AuthOnly or Sale call this method to obtain a detail aggregate. The aggregate will be required when calling Capture or Reverse.

When using Terminal Capture Settlement Mode this aggregate must be passed to the FDMSRcSettle class's DetailAggregate array property in order to settle the transaction. If you wish to view or change any part of the aggregate (such as adding a gratuity or additional info for an Installment payment), you may use the FDMSRcDetailrecord class to do so.

Note: This method may only be called after a successful authorization. If the authorization was not successful the method fails with an error.

To set the aggregate before calling Capture Reverse or SendSettlement call SetDetailAggregate. Save this aggregate in a secure location.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

HostTotals Method (FDMSRcDebit Class)

Performs a Host Totals request.

Syntax

ANSI (Cross Platform)
int HostTotals();

Unicode (Windows)
INT HostTotals();
int dpaymentssdk_fdmsrcdebit_hosttotals(void* lpObj);
int HostTotals();

Remarks

This method performs a Host Totals transaction submitted to request a Host Totals Report for a particular day.

You need to set the required merchant password and report type fields using the HostTotalsPassword and HostTotalsType configuration settings, respectively.

Debit HostTotals Example debit.TPPID = "AAA000"; debit.MerchantTerminalNumber = "00000001"; debit.MerchantId = "1234"; debit.GroupId = "20001"; debit.DatawireId = "00011122233344455566"; debit.ApplicationId = "RAPIDCONNECTVXN"; debit.URL = "https://stg.dw.us.fdcnet.biz/rc"; debit.STAN = "112"; debit.TransactionNumber = "1234"; debit.Config("CurrencyCode=840"); debit.Config("HostTotalsType=0"); debit.Config("HostTotalsPassword=111111"); debit.HostTotals();

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Interrupt Method (FDMSRcDebit Class)

Interrupts the current action.

Syntax

ANSI (Cross Platform)
int Interrupt();

Unicode (Windows)
INT Interrupt();
int dpaymentssdk_fdmsrcdebit_interrupt(void* lpObj);
int Interrupt();

Remarks

This method interrupts any processing that the class is currently executing.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Reset Method (FDMSRcDebit Class)

Clears all properties to their default values.

Syntax

ANSI (Cross Platform)
int Reset();

Unicode (Windows)
INT Reset();
int dpaymentssdk_fdmsrcdebit_reset(void* lpObj);
int Reset();

Remarks

This method clears all properties to their default values.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Reverse Method (FDMSRcDebit Class)

Reverses a transaction.

Syntax

ANSI (Cross Platform)
int Reverse();

Unicode (Windows)
INT Reverse();
int dpaymentssdk_fdmsrcdebit_reverse(void* lpObj);
int Reverse();

Remarks

This method reverses a transaction that has not been settled.

To void/reverse a Sale or AuthOnly transaction first set ReversalTransactionType to specify the type of original transaction that is being reversed. Next set ReversalType to frtFullReversal and call this method.

If the previous transaction did not receive a response and the state of the transaction is uncertain you may perform a Timeout Reversal. To perform a timeout reversal set ReversalTransactionType to specify the type of original transaction that is being reversed. Next set ReversalType to frtTimeoutReversal and call this method.

Timeout Reversals are applicable to the following transaction types:

Full Reversals are applicable to the following transaction types:

After this method returns check the value of ResponseCode to determine if the transaction was successful.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).

Debit Sale and Reverse Example debit.TPPID = "AAA000"; debit.MerchantTerminalNumber = "00000001"; debit.MerchantId = "1234"; debit.GroupId = "20001"; debit.DatawireId = "00011122233344455566"; debit.ApplicationId = "RAPIDCONNECTVXN"; debit.URL = "https://stg.dw.us.fdcnet.biz/rc"; debit.STAN = "112"; debit.TransactionNumber = "1234"; debit.ReferenceNumber = "1212"; debit.OrderNumber = "123"; debit.Card.MagneticStripe = "4003010001234572=17041011234567440"; debit.EncryptedPIN = "7BD8948B328B21E5"; debit.KSN = "876543210F008400029"; debit.TransactionAmount = "1200"; debit.Sale(); //Store the aggregate for use later string aggregate = debit.GetDetailAggregate(); //Later, reverse the transaction debit.TPPID = "AAA000"; debit.MerchantTerminalNumber = "00000001"; debit.MerchantId = "1234"; debit.GroupId = "20001"; debit.DatawireId = "00011122233344455566"; debit.ApplicationId = "RAPIDCONNECTVXN"; debit.URL = "https://stg.dw.us.fdcnet.biz/rc"; debit.STAN = "113"; debit.TransactionNumber = "120014"; debit.ReferenceNumber = "123457"; debit.SetDetailAggregate(aggregate); debit.ReversalTransactionType = FdmsrcdebitReversalTransactionTypes.frttSale; debit.ReversalType = FdmsrcdebitReversalTypes.fdrtFullReversal; debit.Reverse();

