FDMSGiftCard Class
Properties Methods Events Config Settings Errors
The FDMSGiftCard class is used to manipulate funds on Stored Value (Gift) Cards with the FDMS Closed Loop Gift Card System. This class supports both card-present and card-not-present gift card transactions, and allows for simple, direct, secure communication to the Datawire gateway to FDMS through a standard Internet connection. This class can be integrated into web pages or stand- alone Point Of Sale applications. Because all TLS/SSL communications are handled inside the class, any application or web page can be deployed without the need for expensive dedicated TLS/SSL servers.
Syntax
FDMSGiftCard
Remarks
A Stored Value Card (or Gift Card as they are commonly called) is a not actually a type of credit or debit card. Simply put, a Stored Value Card is a card with a magnetic strip on the back that holds information about monies that have been "pre-paid" into an account for the purpose of making financial transactions. Examples include a retailer's gift card, a prepaid telephone card, a college campus meal plan card, a reloadable subway pass, etcetera. Not included are government income-support cards, otherwise known as EBT cards or electronic food stamps.
The FDMSGiftCard class makes gift card transactions very easy by adding an additional layer of abstraction between the programmer and the protocol. There is no need to deal with raw sockets, TLS/SSL handshakes, or data packet formatting. The steps to setting up the class and authorizing a transaction are outlined below:
First, you must register and activate your account with Datawire. Datawire will provide you with a MerchantNumber and MerchantTerminalNumber, but you'll need to use the FDMSRegister class to activate the merchant and receive a DatawireId. Once you acquire the DatawireId and receive your transaction URLs through Service Discovery, you may begin to authorize transactions.
To authorize a credit card, set the MerchantNumber and MerchantTerminalNumber with the values supplied by FDMS and Datawire, and the DatawireId with the value retrieved by the FDMSRegister class after activating your merchant account. Set the URL property with one of the URLs you retrieved during Service Discovery.
FDMSGiftCard.MerchantNumber = "57111111111"; // Supplied by FDMS/Datawire
FDMSGiftCard.MerchantTerminalNumber = "00000000001"; // Supplied by FDMS/Datawire
FDMSGiftCard.DatawireId = "00010388888888888878"; // Retrieved with the FDMSRegister class.
After the merchant information is setup, you may enter transaction data. When the card is Manually Entered, the merchant should fill the CardNumber and CardEntryDataSource properties. Otherwise, you should fill the CardMagneticStripe property with the Track 2 data read from the back of the card.
FDMSGiftCard.Card.MagneticStripe = "6010567008288444=00010004000070771026";
FDMSGiftCard.Card.EntryDataSource = edsTrack2;
Then set additional information about the transaction, including any merchant-designated tracking information, such as the Id of the employee making the transaction, the terminal where the transaction is taking place, any alternate identification for the merchant location, and transaction and reference numbers.
FDMSGiftCard.TransactionNumber = "0000001V000003";
FDMSGiftCard.ClerkId = "123";
FDMSGiftCard.ReferenceNumber = "555523";
FDMSGiftCard.AlternateMerchantId = "132123";
FDMSGiftCard.TerminalId = "1234";
Now you must choose what transaction you wish to make. Adding Value to a card, Redeeming a card,
voiding a previous transaction, or retrieving the card's current balance.
To add funds to an existing Gift Card, simply set the TransactionAmount with the amount to add to the card, and then call LoadCard. Activating a new gift card is handled similarly, by calling ActivateCard instead.
To redeem funds from a Gift Card due to a customer purchase, set TransactionAmount to the total for the purchase and call RedeemCard. If the Gift Card account contains enough funds, ResponseCode will indicate the card was approved. If there are not enough funds available on the card to cover the TransactionAmount, normally the transaction will be declined. However, the merchant may set RedemptionType to rtPartialRedemption. This allows the customer to split the cost of the purchase between the Gift Card and another form of payment. Instead of declining the Gift Card, ResponsePreviousBalance and ResponseNewBalance can be used to deduce the amount removed from the Gift Card. The merchant may subtract that from the requested TransactionAmount to determine the difference to charge the customer.
You may also inquire as to the total funds contained on the card by calling BalanceInquiry. This will not effect the amount of funds contained on the card in any way.
You also have the ability to lock funds on a card with the LockCard method, so that they may not be used for any other purchase until first unlocked. Previous transactions may be voided with VoidTransaction, and any transactions for which you did not receive a response (due to network issues), should be immediately reversed using the ReverseLastTransaction method.
The status of any of the above transactions will be stored in the ResponseCode property, with human-readable text appearing in ResponseText. Like the FDMSRetail class, there are several other Response fields which will contain data that should be logged.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
AlternateMerchantId | Merchant-designated store or location number. |
ApplicationId | Identifies the merchant application to the Datawire System. |
CardType | Type of credit card being used in this transaction. |
CardCVVData | Three digit security code on back of card (optional). |
CardCVVPresence | Indicates the presence of the card verification value. |
CardEntryDataSource | This property contains a 1-character code identifying the source of the customer data. |
CardExpMonth | Expiration month of the credit card specified in Number . |
CardExpYear | Expiration year of the credit card specified in Number . |
CardIsEncrypted | Determines whether data set to the Number or MagneticStripe properties is validated. |
CardMagneticStripe | Track data read off of the card's magnetic stripe. |
CardNumber | Customer's credit card number for the transaction. |
ClerkId | Identifies the clerk executing this transaction. |
DatawireId | Identifies the merchant to the Datawire System. |
LockType | Indicates the type of lock requested by the LockCard method. |
MerchantNumber | A unique number used to identify the merchant within the FDMS and Datawire systems. |
MerchantTerminalNumber | Used to identify a unique terminal within a merchant location. |
ProxyAuthScheme | This property is used to tell the class which type of authorization to perform when connecting to the proxy. |
ProxyAutoDetect | This property tells the class whether or not to automatically detect and use proxy system settings, if available. |
ProxyPassword | This property contains a password if authentication is to be used for the proxy. |
ProxyPort | This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). |
ProxyServer | If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified. |
ProxySSL | This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. |
ProxyUser | This property contains a username if authentication is to be used for the proxy. |
RedemptionType | Identifies the type of redemption to execute. |
ReferenceNumber | Reference number used to identify the transaction. |
ResponseApprovalCode | Contains an authorization code if the transaction has been approved. |
ResponseCardClass | Identifies the class of the gift card used in the transaction. |
ResponseCardExpDate | Contains the expiration date of the gift card. |
ResponseCashBack | Indicates the amount of cash to return to the customer. |
ResponseCode | Indicates the status of the authorization request. |
ResponseDatawireReturnCode | Contains an error code providing more details about the DatawireStatus received. |
ResponseDatawireStatus | Status of the communication with Datawire. |
ResponseLockAmount | Contains the amount that is locked and cannot be used. |
ResponseNewBalance | Contains the balance on the card reflected immediately after this transaction. |
ResponsePreviousBalance | Contains the balance that was on the gift card before this transaction was completed. |
ResponseReferenceNumber | Contains the reference or customer number that was submitted in the request. |
ResponseSystemTrace | Contains a number used to trace the transaction. |
ResponseText | Contains a human-readable description of the response Code . |
SSLAcceptServerCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSLCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSLCertStore | This is the name of the certificate store for the client certificate. |
SSLCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSLCertStoreType | This is the type of certificate store for this certificate. |
SSLCertSubject | This is the subject of the certificate used for client authentication. |
SSLProvider | This specifies the SSL/TLS implementation to use. |
SSLServerCertEncoded | This is the certificate (PEM/Base64 encoded). |
TerminalId | Merchant-generated 4-digit terminal Id. |
Timeout | A timeout for the class. |
TransactionAmount | Purchase amount to be authorized. |
TransactionNumber | Uniquely identifies the transaction. |
URL | Location of the Datawire server to which transactions are sent. |
VoidType | Identifies the type of void to execute. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
ActivateCard | Activates a Gift Card. |
BalanceInquiry | Retrieves the balance remaining on a gift card. |
Config | Sets or retrieves a configuration setting. |
Interrupt | Interrupts the current action. |
LoadCard | Adds funds to a gift card. |
LockCard | Locks funds on a gift card. |
RedeemCard | Removes funds from the gift card for a purchase. |
Reset | Clears all properties to their default values. |
ReverseLastTransaction | Reverses the last attempted transaction. |
VoidTransaction | Voids a previous transaction. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Connected | This event is fired immediately after a connection completes (or fails). |
DataPacketIn | Fired when receiving a data packet from the transaction server. |
DataPacketOut | Fired when sending a data packet to the transaction server. |
Disconnected | This event is fired when a connection is closed. |
Error | Fired when information is available about errors during data delivery. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
Status | Shows the progress of the FDMS/Datawire connection. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
AssignMerchantWorkingKey | Assigns a merchant working key to be used by all Internet transactions with EANs. |
CardAvailableDate | Date in the future when the gift card's activation will complete. |
CardExpirationDate | Date you wish the gift card to expire. |
ClientTimeout | Indicates timeout client application will wait for response. |
CurrencyCode | Currency Code for this transaction. |
DebugTrace | Whether to enable debug logging. |
DecryptedWorkingKey | The decrypted Merchant Working Key. |
EAN | Extended Account Number. |
EchoBack | Generic field used at the merchant's discretion. |
EncryptedWorkingKey | The encrypted Merchant Working Key. |
FDMSPublicKey | The FDMS Public Key. |
GenerateMerchantKeyPair | Generates a private and public key pair. |
GenerateWorkingKey | Generates a Merchant Working Key. |
IsOnlineRefund | Indicates whether a transaction is Online Refund Authorization. |
IsRetailTransaction | Determines whether the transaction was performed in an retail or internet environment. |
MerchantKeyID | The Merchant Key ID associated with the Merchant ID. |
MerchantPrivateKey | The Merchant's Private Key. |
MerchantPublicKey | The Merchant's Public Key. |
Refund | Adds value back onto a card. |
SCV | Security Card Value. |
SourceCode | Used to identify the source of the transaction. |
User1 | Generic field used at the merchant's discretion. |
User2 | Generic field used at the merchant's discretion. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveRetryCount | The number of keep-alive packets to be sent before the remotehost is considered disconnected. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
AlternateMerchantId Property (FDMSGiftCard Class)
Merchant-designated store or location number.
Syntax
ANSI (Cross Platform) char* GetAlternateMerchantId();
int SetAlternateMerchantId(const char* lpszAlternateMerchantId); Unicode (Windows) LPWSTR GetAlternateMerchantId();
INT SetAlternateMerchantId(LPCWSTR lpszAlternateMerchantId);
char* dpaymentssdk_fdmsgiftcard_getalternatemerchantid(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setalternatemerchantid(void* lpObj, const char* lpszAlternateMerchantId);
QString GetAlternateMerchantId();
int SetAlternateMerchantId(QString qsAlternateMerchantId);
Default Value
""
Remarks
Unlike the MerchantNumber property, the AlternateMerchantId is not used by FDMS or Datawire as connection credentials. This number is for the merchant's internal use. The maximum length of this property is 11 digits, and it may only contain numeric data.
Data Type
String
ApplicationId Property (FDMSGiftCard Class)
Identifies the merchant application to the Datawire System.
Syntax
ANSI (Cross Platform) char* GetApplicationId();
int SetApplicationId(const char* lpszApplicationId); Unicode (Windows) LPWSTR GetApplicationId();
INT SetApplicationId(LPCWSTR lpszApplicationId);
char* dpaymentssdk_fdmsgiftcard_getapplicationid(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setapplicationid(void* lpObj, const char* lpszApplicationId);
QString GetApplicationId();
int SetApplicationId(QString qsApplicationId);
Default Value
"NSFTDIRCTGFTXML"
Remarks
The Application ID includes the Merchant's application name and version number. This property is used to identify the merchant application within the Datawire system, and may be validated along with the MerchantTerminalNumber and DatawireId as connection credentials.
The default value of this property is assigned to the 4D Payments FDMS Integrator, but you may be required to have a new ApplicationId assigned for the software you create with this class.
Data Type
String
CardType Property (FDMSGiftCard Class)
Type of credit card being used in this transaction.
Syntax
ANSI (Cross Platform) int GetCardType();
int SetCardType(int iCardType); Unicode (Windows) INT GetCardType();
INT SetCardType(INT iCardType);
Possible Values
CT_UNKNOWN(0),
CT_VISA(1),
CT_MASTER_CARD(2),
CT_AMEX(3),
CT_DISCOVER(4),
CT_DINERS(5),
CT_JCB(6),
CT_VISA_ELECTRON(7),
CT_MAESTRO(8),
CT_LASER(10)
int dpaymentssdk_fdmsgiftcard_getcardtype(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setcardtype(void* lpObj, int iCardType);
int GetCardType();
int SetCardType(int iCardType);
Default Value
0
Remarks
Type of credit card being used in this transaction. This property contains the customer's credit card type. This is automatically computed after the CardNumber is set, but it can also be changed manually. A list of valid card types is included below.
ctUnknown (0) | Invalid or unknown prefix, card type not known. |
ctVisa (1) | Visa or Delta Card. |
ctMasterCard (2) | MasterCard. |
ctAMEX (3) | American Express Card. |
ctDiscover (4) | Discover Card. |
ctDiners (5) | Diners Club or Carte Blanche Card. |
ctJCB (6) | JCB Card. |
ctVisaElectron (7) | Visa Electron Card (runs as a Visa for most gateways) |
ctMaestro (8) | Maestro Card |
ctLaser (10) | Laser Card (Ireland) |
This property is not available at design time.
Data Type
Integer
CardCVVData Property (FDMSGiftCard Class)
Three digit security code on back of card (optional).
Syntax
ANSI (Cross Platform) char* GetCardCVVData();
int SetCardCVVData(const char* lpszCardCVVData); Unicode (Windows) LPWSTR GetCardCVVData();
INT SetCardCVVData(LPCWSTR lpszCardCVVData);
char* dpaymentssdk_fdmsgiftcard_getcardcvvdata(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setcardcvvdata(void* lpObj, const char* lpszCardCVVData);
QString GetCardCVVData();
int SetCardCVVData(QString qsCardCVVData);
Default Value
""
Remarks
Three digit security code on back of card (optional).
This alphanumeric property contains the three digit Visa "Card Verification Value" (CVV), MasterCard "Card Verification Code" (CVC), or four-digit American Express "Card Identification Number" (CID). This value appears as additional characters embossed on the card signature line following the credit card account number on the back of the credit card. This is an optional property which can be used to determine if the customer is actually in possession of the credit card.
Even if the CardCVVData is incorrect, the transaction may still be authorized. It is up to the merchant to examine the ResponseCVVResult property and decide whether to honor the transaction or not.
Note: When set to a non-empty value, CardCVVPresence will be automatically set to cvpProvided. If set to empty string (""), CardCVVPresence will be automatically set to cvpNotProvided.
This property is not available at design time.
Data Type
String
CardCVVPresence Property (FDMSGiftCard Class)
Indicates the presence of the card verification value.
Syntax
ANSI (Cross Platform) int GetCardCVVPresence();
int SetCardCVVPresence(int iCardCVVPresence); Unicode (Windows) INT GetCardCVVPresence();
INT SetCardCVVPresence(INT iCardCVVPresence);
Possible Values
CVP_NOT_PROVIDED(0),
CVP_PROVIDED(1),
CVP_ILLEGIBLE(2),
CVP_NOT_ON_CARD(3)
int dpaymentssdk_fdmsgiftcard_getcardcvvpresence(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setcardcvvpresence(void* lpObj, int iCardCVVPresence);
int GetCardCVVPresence();
int SetCardCVVPresence(int iCardCVVPresence);
Default Value
0
Remarks
Indicates the presence of the card verification value.
This property is used to indicate the presence of CardCVVData.
The class will automatically set this value to cvpProvided when a CardCVVData value is specified. You can explicitly specify the CardCVVPresence indicator by setting this property.
Available values are:
- cvpNotProvided (0)
- cvpProvided (1)
- cvpIllegible (2)
- cvpNotOnCard (3)
This property is not available at design time.
Data Type
Integer
CardEntryDataSource Property (FDMSGiftCard Class)
This property contains a 1-character code identifying the source of the customer data.