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Sale Method (FDMSRcDebit Class)

Performs a sale transaction.

Syntax

ANSI (Cross Platform)
int Sale();

Unicode (Windows)
INT Sale();
int dpaymentssdk_fdmsrcdebit_sale(void* lpObj);
int Sale();

Remarks

This method performs a sale transaction. Once a sale is performed no further action is needed, the funds will automatically be captured by FDMS.

After this method returns check the value of ResponseCode to determine if the transaction was successful.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).

Debit Sale Example debit.TPPID = "AAA000"; debit.MerchantTerminalNumber = "00000001"; debit.MerchantId = "1234"; debit.GroupId = "20001"; debit.DatawireId = "00011122233344455566"; debit.ApplicationId = "RAPIDCONNECTVXN"; debit.URL = "https://stg.dw.us.fdcnet.biz/rc"; debit.STAN = "112"; debit.TransactionNumber = "1234"; debit.ReferenceNumber = "1212"; debit.OrderNumber = "123"; debit.Card.MagneticStripe = "4003010001234572=17041011234567440"; debit.EncryptedPIN = "7BD8948B328B21E5"; debit.KSN = "876543210F008400029"; debit.TransactionAmount = "1200"; debit.Sale();

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SetDetailAggregate Method (FDMSRcDebit Class)

Specifies the detail aggregate before calling Capture or Reverse.

Syntax

ANSI (Cross Platform)
int SetDetailAggregate(const char* lpszaggregate);

Unicode (Windows)
INT SetDetailAggregate(LPCWSTR lpszaggregate);
int dpaymentssdk_fdmsrcdebit_setdetailaggregate(void* lpObj, const char* lpszaggregate);
int SetDetailAggregate(const QString& qsaggregate);

Remarks

This method specifies the detail aggregate from the original AuthOnly or Sale transaction. This must be set before calling Capture or Reverse.

The aggregate specified here should have been obtained from the GetDetailAggregate method after the original AuthOnly or Sale transaction.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Connected Event (FDMSRcDebit Class)

This event is fired immediately after a connection completes (or fails).

Syntax

ANSI (Cross Platform)
virtual int FireConnected(FDMSRcDebitConnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } FDMSRcDebitConnectedEventParams;
Unicode (Windows) virtual INT FireConnected(FDMSRcDebitConnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } FDMSRcDebitConnectedEventParams;
#define EID_FDMSRCDEBIT_CONNECTED 1

virtual INT DPAYMENTSSDK_CALL FireConnected(INT &iStatusCode, LPSTR &lpszDescription);
class FDMSRcDebitConnectedEventParams {
public:
  int StatusCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Connected(FDMSRcDebitConnectedEventParams *e);
// Or, subclass FDMSRcDebit and override this emitter function. virtual int FireConnected(FDMSRcDebitConnectedEventParams *e) {...}

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

DataPacketIn Event (FDMSRcDebit Class)

Fired when receiving a data packet from the transaction server.

Syntax

ANSI (Cross Platform)
virtual int FireDataPacketIn(FDMSRcDebitDataPacketInEventParams *e);
typedef struct {
const char *DataPacket; int lenDataPacket; int reserved; } FDMSRcDebitDataPacketInEventParams;
Unicode (Windows) virtual INT FireDataPacketIn(FDMSRcDebitDataPacketInEventParams *e);
typedef struct {
LPCSTR DataPacket; INT lenDataPacket; INT reserved; } FDMSRcDebitDataPacketInEventParams;
#define EID_FDMSRCDEBIT_DATAPACKETIN 2

virtual INT DPAYMENTSSDK_CALL FireDataPacketIn(LPSTR &lpDataPacket, INT &lenDataPacket);
class FDMSRcDebitDataPacketInEventParams {
public:
  const QByteArray &DataPacket();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void DataPacketIn(FDMSRcDebitDataPacketInEventParams *e);
// Or, subclass FDMSRcDebit and override this emitter function. virtual int FireDataPacketIn(FDMSRcDebitDataPacketInEventParams *e) {...}

Remarks

This event fires when a packet is received. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or to extract additional response properties beyond the scope of this class.

DataPacketOut Event (FDMSRcDebit Class)

Fired when sending a data packet to the transaction server.

Syntax

ANSI (Cross Platform)
virtual int FireDataPacketOut(FDMSRcDebitDataPacketOutEventParams *e);
typedef struct {
const char *DataPacket; int lenDataPacket; int reserved; } FDMSRcDebitDataPacketOutEventParams;
Unicode (Windows) virtual INT FireDataPacketOut(FDMSRcDebitDataPacketOutEventParams *e);
typedef struct {
LPCSTR DataPacket; INT lenDataPacket; INT reserved; } FDMSRcDebitDataPacketOutEventParams;
#define EID_FDMSRCDEBIT_DATAPACKETOUT 3

virtual INT DPAYMENTSSDK_CALL FireDataPacketOut(LPSTR &lpDataPacket, INT &lenDataPacket);
class FDMSRcDebitDataPacketOutEventParams {
public:
  const QByteArray &DataPacket();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void DataPacketOut(FDMSRcDebitDataPacketOutEventParams *e);
// Or, subclass FDMSRcDebit and override this emitter function. virtual int FireDataPacketOut(FDMSRcDebitDataPacketOutEventParams *e) {...}

Remarks

This event fires right before each data packet is sent. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or may be modified to support additional features beyond the scope of this class.

Disconnected Event (FDMSRcDebit Class)

This event is fired when a connection is closed.

Syntax

ANSI (Cross Platform)
virtual int FireDisconnected(FDMSRcDebitDisconnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } FDMSRcDebitDisconnectedEventParams;
Unicode (Windows) virtual INT FireDisconnected(FDMSRcDebitDisconnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } FDMSRcDebitDisconnectedEventParams;
#define EID_FDMSRCDEBIT_DISCONNECTED 4

virtual INT DPAYMENTSSDK_CALL FireDisconnected(INT &iStatusCode, LPSTR &lpszDescription);
class FDMSRcDebitDisconnectedEventParams {
public:
  int StatusCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Disconnected(FDMSRcDebitDisconnectedEventParams *e);
// Or, subclass FDMSRcDebit and override this emitter function. virtual int FireDisconnected(FDMSRcDebitDisconnectedEventParams *e) {...}

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

Error Event (FDMSRcDebit Class)

Information about errors during data delivery.

Syntax

ANSI (Cross Platform)
virtual int FireError(FDMSRcDebitErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } FDMSRcDebitErrorEventParams;
Unicode (Windows) virtual INT FireError(FDMSRcDebitErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } FDMSRcDebitErrorEventParams;
#define EID_FDMSRCDEBIT_ERROR 5

virtual INT DPAYMENTSSDK_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class FDMSRcDebitErrorEventParams {
public:
  int ErrorCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Error(FDMSRcDebitErrorEventParams *e);
// Or, subclass FDMSRcDebit and override this emitter function. virtual int FireError(FDMSRcDebitErrorEventParams *e) {...}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

SSLServerAuthentication Event (FDMSRcDebit Class)

Fired after the server presents its certificate to the client.

Syntax

ANSI (Cross Platform)
virtual int FireSSLServerAuthentication(FDMSRcDebitSSLServerAuthenticationEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } FDMSRcDebitSSLServerAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSLServerAuthentication(FDMSRcDebitSSLServerAuthenticationEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } FDMSRcDebitSSLServerAuthenticationEventParams;
#define EID_FDMSRCDEBIT_SSLSERVERAUTHENTICATION 6

virtual INT DPAYMENTSSDK_CALL FireSSLServerAuthentication(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class FDMSRcDebitSSLServerAuthenticationEventParams {
public:
  const QByteArray &CertEncoded();

  const QString &CertSubject();

  const QString &CertIssuer();

  const QString &Status();

  bool Accept();
  void SetAccept(bool bAccept);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SSLServerAuthentication(FDMSRcDebitSSLServerAuthenticationEventParams *e);
// Or, subclass FDMSRcDebit and override this emitter function. virtual int FireSSLServerAuthentication(FDMSRcDebitSSLServerAuthenticationEventParams *e) {...}

Remarks

This event is where the client can decide whether to continue with the connection process or not. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK"). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (FDMSRcDebit Class)

Shows the progress of the secure connection.