Syntax
ANSI (Cross Platform) int GetCardEntryDataSource();
int SetCardEntryDataSource(int iCardEntryDataSource); Unicode (Windows) INT GetCardEntryDataSource();
INT SetCardEntryDataSource(INT iCardEntryDataSource);
Possible Values
EDS_TRACK_1(0),
EDS_TRACK_2(1),
EDS_MANUAL_ENTRY_TRACK_1CAPABLE(2),
EDS_MANUAL_ENTRY_TRACK_2CAPABLE(3),
EDS_MANUAL_ENTRY_NO_CARD_READER(4),
EDS_TRACK_1CONTACTLESS(5),
EDS_TRACK_2CONTACTLESS(6),
EDS_MANUAL_ENTRY_CONTACTLESS_CAPABLE(7),
EDS_IVR(8),
EDS_KIOSK(9)
int dpaymentssdk_fdmsgiftcard_getcardentrydatasource(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setcardentrydatasource(void* lpObj, int iCardEntryDataSource);
int GetCardEntryDataSource();
int SetCardEntryDataSource(int iCardEntryDataSource);
Default Value
0
Remarks
This property contains a 1-character code identifying the source of the customer data. The table below shows all supported values for this property.
edsTrack1 (0) | Full Magnetic stripe read and transmit, Track 1. |
edsTrack2 (1) | Full magnetic stripe read and transmit, Track 2. |
edsManualEntryTrack1Capable (2) | Manually keyed, Track 1 capable. |
edsManualEntryTrack2Capable (3) | Manually keyed, Track 2 capable. |
edsManualEntryNoCardReader (4) | Manually keyed, terminal has no card reading capability (use this for e-commerce and MOTO transactions). |
edsTrack1Contactless (5) | Full magnetic stripe read (Track 1 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only). |
edsTrack2Contactless (6) | Full magnetic stripe read (Track 2 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only). |
edsManualEntryContactlessCapable (7) | Manually keyed, Chip Card read capable terminal (Visa, MasterCard, and JCB transactions only). |
edsIVR (8) | Interactive Voice Response processing. This is applicable to Mail Order/Telephone Order (MOTO) transactions. (CardNumber, CardExpMonth, and CardExpYear are sent). |
edsKiosk (9) | Automated kiosk transaction. Track1 or Track2 data must be sent in CardMagneticStripe, the transaction cannot be manually entered. |
Below is a list of processors and their support EntryDataSource values:
FDMS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable, edsIVR, edsKiosk
FDMSOmaha - All EntryDataSources applicable
FDMS Rapid Connect - All EntryDataSources applicable
Global - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsIVR, edsKiosk
PTech - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable
TSYS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack2Contactless, edsManualEntryContactlessCapable
TSYSHC - Values are based on Industry type.
TSYSHCBenefit | edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable |
TSYSHCECommerce | edsManualEntryNoCardReader |
TSYSHCRetail | edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable |
This property is not available at design time.
Data Type
Integer
CardExpMonth Property (FDMSGiftCard Class)
Expiration month of the credit card specified in Number .
Syntax
ANSI (Cross Platform) int GetCardExpMonth();
int SetCardExpMonth(int iCardExpMonth); Unicode (Windows) INT GetCardExpMonth();
INT SetCardExpMonth(INT iCardExpMonth);
int dpaymentssdk_fdmsgiftcard_getcardexpmonth(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setcardexpmonth(void* lpObj, int iCardExpMonth);
int GetCardExpMonth();
int SetCardExpMonth(int iCardExpMonth);
Default Value
1
Remarks
Expiration month of the credit card specified in CardNumber.
This property contains the expiration date of the customer's credit card, and must be in the range 1 - 12.
This property is not available at design time.
Data Type
Integer
CardExpYear Property (FDMSGiftCard Class)
Expiration year of the credit card specified in Number .
Syntax
ANSI (Cross Platform) int GetCardExpYear();
int SetCardExpYear(int iCardExpYear); Unicode (Windows) INT GetCardExpYear();
INT SetCardExpYear(INT iCardExpYear);
int dpaymentssdk_fdmsgiftcard_getcardexpyear(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setcardexpyear(void* lpObj, int iCardExpYear);
int GetCardExpYear();
int SetCardExpYear(int iCardExpYear);
Default Value
2000
Remarks
Expiration year of the credit card specified in CardNumber.
This property contains the expiration date of the customer's credit card. This property must be in the range 0 - 99, or 2000 - 2099. Any date before the year 2000 or after 2099 cannot be specified.
This property is not available at design time.
Data Type
Integer
CardIsEncrypted Property (FDMSGiftCard Class)
Determines whether data set to the Number or MagneticStripe properties is validated.
Syntax
ANSI (Cross Platform) int GetCardIsEncrypted();
int SetCardIsEncrypted(int bCardIsEncrypted); Unicode (Windows) BOOL GetCardIsEncrypted();
INT SetCardIsEncrypted(BOOL bCardIsEncrypted);
int dpaymentssdk_fdmsgiftcard_getcardisencrypted(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setcardisencrypted(void* lpObj, int bCardIsEncrypted);
bool GetCardIsEncrypted();
int SetCardIsEncrypted(bool bCardIsEncrypted);
Default Value
FALSE
Remarks
Determines whether data set to the CardNumber or CardMagneticStripe fields is validated.
By default, when the CardNumber or CardMagneticStripe fields are set, the value will be validated and normalized. For instance, "4444-33332222 1111" will be normalized as "4444333322221111" and CardMagneticStripe data will be parsed for the track specified by CardEntryDataSource. However, any other non-numerical data entered will cause an exception to be thrown. It may be useful in some gateways to send other data in the CardNumber or CardMagneticStripe fields, and this can be accomplished by setting IsEncrypted to true. However, please note that in doing so automatic calculation of the CardType may be affected, and the card number will not be verified.
This property is not available at design time.
Data Type
Boolean
CardMagneticStripe Property (FDMSGiftCard Class)
Track data read off of the card's magnetic stripe.
Syntax
ANSI (Cross Platform) char* GetCardMagneticStripe();
int SetCardMagneticStripe(const char* lpszCardMagneticStripe); Unicode (Windows) LPWSTR GetCardMagneticStripe();
INT SetCardMagneticStripe(LPCWSTR lpszCardMagneticStripe);
char* dpaymentssdk_fdmsgiftcard_getcardmagneticstripe(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setcardmagneticstripe(void* lpObj, const char* lpszCardMagneticStripe);
QString GetCardMagneticStripe();
int SetCardMagneticStripe(QString qsCardMagneticStripe);
Default Value
""
Remarks
Track data read off of the card's magnetic stripe.
If CardEntryDataSource is not one of the manually entered enumerations, then this property must be set with the track1 or track2 data from the magnetic stripe on the back of the customer's credit card. This includes everything after but not including the start sentinel (% or ;) and up to but not including the end sentinel (?) and LRC check character. You may only set this property with track 1 or track 2 data, and may not pass both. Use the CardEntryDataSource property to indicate which track you are sending.
The following example shows how to set the CardMagneticStripe and CardEntryDataSource properties if the data read off the card is "%B4788250000028291^TSYS^05121015432112345678?;4788250000028291=05121015432112345678?"
class.CardMagneticStripe = "B4788250000028291^TSYS^05121015432112345678"
class.CardEntryDataSource = edsTrack1
or
class.CardMagneticStripe = "4788250000028291=05121015432112345678"
class.CardEntryDataSource = edsTrack2
Industry regulations do not allow merchants or processors to store track data in any form of persistent storage. Failure to abide by this regulation can result in significant fines and other penalties.
This property is not available at design time.
Data Type
String
CardNumber Property (FDMSGiftCard Class)
Customer's credit card number for the transaction.
Syntax
ANSI (Cross Platform) char* GetCardNumber();
int SetCardNumber(const char* lpszCardNumber); Unicode (Windows) LPWSTR GetCardNumber();
INT SetCardNumber(LPCWSTR lpszCardNumber);
char* dpaymentssdk_fdmsgiftcard_getcardnumber(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setcardnumber(void* lpObj, const char* lpszCardNumber);
QString GetCardNumber();
int SetCardNumber(QString qsCardNumber);
Default Value
""
Remarks
Customer's credit card number for the transaction.
If you're sending the transaction with CardMagneticStripe data, this property should be left empty.
This property is not available at design time.
Data Type
String
ClerkId Property (FDMSGiftCard Class)
Identifies the clerk executing this transaction.
Syntax
ANSI (Cross Platform) char* GetClerkId();
int SetClerkId(const char* lpszClerkId); Unicode (Windows) LPWSTR GetClerkId();
INT SetClerkId(LPCWSTR lpszClerkId);
char* dpaymentssdk_fdmsgiftcard_getclerkid(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setclerkid(void* lpObj, const char* lpszClerkId);
QString GetClerkId();
int SetClerkId(QString qsClerkId);
Default Value
""
Remarks
This contains a merchant-generated code used to identify an individual clerk in the merchant's system. Each clerk within a merchant's location should have their own unique identifier, to help determine which employee has performed operations on a gift card. This may be a maximum of 8 characters in length, and may only contain alphanumeric data. This can be used in conjunction with the TerminalId to determine the location a transaction was made and the employee who made it.
Data Type
String
DatawireId Property (FDMSGiftCard Class)
Identifies the merchant to the Datawire System.