Syntax

ANSI (Cross Platform)
virtual int FireSSLStatus(FDMSRcDebitSSLStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } FDMSRcDebitSSLStatusEventParams;
Unicode (Windows) virtual INT FireSSLStatus(FDMSRcDebitSSLStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } FDMSRcDebitSSLStatusEventParams;
#define EID_FDMSRCDEBIT_SSLSTATUS 7

virtual INT DPAYMENTSSDK_CALL FireSSLStatus(LPSTR &lpszMessage);
class FDMSRcDebitSSLStatusEventParams {
public:
  const QString &Message();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SSLStatus(FDMSRcDebitSSLStatusEventParams *e);
// Or, subclass FDMSRcDebit and override this emitter function. virtual int FireSSLStatus(FDMSRcDebitSSLStatusEventParams *e) {...}

Remarks

The event is fired for informational and logging purposes only. Used to track the progress of the connection.

Status Event (FDMSRcDebit Class)

Shows the progress of the FDMS/Datawire connection.

Syntax

ANSI (Cross Platform)
virtual int FireStatus(FDMSRcDebitStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } FDMSRcDebitStatusEventParams;
Unicode (Windows) virtual INT FireStatus(FDMSRcDebitStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } FDMSRcDebitStatusEventParams;
#define EID_FDMSRCDEBIT_STATUS 8

virtual INT DPAYMENTSSDK_CALL FireStatus(LPSTR &lpszMessage);
class FDMSRcDebitStatusEventParams {
public:
  const QString &Message();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Status(FDMSRcDebitStatusEventParams *e);
// Or, subclass FDMSRcDebit and override this emitter function. virtual int FireStatus(FDMSRcDebitStatusEventParams *e) {...}

Remarks

The event is fired for informational and logging purposes only. Used to track the progress of the connection.

Config Settings (FDMSRcDebit Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

FDMSRcDebit Config Settings

AllowPartialAuths:   Indicates whether partial authorizations are supported.

This setting specifies whether partial authorizations are supported. Partial authorization support is generally required for all merchants in card-present environments. The merchant may be subject to fees, interchange downgrades, or both if this is not supported in a retail environment. Support for partial authorizations is optional in ECommerce transactions but is highly recommended. The default value is True.

AltMerchantAddress:   The alternative merchant address.

This setting may be set to specify an alternative merchant address to be used in lieu of the one on file with FDMS. This value may be up to 25 characters in length.

AltMerchantCity:   The alternative merchant city.

This setting may be set to specify an alternative merchant city to be used in lieu of the one on file with FDMS. This value may be up to 20 characters in length.

AltMerchantCountryCode:   The alternative merchant country code.

This setting may be set to specify an alternative merchant country code to be used in lieu of the one on file with FDMS. This value is the ISO 3166 three digit numeric identifier.

AltMerchantEmail:   The alternative merchant email.

This setting may be set to specify an alternative merchant email address be used in lieu of the one on file with FDMS. This value may be up to 40 characters in length.

AltMerchantName:   The alternative merchant name.

This setting may be set to specify an alternative merchant name to be used in lieu of the one on file with FDMS. This value may be up to 30 characters in length.

AltMerchantState:   The alternative merchant state.

This setting may be set to specify an alternative merchant state to be used in lieu of the one on file with FDMS. This value is the two characters state abbreviation.

AltMerchantZip:   The alternative merchant zip code.

This setting may be set to specify an alternative merchant zip code to be used in lieu of the one on file with FDMS. This value may be up to 9 characters in length.

AuthIndicator:   Indicate the type of authorization requested.

Possible values are:

1 Re-authorization (Visa and Discover only)
2 Resubmission (Visa and Discover only)
3 Estimated Authorization (Visa only)
4 Credential on File (Visa, Discover, Amex, and Mastercard only)
AuthorizationIndicator:   Indicates whether the authorization is a final authorization.

This setting indicates whether the authorized amount is equal to the final captured amount. This is a mandatory MasterCard only field. The list of valid values is:

0 Preauthorization - The Settlement amount may be different than the amount authorized.
1 Final Authorization -The settlement amount must equal the approved authorized amount.

Note: When this field is set to '1' in the original transaction, you cannot send a Partial Reversal subsequent transaction. Set the AuthorizationIndicator to '0' when the settlement amount may be different than the approved amount authorized.

AuthSource:   Indicates the source of the decision for the Visa transaction.

This setting may be queried after a transaction to determine the source of the decision. This is only applicable to Visa transactions. Possible values are:

0 Timeout - Response Provided by STIP, Timed Out by Switch
1 Visa Stand-In Processing - Response Provided by STIP, Transaction Amount was Below Issuer Limit or Below Sliding Dollar Amount
2 Suppress Inquiry Mode - Response Provided by STIP, Issuer is in Suppress Inquiry (SI) Mode
3 Issuer Unavailable - Response Provided by STIP for One of the Following Reasons: Issuer was Not Available for Processing (for reasons other than being in SI Mode) or CCV or iCCV was Invalid and Visa has Acted on the Negative Results
4 Issuer - Response Provided by Issuer
CardInputMode:   The method used to input the card details.

This setting optionally specifies the method used to input the card number or track data. If not specified (default) the class will automatically determine the correct value based on CardEntryDataSource. This should only be set if there is a need to override the automatically determined value. Possible values are:

00 Unspecified
01 Manual (Key entered)
03 Barcode
04 OCR (Optical Character Reader)
05 Integrated Circuit Read (CVV data Reliable)
07 Contactless Integrated Circuit Read (Reliable)
08 AMEX Digital Wallet
09 MasterCard remote chip entry
10 Credential on File
79 EMV fallback to manual entry
80 EMV fallback to Magnetic Stripe entry
82 Contactless Mobile Commerce
86 EMV Transaction switched from Contactless to Contact entry
90 Magnetic Stripe - Track Read
91 Contactless Magnetic Stripe Read
95 Integrated Circuit Read (CVV data unreliable)
CardType:   Specifies the type of card.

By default the class will automatically determine the card type and submit the card type information in the transaction request. This setting may be set to override the automatically determined value and manually specify the type of card.

This should not be set unless there is a specific reason to do so.

Possible values are:

0 Invalid or unknown prefix, card type not known
1 Visa
2 MasterCard
3 American Express
4 Discover
5 Diners
6 JCB
7 Visa Electron
8 Maestro
9 China Union Pay

ClientTimeout:   Indicates timeout client application will wait for response.

This setting indicates the interval of time, in seconds, a client will wait for the response for any given request. Normally this value is set to a value 5 seconds less than the Timeout value to allow for a response to be received from Datawire. It may be changed independently by setting this configuration setting AFTER setting the Timeout property. Note that too small a value will cause Datawire to reject a transaction immediately.

CurrencyCode:   Currency Code for this transaction.

This field contains a three digit number assigned by the signing member or processor to identify the merchant's authorization currency. For US Dollars, use "840".

DebugTrace:   Whether to enable debug logging.

If set to True the Status event will fire with the raw request and response information. This is helpful for debugging.

DeviceTypeIndicator:   Defines the form factor used at the POS for MasterCard PayPass transactions.

This setting is required for contactless MasterCard transactions when POSConditionCode is set to 07, 82, or 91. Possible values are:

0 Card
1 Mobile Network Operator (MNO) controlled removable secure element (SIM or UICC) personalized for use with a Mobile Phone or Smartphone
2 Key Fob
3 Watch
4 Mobile Tag
5 Wristband
6 Mobile Phone Case or Sleeve
7 Mobile Phone or Smartphone with a fixed (non-removable) secure element controlled by the MNO, for example, code division multiple accesses (CDMA).
8 Removable secure element not controlled by the MNO, for example, memory card personalized for use with a Mobile Phone or Smartphone.
9 Mobile Phone or Smartphone with a fixed (non- removable) secure element not controlled by the MNO.
10 MNO controlled removable secure element (SIM or UICC) personalized for use with a Tablet or E-Book reader.
11 Tablet or E-Book reader with a fixed (non- removable) secure element controlled by the MNO.
12 Removable secure element not controlled by the MNO, for example, (SD Card) personalized for use with a Tablet or E- Book reader.
13 Tablet or E-Book with fixed (non- removable) secure element not controlled by the MNO
GetTransArmorToken:   Allows you to retrieve a TransArmor Token for a specified card.