Syntax
ANSI (Cross Platform) char* GetDatawireId();
int SetDatawireId(const char* lpszDatawireId); Unicode (Windows) LPWSTR GetDatawireId();
INT SetDatawireId(LPCWSTR lpszDatawireId);
char* dpaymentssdk_fdmsgiftcard_getdatawireid(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setdatawireid(void* lpObj, const char* lpszDatawireId);
QString GetDatawireId();
int SetDatawireId(QString qsDatawireId);
Default Value
""
Remarks
The Datawire Id is a unique customer identifier generated by Datawire and returned to the client after successfully registering the merchant (using the FDMSRegister class). This Id (which is sent in all subsequent transactions) allows a transaction, to pass through the Datawire system and be correctly routed to the FDMS Payment processor.
The maximum length for this property is 32 characters.
Data Type
String
LockType Property (FDMSGiftCard Class)
Indicates the type of lock requested by the LockCard method.
Syntax
ANSI (Cross Platform) int GetLockType();
int SetLockType(int iLockType); Unicode (Windows) INT GetLockType();
INT SetLockType(INT iLockType);
Possible Values
LT_FULL_LOCK(0),
LT_PARTIAL_LOCK(1)
int dpaymentssdk_fdmsgiftcard_getlocktype(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setlocktype(void* lpObj, int iLockType);
int GetLockType();
int SetLockType(int iLockType);
Default Value
0
Remarks
This property is only used when locking funds on a card. If set to ltFullLock (default), the full balance on the gift card will be locked, and the customer will be unable to use funds on the card until the card is unlocked by setting RedemptionType to rtRedemptionWithUnlock and calling RedeemCard.
If set to ltPartialLock, only the amount indicated by the TransactionAmount property is locked. Any remaining funds on the card may be used for other purchases.
Data Type
Integer
MerchantNumber Property (FDMSGiftCard Class)
A unique number used to identify the merchant within the FDMS and Datawire systems.
Syntax
ANSI (Cross Platform) char* GetMerchantNumber();
int SetMerchantNumber(const char* lpszMerchantNumber); Unicode (Windows) LPWSTR GetMerchantNumber();
INT SetMerchantNumber(LPCWSTR lpszMerchantNumber);
char* dpaymentssdk_fdmsgiftcard_getmerchantnumber(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setmerchantnumber(void* lpObj, const char* lpszMerchantNumber);
QString GetMerchantNumber();
int SetMerchantNumber(QString qsMerchantNumber);
Default Value
""
Remarks
This property contains a unique number (typically 12 digits) which is assigned by the signing merchant's bank or processor. This field is used to identify the merchant within the FDMS and Datawire systems, and is used along with the MerchantTerminalNumber and DatawireId as connection credentials.
Data Type
String
MerchantTerminalNumber Property (FDMSGiftCard Class)
Used to identify a unique terminal within a merchant location.
Syntax
ANSI (Cross Platform) char* GetMerchantTerminalNumber();
int SetMerchantTerminalNumber(const char* lpszMerchantTerminalNumber); Unicode (Windows) LPWSTR GetMerchantTerminalNumber();
INT SetMerchantTerminalNumber(LPCWSTR lpszMerchantTerminalNumber);
char* dpaymentssdk_fdmsgiftcard_getmerchantterminalnumber(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setmerchantterminalnumber(void* lpObj, const char* lpszMerchantTerminalNumber);
QString GetMerchantTerminalNumber();
int SetMerchantTerminalNumber(QString qsMerchantTerminalNumber);
Default Value
""
Remarks
This property contains a number assigned by FDMS to uniquely identify a terminal within a merchant's location, and is used along with the MerchantNumber and DatawireId as Datawire connection credentials. This number differs from the TerminalId number, which is a 4-digit merchant-generated id used along with the ClerkId to identify where and who executed the transaction.
The maximum length of the MerchantTerminalNumber is 11 digits, and it may only contain numeric data.
Data Type
String
ProxyAuthScheme Property (FDMSGiftCard Class)
This property is used to tell the class which type of authorization to perform when connecting to the proxy.
Syntax
ANSI (Cross Platform) int GetProxyAuthScheme();
int SetProxyAuthScheme(int iProxyAuthScheme); Unicode (Windows) INT GetProxyAuthScheme();
INT SetProxyAuthScheme(INT iProxyAuthScheme);
Possible Values
AUTH_BASIC(0),
AUTH_DIGEST(1),
AUTH_PROPRIETARY(2),
AUTH_NONE(3),
AUTH_NTLM(4),
AUTH_NEGOTIATE(5)
int dpaymentssdk_fdmsgiftcard_getproxyauthscheme(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setproxyauthscheme(void* lpObj, int iProxyAuthScheme);
int GetProxyAuthScheme();
int SetProxyAuthScheme(int iProxyAuthScheme);
Default Value
0
Remarks
This property is used to tell the class which type of authorization to perform when connecting to the proxy. This is used only when the ProxyUser and ProxyPassword properties are set.
ProxyAuthScheme should be set to authNone (3) when no authentication is expected.
By default, ProxyAuthScheme is authBasic (0), and if the ProxyUser and ProxyPassword properties are set, the component will attempt basic authentication.
If ProxyAuthScheme is set to authDigest (1), digest authentication will be attempted instead.
If ProxyAuthScheme is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.
If ProxyAuthScheme is set to authNtlm (4), NTLM authentication will be used.
For security reasons, setting this property will clear the values of ProxyUser and ProxyPassword.
Data Type
Integer
ProxyAutoDetect Property (FDMSGiftCard Class)
This property tells the class whether or not to automatically detect and use proxy system settings, if available.
Syntax
ANSI (Cross Platform) int GetProxyAutoDetect();
int SetProxyAutoDetect(int bProxyAutoDetect); Unicode (Windows) BOOL GetProxyAutoDetect();
INT SetProxyAutoDetect(BOOL bProxyAutoDetect);
int dpaymentssdk_fdmsgiftcard_getproxyautodetect(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setproxyautodetect(void* lpObj, int bProxyAutoDetect);
bool GetProxyAutoDetect();
int SetProxyAutoDetect(bool bProxyAutoDetect);
Default Value
FALSE
Remarks
This property tells the class whether or not to automatically detect and use proxy system settings, if available. The default value is false.
Data Type
Boolean
ProxyPassword Property (FDMSGiftCard Class)
This property contains a password if authentication is to be used for the proxy.
Syntax
ANSI (Cross Platform) char* GetProxyPassword();
int SetProxyPassword(const char* lpszProxyPassword); Unicode (Windows) LPWSTR GetProxyPassword();
INT SetProxyPassword(LPCWSTR lpszProxyPassword);
char* dpaymentssdk_fdmsgiftcard_getproxypassword(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setproxypassword(void* lpObj, const char* lpszProxyPassword);
QString GetProxyPassword();
int SetProxyPassword(QString qsProxyPassword);
Default Value
""
Remarks
This property contains a password if authentication is to be used for the proxy.
If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.
If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.
Data Type
String
ProxyPort Property (FDMSGiftCard Class)
This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
Syntax
ANSI (Cross Platform) int GetProxyPort();
int SetProxyPort(int iProxyPort); Unicode (Windows) INT GetProxyPort();
INT SetProxyPort(INT iProxyPort);
int dpaymentssdk_fdmsgiftcard_getproxyport(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setproxyport(void* lpObj, int iProxyPort);
int GetProxyPort();
int SetProxyPort(int iProxyPort);
Default Value
80
Remarks
This property contains the Transmission Control Protocol (TCP) port for the proxy ProxyServer (default 80). See the description of the ProxyServer property for details.
Data Type
Integer
ProxyServer Property (FDMSGiftCard Class)
If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
Syntax
ANSI (Cross Platform) char* GetProxyServer();
int SetProxyServer(const char* lpszProxyServer); Unicode (Windows) LPWSTR GetProxyServer();
INT SetProxyServer(LPCWSTR lpszProxyServer);
char* dpaymentssdk_fdmsgiftcard_getproxyserver(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setproxyserver(void* lpObj, const char* lpszProxyServer);
QString GetProxyServer();
int SetProxyServer(QString qsProxyServer);
Default Value
""
Remarks
If a proxy ProxyServer is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
If the ProxyServer property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the ProxyServer property is set to the corresponding address. If the search is not successful, an error is returned.