This setting allows you to retrieve a TransArmorToken for a specified card. Upon a successful call, both TransArmorToken and TransArmorProviderId will be populated with the values assigned to you by FDMS. In particular, this method is used when performing a Credit or Force using a TransArmorMode of '0' (Tokenization Only) or '1' (Encryption and Tokenization). So prior to adding the needed detail record to the FDMSSettle component, you will first retrieve a TransArmorToken by calling GetTransArmorToken for the card that you wish to use. The received TransArmorToken and TransArmorProviderId will then be set within the detail record (instead of the card data) and can be added to the FDMSSettle component.

HostTotalsPassword:   The merchant password required in Host Totals requests.

This setting specifies the merchant password required in Host Totals requests.

HostTotalsType:   Indicates the Host Totals Report type requested.

This setting specifies the type of Host Totals Report requested. Possible values are:

0 (default)Close Batch Report
1 Previous Day Report
IsDeferredAuth:   Indicates whether the transaction is a Deferred Authorization.

This setting indicates an authorization transaction which occurs when a merchant captures transaction information while the connectivity is interrupted or unavailable. This indicator is sent in the authorization transaction once the connection is back online.

Note: This field has limited platform availability. For more information, please contact your Account Representative.

The default value is False

IsOnlineRefund:   Indicates whether a transaction is Online Refund Authorization.

Set this config to True when sending an online purchase return authorization request.

LocalTransactionDate:   The local date of the transaction.

This setting may be set to specify the local datetime of the transaction. By default the class will automatically calculate this value from the local system time. If set, this setting overrides the value calculated by the class. The format is "yyyyMMddHHmmss";

MerchantCategoryCode:   The 4 digit Merchant Category Code (MCC).

This setting optionally specifies the industry standard 4 digit Merchant Category Code (MCC). This classifies the business based on the type of goods or services it provides.

PayeeAcctNum:   The Account Number of the Payee (Biller).

The Account Number of the Payee (Biller). The maximum length of this value is 25 characters.

This setting is only applicable to bill payment transactions.

PayeeId:   The Payee Id.

This settings contains the Payee Id for the data being submitted for processing. On a Sale transaction this setting contains Payee (Biller) information. On a Credit transaction this setting contains the cardholder's name. That maximum length of this value is 40 characters.

This setting is only applicable to bill payment transactions.

PayeePhoneNum:   The Phone Number of the Payee (Biller).

The Phone Number of the Payee (Biller). The value is a 10 digit value.

This setting is only applicable to bill payment transactions.

POSConditionCode:   The POS condition code.

This setting may be set to specify a different POS condition code. The class will automatically set this to an appropriate value, however this may be set to provide a specific value. Possible values are:

00 Cardholder Present, Card Present
01 Cardholder Present, Unspecified
02 Cardholder Present, Unattended Device
03 Cardholder Present, Suspect Fraud
04 Cardholder Not Present - Recurring
05 Cardholder Present, Card Not Present
06 Cardholder Present, Identity Verified
08 Cardholder Not Present, Mail Order/Telephone Order
59 Cardholder Not Present, Ecommerce
71 Cardholder Present, Magnetic Stripe Could Not Be Read
POSId:   Identifies the specific point of sale device.

This may optionally be set to identify the specific point of sale device, for instance a lane number. This may be up to 4 digits in length. This setting is only applicable when IndustryType is set to Retail.

TerminalCardCapability:   The terminal's card capture capability.

This setting specifies the terminal's ability to capture card information. Possible values are:

0 Terminal has no capture capability or no terminal used
1 Terminal has card capture capability
The default value is 1.

Note: If set to 0 track data must not be specified.

TerminalEntryCapability:   The terminal's entry mode capability.

This settings defines what entry modes are supported by the terminal. Possible values are:

00 Unspecified
01 Terminal not used
02 Magnetic stripe only
03 Magnetic stripe and key entry
04 Magnetic stripe, key entry, and chip
05 Bar code
06 Proximity terminal - contactless chip / RFID
07 OCR
08 Chip only
09 Chip and magnetic stripe
10 Manual entry only
11 Proximity terminal - contactless magnetic stripe
12 Hybrid - Magnetic stripe, Integrated Circuit Card Reader, and contactless capabilities
13 Terminal does not read card data
The default value is 00 (unspecified).

Note: A value of 04, 06, 08, 09, or 12 cannot be specified unless the client is certified and the device is enabled for EMV.

TerminalLocationIndicator:   The terminal's location.

This setting specifies the terminal's location. The class will automatically set this to the appropriate value depending on the IndustryType, however this may be set according to your needs to one of the following possible values:

0 On Premises; Used in a Card Present environment
1 Off Premises; Used in a Card not Present environment

Note: For MOTO and eCommerce transactions the value is set to 1 by default.

TerminalPinCapability:   The terminal's PIN capability.

This setting specifies the terminal's ability to accept PIN entry. Possible values are:

0 Unspecified
1 PIN entry capability
2 No PIN entry capability
3 PIN Pad Inoperative
4 PIN verified by terminal device
The default value is 1.
TerminalTaxCapability:   The terminal's ability to prompt for tax.

This setting specifies the terminal's ability to prompt for tax when performing a transaction with Level 2 commercial cards. Possible values are:

0 Terminal is not tax prompt capable
1 Terminal is tax prompt capable
By default this is set to -1 and will not be sent in the request.
TotalAuthorizedAmount:   Total Authorized Amount.

This setting specifies the total transaction amount that was authorized including Incremental Authorizations and Partial Reversals.

TransArmorKey:   Specifies the TransArmor key used to perform the encryption.

This setting allows you to retrieve and specify the key used to perform the encryption of the Card data. When a successful call to UpdateTransArmorKey is made, this setting will be populated with your assigned key. Store this key for future use. This setting is required for any transactions that you perform using TransArmor encryption (TransArmorMode = 1).

TransArmorKeyId:   Specifies the Id of the TransArmor key used to perform the encryption.

This setting allows you to retrieve and specify the Id of the TransArmorKey used to perform the encryption of the Card data. When a successful call to UpdateTransArmorKey is made, this setting will be populated with your assigned key ID. Store this key Id for future use. This setting is required for any transactions that you perform using TransArmor encryption (TransArmorMode = 1).

TransArmorMode:   Specifies the TransArmor Security Level to use.

This setting allows you to specify the type of TransArmor security to be used when authorizing and settling transactions. The available modes are:

0 (default) TransArmor security is not used.
1 TransArmor Encryption and Tokenization. The Card data will be encrypted using the specified TransArmorKey in the initial authorization. All subsequent requests (including settlement) will use the returned TransArmorToken. The type of encryption used is RSA and is currently the only supported encryption type.
2 TransArmor Tokenization only. The Card data will not be encrypted. A TransArmorToken will be returned for the transaction and will be used in all subsequent requests (including settlement).

Note: Your merchant account must be configured to use TransArmor. The configuration is 'Mode' specific and thus you must inform FDMS which type of TransArmor Security Level you wish to use.

TransArmorProviderId:   The Id of the Provider that issued a TransArmorToken.

This setting allows you to retrieve and specify the Provider Id returned in an authorization response when using TransArmor (TransArmorMode = 1 OR 2). When an authorization is performed using TransArmor, a Provider Id will be returned in the response along with a TransArmorToken. This Provider Id will be used in all subsequent requests (such as reversals and settlement) and must be specified along with TransArmorToken.

TransArmorToken:   A TransArmor Token used in place of a card number or magnetic stripe data.

This setting allows you to retrieve and specify the Token returned in an authorization response when using TransArmor (TransArmorMode = 1 OR 2). When an authorization is performed using TransArmor, a Token will be returned in the response. This Token will be used in all subsequent requests (such as reversals and settlement) in place of the CardNumber or CardMagneticStripe.

TransArmorTokenType:   The FDMS assigned token type.

This setting must be set to 4 digit the FDMS assigned token type. This is required when requesting a token. Specifies the type of TransArmor token that will be used.

This setting allows you to retrieve and specify the type of TransArmor token used.

TransArmorTokenType:   The FDMS assigned token type.

This setting must be set to 4 digit the FDMS assigned token type. This is required when requesting a token. Specifies the type of TransArmor token that will be used.

This setting allows you to retrieve and specify the type of TransArmor token used.