Data Type
String
ProxySSL Property (FDMSGiftCard Class)
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
Syntax
ANSI (Cross Platform) int GetProxySSL();
int SetProxySSL(int iProxySSL); Unicode (Windows) INT GetProxySSL();
INT SetProxySSL(INT iProxySSL);
Possible Values
PS_AUTOMATIC(0),
PS_ALWAYS(1),
PS_NEVER(2),
PS_TUNNEL(3)
int dpaymentssdk_fdmsgiftcard_getproxyssl(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setproxyssl(void* lpObj, int iProxySSL);
int GetProxySSL();
int SetProxySSL(int iProxySSL);
Default Value
0
Remarks
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:
psAutomatic (0) | Default setting. If the URL is an https URL, the class will use the psTunnel option. If the URL is an http URL, the class will use the psNever option. |
psAlways (1) | The connection is always SSL enabled. |
psNever (2) | The connection is not SSL enabled. |
psTunnel (3) | The connection is made through a tunneling (HTTP) proxy. |
Data Type
Integer
ProxyUser Property (FDMSGiftCard Class)
This property contains a username if authentication is to be used for the proxy.
Syntax
ANSI (Cross Platform) char* GetProxyUser();
int SetProxyUser(const char* lpszProxyUser); Unicode (Windows) LPWSTR GetProxyUser();
INT SetProxyUser(LPCWSTR lpszProxyUser);
char* dpaymentssdk_fdmsgiftcard_getproxyuser(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setproxyuser(void* lpObj, const char* lpszProxyUser);
QString GetProxyUser();
int SetProxyUser(QString qsProxyUser);
Default Value
""
Remarks
This property contains a username if authentication is to be used for the proxy.
If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.
If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.
Data Type
String
RedemptionType Property (FDMSGiftCard Class)
Identifies the type of redemption to execute.
Syntax
ANSI (Cross Platform) int GetRedemptionType();
int SetRedemptionType(int iRedemptionType); Unicode (Windows) INT GetRedemptionType();
INT SetRedemptionType(INT iRedemptionType);
Possible Values
RT_NORMAL_REDEMPTION(0),
RT_PARTIAL_REDEMPTION(1),
RT_CASH_OUT(2),
RT_REDEMPTION_WITH_UNLOCK(3)
int dpaymentssdk_fdmsgiftcard_getredemptiontype(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setredemptiontype(void* lpObj, int iRedemptionType);
int GetRedemptionType();
int SetRedemptionType(int iRedemptionType);
Default Value
0
Remarks
This property is used by the RedeemCard method to indicate the type of charge to make against the gift card account. The valid redemption types include:
rtNormalRedemption (0) | A normal redemption request removes the TransactionAmount from the gift card.
Requests exceeding the balance of the gift card will be declined.
Note when IsRetailTransaction is set to 'False', this RedemptionType is not supported by the Internet spec and thus the class will internally set RedemptionType to rtPartialRedemption. Please see the below description for further information about this type. |
rtPartialRedemption (1) | This type allows the merchant to authorize a redemption for a TransactionAmount greater than the balance remaining on the gift card. At this point the account balance will be reduced to zero, a split tender should be prompted, and the account may be closed. A split tender means the customer pays the difference between the requested TransactionAmount and the amount that was actually removed from the gift card. After a successful partial redemption, the merchant is responsible for determining how much was actually taken from the account by inspecting the ResponsePreviousBalance and ResponseNewBalance properties. Should the customer be unable to tender the remaining balance, the merchant must return the gift card to the previous state by performing a void using the VoidTransaction method. |
rtCashOut (2) | When using this redemption type, no TransactionAmount should be sent with the RedeemCard call. Instead, the full amount on the card will be redeemed, and the card balance will be reduced to zero. The merchant is responsible for determining the amount of cash to tender to the customer by inspecting the ResponsePreviousBalance property. After a cash out the account may be closed. |
rtRedemptionWithUnlock (3) | This transaction can be performed after a LockCard transaction, to complete the purchase on a gift card and unlock any remaining balance. The specified TransactionAmount will be removed from the balance of the gift card. To unlock a gift card without affecting the balance of the gift card, send a "0" in the TransactionAmount. If the TransactionAmount is less than was originally locked with the LockCard method, the new amount will be removed from the card. The difference will be unlocked and returned to the card balance. However, note that any attempt to redeem more than the locked amount will result in an error. |
Data Type
Integer
ReferenceNumber Property (FDMSGiftCard Class)
Reference number used to identify the transaction.
Syntax
ANSI (Cross Platform) char* GetReferenceNumber();
int SetReferenceNumber(const char* lpszReferenceNumber); Unicode (Windows) LPWSTR GetReferenceNumber();
INT SetReferenceNumber(LPCWSTR lpszReferenceNumber);
char* dpaymentssdk_fdmsgiftcard_getreferencenumber(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setreferencenumber(void* lpObj, const char* lpszReferenceNumber);
QString GetReferenceNumber();
int SetReferenceNumber(QString qsReferenceNumber);
Default Value
""
Remarks
The merchant may optionally specify up to 16 characters of alphanumeric data in this property. The ReferenceNumber should not contain any leading or trailing whitespace, or any spaces between characters.
This property is for tracking and logging purposes only, and is not validated by the FDMS Closed Loop Gift Card system.
Data Type
String
ResponseApprovalCode Property (FDMSGiftCard Class)
Contains an authorization code if the transaction has been approved.
Syntax
ANSI (Cross Platform) char* GetResponseApprovalCode(); Unicode (Windows) LPWSTR GetResponseApprovalCode();
char* dpaymentssdk_fdmsgiftcard_getresponseapprovalcode(void* lpObj);
QString GetResponseApprovalCode();
Default Value
""
Remarks
Contains an authorization code if the transaction has been approved.
This property is returned in response to all approved gift card transactions, and will contain an authorization code used for tracking within the FDMS Closed Loop Gift Card System. Depending on the merchant's setup, this property will contain either 6 digit numeric or 8 character alphanumeric data for the approval code. If the transaction was declined this property will be empty.
The contents of this property should not be used to determine the status of a transaction. The ResponseCode property will indicate whether the transaction was approved or declined.
This property is read-only.
Data Type
String
ResponseCardClass Property (FDMSGiftCard Class)
Identifies the class of the gift card used in the transaction.
Syntax
ANSI (Cross Platform) char* GetResponseCardClass(); Unicode (Windows) LPWSTR GetResponseCardClass();
char* dpaymentssdk_fdmsgiftcard_getresponsecardclass(void* lpObj);
QString GetResponseCardClass();
Default Value
""
Remarks
Identifies the class of the gift card used in the transaction.
The First Data Closed Loop Gift Card database may contain a list of merchant-defined card classes. If using card classes, it is the merchant's responsibility to interpret the value of this property. A value of "0" indicates the card does not belong to any card class. Contact your First Data Closed Loop Gift Card representative if you wish to assign card classes to use in your solution.
This property is read-only.
Data Type
String
ResponseCardExpDate Property (FDMSGiftCard Class)
Contains the expiration date of the gift card.
Syntax
ANSI (Cross Platform) char* GetResponseCardExpDate(); Unicode (Windows) LPWSTR GetResponseCardExpDate();
char* dpaymentssdk_fdmsgiftcard_getresponsecardexpdate(void* lpObj);
QString GetResponseCardExpDate();
Default Value
""
Remarks
Contains the expiration date of the gift card.
The account's expiration date is returned on approved transactions and on declined transactions that are declined due to the card being expired. The expiration date will be an 8-digit string in the format "MMDDYYYY". Accounts with no expiration date will return a year (YYYY) greater than 3000.
This property is read-only.
Data Type
String
ResponseCashBack Property (FDMSGiftCard Class)
Indicates the amount of cash to return to the customer.
Syntax
ANSI (Cross Platform) char* GetResponseCashBack(); Unicode (Windows) LPWSTR GetResponseCashBack();
char* dpaymentssdk_fdmsgiftcard_getresponsecashback(void* lpObj);
QString GetResponseCashBack();
Default Value
""
Remarks
Indicates the amount of cash to return to the customer.
This property may be used at the point of sale to indicate the amount that needs to be tendered to a customer to remove the remaining balance from the card. It will bring the account balance to zero and close the account as defined by the merchant's configuration with First Data. For example, if $10.00 is remaining on a gift card and a purchase of $9.70 is made, the gift card system may put $.30 in this property. The response ResponseNewBalance will indicate that the card is now empty, and the merchant should give the $.30 change to the customer.
This property is read-only.
Data Type
String
ResponseCode Property (FDMSGiftCard Class)
Indicates the status of the authorization request.
Syntax
ANSI (Cross Platform) char* GetResponseCode(); Unicode (Windows) LPWSTR GetResponseCode();
char* dpaymentssdk_fdmsgiftcard_getresponsecode(void* lpObj);
QString GetResponseCode();
Default Value
""
Remarks
Indicates the status of the authorization request.