TransArmorUpdateIndicator:   Indicates whether your TransArmorKey needs to be updated.

This setting allows you to identify whether your TransArmorKey needs to be updated. When performing an authorization using TransArmor, it is possible that FDMS will request that you update your TransArmorKey. This setting should be queried after every authorization is performed. If the returned value is "False", no key update is required. If "True" is returned, you should update your key by calling UpdateTransArmorKey after the completion of the function in progress (i.e. authorization). If the key update request was successful, you should update your TransArmorKey and TransArmorKeyId values. If the key update request fails, you can continue using your same TransArmorKey and TransArmorKeyId values until another key update indicator is received.

UpdateTransArmorKey:   Allows you to update your TransArmor Key.

This setting allows you to retrieve a TransArmorKey that will be used to perform TransArmor encryption (TransArmorMode = 1). When this is set to "true" the class will perform the request immediately. Upon a successful call, both TransArmorKey and TransArmorKeyId will be populated with the values assigned to you by FDMS.

UTCTransactionDate:   The UTC date of the transaction.

This setting may be set to specify the UTC datetime of the transaction. By default the class will automatically calculate this value from the local system time. If set, this setting overrides the value calculated by the class. The format is "yyyyMMddHHmmss";

VoiceApprovalCode:   The voice approval.

This setting specifies the voice approval code obtained when authenticating the transaction over the phone with the issuer. Set this before calling Capture.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the class adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The class only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the class will accept compressed data. It then will uncompress the data it has received. The class will handle data compressed by both gzip and deflate compression algorithms.

When True, the class adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when HTTPVersion is set to "2.0".

If set to True (default), the class will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the class fails with an error if the server does not support HTTP/2.

The default value is True.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to LocalFile. When set to True, downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is applicable only when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the Transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the class.

If set to True, the URL passed to the class will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the class fails with an error.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the class fails with an error instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the class will perform a GET on the new location.

The default value is False. If set to True, the class will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the class.

This property specifies the HTTP version used by the class. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the class will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If true, the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If false, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is false.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the Log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value other than frNever, the class will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When HTTPVersion is set to "2.0" (if the server does not support "2.0"), then the class will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the class beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If ProxyUser and ProxyPassword are specified, this value is calculated using the algorithm specified by ProxyAuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the class.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the class.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the class will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the class will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001. In the C++ Edition for Windows, the *W version of the class must be used. For instance, DNSW or HTTPW.

UsePlatformHTTPClient:   Whether or not to use the platform HTTP client.

When using this configuration setting, if True, the component will use the default HTTP client for the platform (URLConnection in Java, WebRequest in .NET, or CFHTTPMessage in Mac/iOS) instead of the internal HTTP implementation. This is important for environments in which direct access to sockets is limited or not allowed (e.g., in the Google AppEngine).

Note: This setting is applicable only to Mac/iOS editions.

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the class will attempt to use the Proxy auto-config URL when establishing a connection and ProxyAutoDetect is set to True.

When True (default), the class will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data. Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data. Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties. Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties. Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveRetryCount:   The number of keep-alive packets to be sent before the remotehost is considered disconnected.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the number of times that the keep-alive packets will be sent before the remote host is considered disconnected. The system default if this value is not specified here is 9.

Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.

The number of keep-alive packets to be sent before the remotehost is considered disconnected.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the number of times that the keep-alive packets will be sent before the remote host is considered disconnected. The system default if this value is not specified here is 9.

Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.

KeepAliveRetryCount:   The number of keep-alive packets to be sent before the remotehost is considered disconnected.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the number of times that the keep-alive packets will be sent before the remote host is considered disconnected. The system default if this value is not specified here is 9.

Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.

The number of keep-alive packets to be sent before the remotehost is considered disconnected.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the number of times that the keep-alive packets will be sent before the remote host is considered disconnected. The system default if this value is not specified here is 9.

Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout. Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout. Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

The port in the local host where the class binds.

This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

LocalPort:   The port in the local host where the class binds.

This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

The port in the local host where the class binds.

This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit. The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit. The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback
Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback
UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback
Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

Determines if the SSL session is reused.

If set to true, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

Determines if the SSL session is reused.

If set to true, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

The paths to CA certificate files on Unix/Linux.

This setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

The paths to CA certificate files on Unix/Linux.

This setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----