This property will contain a two character response code indicating the status of the transaction request sent to the FDMS Closed Loop Gift Card system. The merchant must evaluate this response code and not the ResponseText or ResponseApprovalCode to determine the nature of a response message. A response code of "00" represents a successful transaction. All other response codes represent non-approved requests. All non-approved response codes should NOT be assumed to be "DECLINED" as an error condition may be present.
A list of valid result codes is:
Code | Description |
00 | Completed OK |
01 | Insufficient funds |
02 | Account closed. The account was closed, probably because the account balance was $0.00. |
03 | Unknown account. The account could not be located in the account table. |
04 | Inactive account. The account has not been activated by an approved location. |
05 | Expired card. The card's expiration date has been exceeded. |
06 | Invalid transaction code. This card or terminal is not permitted to perform this transaction, or the transaction code is invalid. |
07 | Invalid merchant. The merchant is not in the merchant database or the merchant is not permitted to use this particular card. |
08 | Already active. The card is already active and does not need to be reactivated. |
09 | System error. There is a problem with the cost processing system. Call your help desk or operations support. |
10 | Lost or stolen card. The replacement transaction could not be completed because the account was not previously marked as lost/stolen. |
11 | Not lost or stolen. The replacement transaction could not be completed because the account was not previously marked as lost/stolen. |
12 | Invalid transaction format. There is a transaction format problem. |
15 | Bad mag stripe. The mag stripe could not be parsed for account information. |
16 | Incorrect location. There was a problem with the merchant location. |
17 | Max balance exceeded. The transaction, if completed, would cause the account balance to be exceeded by the max_balance specified by configuration of this system. Some merchants set the max_balance to a value twice that of the max transaction amount. |
18 | Invalid amount. There was a problem with the amount field in the transaction format. |
19 | Invalid clerk. The clerk field was either missing when required or the content did not match a clerk in the merchant's system. |
20 | Invalid password. The user password is invalid. |
21 | Invalid new password. The new password does not meet the minimum security criteria. |
22 | Exceeded account reloads. The clerk/user/location was only permitted to reload a specified number of accounts. That number has been exceeded. Contact the help desk or operations support. |
23 | Password retry exceeded. The user account has been frozen because the user attempted to access the account and was denied. Seek manager's assistance. |
26 | Incorrect transaction version or format number for point of sale transactions. |
27 | Request not permitted by this account. |
28 | Request not permitted by this merchant location. |
29 | Bad replay date. |
30 | Bad checksum. The checksum provided is incorrect. |
31 | Balance not available (denial). Due to an internal First Data Closed Loop Gift Card issue, information from this account could not be retrieved. |
32 | Account has been locked. |
33 | No previous transaction. The void or reversal transaction could not be matched to a previous (original) transaction. In the case of a pre-authorization redemption, the corresponding locking transaction could not be identified. |
34 | Already reversed. |
35 | Generic denial. An error was produced which has no other corresponding response code for the provided version/format. |
36 | Bad authorization code. The authorization code test failed. |
37 | Too many transactions requested. |
38 | No transactions available/no more transactions available. There are no more transactions for this account or there are no transactions as determined by the specified first transaction number. |
39 | Transaction history not available. The history could not be provided. |
40 | New password required. |
41 | Invalid status change. The status change requested (e.g. lost/stolen, freeze active card) cannot be performed. |
42 | Void of activation after account activity. |
43 | No phone service. Attempted a calling card transaction on an account which is not configured for calling card activity. |
44 | Internet access disabled. This account may no longer use transactions in which an EAN is required. |
45 | Invalid EAN. The EAN is not correct for the provided account number. |
46 | Invalid merchant key. The merchant key block provided is invalid (e.g. The working key provided is an Assign Merchant Working Key transaction). |
47 | Internet Virtual and Physical cards do not match. When enabling a physical card to a virtual card, both must be from the same promotion. |
48 | Invalid transaction source. The provided source is not valid for this transaction. |
49 | Account already linked. This is the response received when enabling a physical card when the two provided accounts have already been linked. |
50 | Account not in inactive state. his is the response received when enabling a physical card when the physical card is not in an inactive state. |
51 | First Data Voice Services returns this response on Internet transactions where the interface input parameter is not valid. |
52 | First Data Voice Services returns this response on Internet transactions when they did not receive a response from Closed Loop Gift Card. |
53 | First Data Voice Services returns this response on Internet transactions where the client certificate is invalid. |
54 | Merchant not configured as International although the account requires it. The account allows currency conversions but the merchant is not configured for International. |
55 | Invalid currency. The provided currency is invalid. |
56 | Request not International. Merchant configured to require currency information for the financial transaction, however none was sent. |
57 | Currency conversion error. Internal Closed Loop Gift Card system error. |
58 | Invalid expression date. The expression date provided is not valid. |
59 | On void transaction, the terminal transaction number did not match. |
60 | First Data Voice Services error returned if Internet transactions check fails. |
67 | Target Embossed Card entered and transaction count entered do not match. |
68 | No account link. |
69 | Invalid timezone. |
70 | Account on hold. |
71 | Fraud count exceeded. |
72 | Location restricted. |
73 | Invalid BIN |
74 | Product code(s) restricted. |
75 | Bad post date. The date is not a valid date. |
This property is read-only.
Data Type
String
ResponseDatawireReturnCode Property (FDMSGiftCard Class)
Contains an error code providing more details about the DatawireStatus received.
Syntax
ANSI (Cross Platform) char* GetResponseDatawireReturnCode(); Unicode (Windows) LPWSTR GetResponseDatawireReturnCode();
char* dpaymentssdk_fdmsgiftcard_getresponsedatawirereturncode(void* lpObj);
QString GetResponseDatawireReturnCode();
Default Value
""
Remarks
Contains an error code providing more details about the ResponseDatawireStatus received.
When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.
The ResponseCaptureFlag and ResponseApprovalCode properties contain the actual transaction result that was returned by FDMS.
The following is a list of possible Datawire return codes:
000 | Transaction successfully passed through the Datawire system to the FDMS Payment Processor and back. |
200 | Host Busy - The processor's Host is busy and is currently unable to service this request. |
201 | Host Unavailable - The processor's Host is currently unavailable. For example, the server is sending NAK. |
202 | Host Connect Error - Could not connect to the processor's Host. |
203 | Host Drop - The processor's Host disconnected during the transaction before sending a response. |
204 | Host Comm Error - An error was encountered while communicating with the processor's Host. |
205 | No Response - No response from the processor's Host |
206 | Host Send Error - An error has encountered when sending the request to the processor, and the Host daemon cannot continue sending packets to the processor because the connection is broken. |
405 | Vxn Timeout - The request could not be processed. |
505 | Network Error - The request could not be processed. |
This property is read-only.
Data Type
String
ResponseDatawireStatus Property (FDMSGiftCard Class)
Status of the communication with Datawire.
Syntax
ANSI (Cross Platform) char* GetResponseDatawireStatus(); Unicode (Windows) LPWSTR GetResponseDatawireStatus();
char* dpaymentssdk_fdmsgiftcard_getresponsedatawirestatus(void* lpObj);
QString GetResponseDatawireStatus();
Default Value
""
Remarks
Status of the communication with Datawire.
When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.
The ResponseCaptureFlag and ResponseApprovalCode properties contains the actual FDMS Transaction Result that was returned.
The following is a list of possible Datawire response status codes:
OK | Transaction has successfully passed through the Datawire system to the FDMS Payment processor and back. |
AuthenticationError | DatawireId in the request was not successfully authenticated. |
UnknownServiceID | ServiceId part of the URL (in the Service Discovery or Ping request) is unknown. |
WrongSessionContext | The SessionContext element of the Session Transaction request does not match the SessionContext returned by the InitiateSession response (applicable to the FDMSSettle class). |
AccessDenied | Generally, occurs when you try to register a merchant after a merchant has already been activated to use the Datawire VXN. |
Failed | Your Merchant Registration has failed. Contact tech.support@datawire.net for more information. |
Retry | Registration is not yet complete. You must send the Registration request again. |
Timeout | No response from the Service Provider was received during the expected period of time. |
XMLError | Request contains some XML error, such as malformed XML, violation of this DTD, etc. |
OtherError | Unspecified error occurred. |
008 | Network Error |
This property is read-only.
Data Type
String
ResponseLockAmount Property (FDMSGiftCard Class)
Contains the amount that is locked and cannot be used.
Syntax
ANSI (Cross Platform) char* GetResponseLockAmount(); Unicode (Windows) LPWSTR GetResponseLockAmount();
char* dpaymentssdk_fdmsgiftcard_getresponselockamount(void* lpObj);
QString GetResponseLockAmount();
Default Value
""
Remarks
Contains the amount that is locked and cannot be used.
If the gift card has previously been locked via the LockCard method, this property will reflect the balance that is locked and cannot be used for purchases.
This property is read-only.
Data Type
String
ResponseNewBalance Property (FDMSGiftCard Class)
Contains the balance on the card reflected immediately after this transaction.
Syntax
ANSI (Cross Platform) char* GetResponseNewBalance(); Unicode (Windows) LPWSTR GetResponseNewBalance();
char* dpaymentssdk_fdmsgiftcard_getresponsenewbalance(void* lpObj);
QString GetResponseNewBalance();
Default Value
""
Remarks
Contains the balance on the card reflected immediately after this transaction.
This property contains the balance of funds left on the card after the transaction was applied. When redeeming a card with the RedeemCard method and RedemptionType set to rtPartialRedemption, the merchant must use the ResponseNewBalance and ResponsePreviousBalance propertiesto determine if full amount was authorized, or if an additional amount needs to be tendered by the customer. (via cash, credit, another gift card, etc).
Note that ResponseNewBalance and ResponsePreviousBalance will display the same value in response to a call a Balance Inquiry or Lock Card transaction.
This property is read-only.
Data Type
String
ResponsePreviousBalance Property (FDMSGiftCard Class)
Contains the balance that was on the gift card before this transaction was completed.
Syntax
ANSI (Cross Platform) char* GetResponsePreviousBalance(); Unicode (Windows) LPWSTR GetResponsePreviousBalance();
char* dpaymentssdk_fdmsgiftcard_getresponsepreviousbalance(void* lpObj);
QString GetResponsePreviousBalance();
Default Value
""
Remarks
Contains the balance that was on the gift card before this transaction was completed.
This property contains the balance of funds that was on the card immediately before the transaction that was just authorized. When redeeming a card with the RedeemCard method and RedemptionType set to rtPartialRedemption, the merchant must use the ResponseNewBalance and ResponsePreviousBalance propertiesto determine if full amount was authorized, or if an additional amount needs to be tendered by the customer. (via cash, credit, another gift card, etc).
Note that ResponseNewBalance and ResponsePreviousBalance will display the same value in response to a call a Balance Inquiry or Lock Card transaction.
This property is read-only.
Data Type
String
ResponseReferenceNumber Property (FDMSGiftCard Class)
Contains the reference or customer number that was submitted in the request.
Syntax
ANSI (Cross Platform) char* GetResponseReferenceNumber(); Unicode (Windows) LPWSTR GetResponseReferenceNumber();
char* dpaymentssdk_fdmsgiftcard_getresponsereferencenumber(void* lpObj);
QString GetResponseReferenceNumber();
Default Value
""
Remarks
Contains the reference or customer number that was submitted in the request.
If supported by your merchant setup, this property will contain a reference or customer number that will match the number submitted in the request. This can be used to match up responses with requests, or for other logging and reporting purposes.
This property is read-only.
Data Type
String
ResponseSystemTrace Property (FDMSGiftCard Class)
Contains a number used to trace the transaction.
Syntax
ANSI (Cross Platform) char* GetResponseSystemTrace(); Unicode (Windows) LPWSTR GetResponseSystemTrace();
char* dpaymentssdk_fdmsgiftcard_getresponsesystemtrace(void* lpObj);
QString GetResponseSystemTrace();
Default Value
""
Remarks
Contains a number used to trace the transaction.
This number is generated by the FDMS Closed Loop Gift Card system and should be logged and kept with the transaction for the duration of the transaction's life cycle. The merchant should not attempt to interpret the contents of this property.
This property is read-only.
Data Type
String
ResponseText Property (FDMSGiftCard Class)
Contains a human-readable description of the response Code .
Syntax
ANSI (Cross Platform) char* GetResponseText(); Unicode (Windows) LPWSTR GetResponseText();
char* dpaymentssdk_fdmsgiftcard_getresponsetext(void* lpObj);
QString GetResponseText();
Default Value
""
Remarks
Contains a human-readable description of the response ResponseCode.
This property will contain a description of the response code returned in the ResponseCode property. The ResponseText property may be displayed to the sales clerk or customer to explain why the transaction was declined, but it should not be used by the merchant application to determine the success or failure of the transaction. To determine this status use the ResponseCode property instead. See the table of contents for a list of response codes and their meanings.
This property is read-only.
Data Type
String
SSLAcceptServerCertEncoded Property (FDMSGiftCard Class)
This is the certificate (PEM/Base64 encoded).
Syntax
ANSI (Cross Platform) int GetSSLAcceptServerCertEncoded(char* &lpSSLAcceptServerCertEncoded, int &lenSSLAcceptServerCertEncoded);
int SetSSLAcceptServerCertEncoded(const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded); Unicode (Windows) INT GetSSLAcceptServerCertEncoded(LPSTR &lpSSLAcceptServerCertEncoded, INT &lenSSLAcceptServerCertEncoded);
INT SetSSLAcceptServerCertEncoded(LPCSTR lpSSLAcceptServerCertEncoded, INT lenSSLAcceptServerCertEncoded);
int dpaymentssdk_fdmsgiftcard_getsslacceptservercertencoded(void* lpObj, char** lpSSLAcceptServerCertEncoded, int* lenSSLAcceptServerCertEncoded);
int dpaymentssdk_fdmsgiftcard_setsslacceptservercertencoded(void* lpObj, const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded);
QByteArray GetSSLAcceptServerCertEncoded();
int SetSSLAcceptServerCertEncoded(QByteArray qbaSSLAcceptServerCertEncoded);
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.
When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Binary String
SSLCertEncoded Property (FDMSGiftCard Class)
This is the certificate (PEM/Base64 encoded).
Syntax
ANSI (Cross Platform) int GetSSLCertEncoded(char* &lpSSLCertEncoded, int &lenSSLCertEncoded);
int SetSSLCertEncoded(const char* lpSSLCertEncoded, int lenSSLCertEncoded); Unicode (Windows) INT GetSSLCertEncoded(LPSTR &lpSSLCertEncoded, INT &lenSSLCertEncoded);
INT SetSSLCertEncoded(LPCSTR lpSSLCertEncoded, INT lenSSLCertEncoded);
int dpaymentssdk_fdmsgiftcard_getsslcertencoded(void* lpObj, char** lpSSLCertEncoded, int* lenSSLCertEncoded);
int dpaymentssdk_fdmsgiftcard_setsslcertencoded(void* lpObj, const char* lpSSLCertEncoded, int lenSSLCertEncoded);
QByteArray GetSSLCertEncoded();
int SetSSLCertEncoded(QByteArray qbaSSLCertEncoded);
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.
When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Binary String
SSLCertStore Property (FDMSGiftCard Class)
This is the name of the certificate store for the client certificate.
Syntax
ANSI (Cross Platform) int GetSSLCertStore(char* &lpSSLCertStore, int &lenSSLCertStore);
int SetSSLCertStore(const char* lpSSLCertStore, int lenSSLCertStore); Unicode (Windows) INT GetSSLCertStore(LPSTR &lpSSLCertStore, INT &lenSSLCertStore);
INT SetSSLCertStore(LPCSTR lpSSLCertStore, INT lenSSLCertStore);
int dpaymentssdk_fdmsgiftcard_getsslcertstore(void* lpObj, char** lpSSLCertStore, int* lenSSLCertStore);
int dpaymentssdk_fdmsgiftcard_setsslcertstore(void* lpObj, const char* lpSSLCertStore, int lenSSLCertStore);
QByteArray GetSSLCertStore();
int SetSSLCertStore(QByteArray qbaSSLCertStore);
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password protected, specify the password in SSLCertStorePassword.
SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Binary String
SSLCertStorePassword Property (FDMSGiftCard Class)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
ANSI (Cross Platform) char* GetSSLCertStorePassword();
int SetSSLCertStorePassword(const char* lpszSSLCertStorePassword); Unicode (Windows) LPWSTR GetSSLCertStorePassword();
INT SetSSLCertStorePassword(LPCWSTR lpszSSLCertStorePassword);
char* dpaymentssdk_fdmsgiftcard_getsslcertstorepassword(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setsslcertstorepassword(void* lpObj, const char* lpszSSLCertStorePassword);
QString GetSSLCertStorePassword();
int SetSSLCertStorePassword(QString qsSSLCertStorePassword);
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SSLCertStoreType Property (FDMSGiftCard Class)
This is the type of certificate store for this certificate.
Syntax
ANSI (Cross Platform) int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType); Unicode (Windows) INT GetSSLCertStoreType();
INT SetSSLCertStoreType(INT iSSLCertStoreType);
Possible Values
CST_USER(0),
CST_MACHINE(1),
CST_PFXFILE(2),
CST_PFXBLOB(3),
CST_JKSFILE(4),
CST_JKSBLOB(5),
CST_PEMKEY_FILE(6),
CST_PEMKEY_BLOB(7),
CST_PUBLIC_KEY_FILE(8),
CST_PUBLIC_KEY_BLOB(9),
CST_SSHPUBLIC_KEY_BLOB(10),
CST_P7BFILE(11),
CST_P7BBLOB(12),
CST_SSHPUBLIC_KEY_FILE(13),
CST_PPKFILE(14),
CST_PPKBLOB(15),
CST_XMLFILE(16),
CST_XMLBLOB(17),
CST_JWKFILE(18),
CST_JWKBLOB(19),
CST_SECURITY_KEY(20),
CST_BCFKSFILE(21),
CST_BCFKSBLOB(22),
CST_PKCS11(23),
CST_AUTO(99)
int dpaymentssdk_fdmsgiftcard_getsslcertstoretype(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setsslcertstoretype(void* lpObj, int iSSLCertStoreType);
int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType);
Default Value
0
Remarks
This is the type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SSLCertSubject Property (FDMSGiftCard Class)
This is the subject of the certificate used for client authentication.
Syntax
ANSI (Cross Platform) char* GetSSLCertSubject();
int SetSSLCertSubject(const char* lpszSSLCertSubject); Unicode (Windows) LPWSTR GetSSLCertSubject();
INT SetSSLCertSubject(LPCWSTR lpszSSLCertSubject);
char* dpaymentssdk_fdmsgiftcard_getsslcertsubject(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setsslcertsubject(void* lpObj, const char* lpszSSLCertSubject);
QString GetSSLCertSubject();
int SetSSLCertSubject(QString qsSSLCertSubject);
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SSLProvider Property (FDMSGiftCard Class)
This specifies the SSL/TLS implementation to use.
Syntax
ANSI (Cross Platform) int GetSSLProvider();
int SetSSLProvider(int iSSLProvider); Unicode (Windows) INT GetSSLProvider();
INT SetSSLProvider(INT iSSLProvider);
Possible Values
SSLP_AUTOMATIC(0),
SSLP_PLATFORM(1),
SSLP_INTERNAL(2)
int dpaymentssdk_fdmsgiftcard_getsslprovider(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setsslprovider(void* lpObj, int iSSLProvider);
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider);
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.
When Automatic is selected, on Windows the class will use the platform implementation. On Linux/macOS the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used on all platforms.
Data Type
Integer
SSLServerCertEncoded Property (FDMSGiftCard Class)
This is the certificate (PEM/Base64 encoded).
Syntax
ANSI (Cross Platform) int GetSSLServerCertEncoded(char* &lpSSLServerCertEncoded, int &lenSSLServerCertEncoded); Unicode (Windows) INT GetSSLServerCertEncoded(LPSTR &lpSSLServerCertEncoded, INT &lenSSLServerCertEncoded);
int dpaymentssdk_fdmsgiftcard_getsslservercertencoded(void* lpObj, char** lpSSLServerCertEncoded, int* lenSSLServerCertEncoded);
QByteArray GetSSLServerCertEncoded();
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.
When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.
This property is read-only and not available at design time.
Data Type
Binary String
TerminalId Property (FDMSGiftCard Class)
Merchant-generated 4-digit terminal Id.
Syntax
ANSI (Cross Platform) char* GetTerminalId();
int SetTerminalId(const char* lpszTerminalId); Unicode (Windows) LPWSTR GetTerminalId();
INT SetTerminalId(LPCWSTR lpszTerminalId);
char* dpaymentssdk_fdmsgiftcard_getterminalid(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setterminalid(void* lpObj, const char* lpszTerminalId);
QString GetTerminalId();
int SetTerminalId(QString qsTerminalId);
Default Value
""
Remarks
This terminal number is created by the merchant, and is used to identify the terminal or register where the transaction is taking place. This can be used in conjunction with the ClerkId to determine the location and employee who initiated the transaction. This number differs from the MerchantTerminalNumber, which is an 11-digit number specified by FDMS and used as Datawire connection credentials.
Data Type
String
Timeout Property (FDMSGiftCard Class)
A timeout for the class.
Syntax
ANSI (Cross Platform) int GetTimeout();
int SetTimeout(int iTimeout); Unicode (Windows) INT GetTimeout();
INT SetTimeout(INT iTimeout);
int dpaymentssdk_fdmsgiftcard_gettimeout(void* lpObj);
int dpaymentssdk_fdmsgiftcard_settimeout(void* lpObj, int iTimeout);
int GetTimeout();
int SetTimeout(int iTimeout);
Default Value
30
Remarks
If Timeout is set to a positive value, and an operation cannot be completed immediately, the class will return with an error after Timeout seconds.
The default value for Timeout is 30 (seconds).
Data Type
Integer
TransactionAmount Property (FDMSGiftCard Class)
Purchase amount to be authorized.
Syntax
ANSI (Cross Platform) char* GetTransactionAmount();
int SetTransactionAmount(const char* lpszTransactionAmount); Unicode (Windows) LPWSTR GetTransactionAmount();
INT SetTransactionAmount(LPCWSTR lpszTransactionAmount);
char* dpaymentssdk_fdmsgiftcard_gettransactionamount(void* lpObj);
int dpaymentssdk_fdmsgiftcard_settransactionamount(void* lpObj, const char* lpszTransactionAmount);
QString GetTransactionAmount();
int SetTransactionAmount(QString qsTransactionAmount);
Default Value
""
Remarks
This property contains the transaction amount to be authorized.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The allowable number of significant digits as well as the positioning of any implied decimal point is dictated by the designated CurrencyCode configuration setting. In the United States (default), the number of allowable significant digits is seven. Thus the maximum TransactionAmount is "9999999", yielding a US dollar amount of $99,999.99. This field may not contain a negative number.
Data Type
String
TransactionNumber Property (FDMSGiftCard Class)
Uniquely identifies the transaction.
Syntax
ANSI (Cross Platform) char* GetTransactionNumber();
int SetTransactionNumber(const char* lpszTransactionNumber); Unicode (Windows) LPWSTR GetTransactionNumber();
INT SetTransactionNumber(LPCWSTR lpszTransactionNumber);
char* dpaymentssdk_fdmsgiftcard_gettransactionnumber(void* lpObj);
int dpaymentssdk_fdmsgiftcard_settransactionnumber(void* lpObj, const char* lpszTransactionNumber);
QString GetTransactionNumber();
int SetTransactionNumber(QString qsTransactionNumber);
Default Value
""
Remarks
The TransactionNumber (otherwise known as the Client Reference Number, or ClientRef) uniquely identifies the packet sent by the application to the Datawire system. This parameter stores some unique token of information, and is used to match the response to the initial request sent. For example, the client application could use a static counter that is increased with the each executed request.
For all classs except FDMSGiftCard the maximum length of this property is 14 alphanumeric characters.
The FDMS recommended format is "tttttttVnnnnrrr" where ttttttt is a 7 digit transaction id, V is a constant, and nnn is a 3 digit version number and rrr is a 3 digit revision number. The 6 digit version number is typically static but unique for an application (Example: Version 2.5 = tttttttV002500).
For the Rapid Connect platform, the 6 character version number should be your Project/TPPID value. The entire TransactionNumber must be unique within a 24 hour time period.
The FDMSGiftCard also passes this value to the FDMS Closed Loop Gift Card system as a transaction id, and therefore the following restrictions are enforced: The maximum length is 7 characters. If the first character is an 'X', the remaining characters must be in the range '0' through 'F', indicating a hexadecimal number. Otherwise the FDMS Closed Loop Gift Card system only allows digits in this property.
Data Type
String
URL Property (FDMSGiftCard Class)
Location of the Datawire server to which transactions are sent.
Syntax
ANSI (Cross Platform) char* GetURL();
int SetURL(const char* lpszURL); Unicode (Windows) LPWSTR GetURL();
INT SetURL(LPCWSTR lpszURL);
char* dpaymentssdk_fdmsgiftcard_geturl(void* lpObj);
int dpaymentssdk_fdmsgiftcard_seturl(void* lpObj, const char* lpszURL);
QString GetURL();
int SetURL(QString qsURL);
Default Value
"https://staging1.datawire.net/sd/"
Remarks
This is the URL to which all authorization and settlement transactions are sent. This URL is acquired by using the FDMSRegister class. Once you Register and Activate the merchant using the FDMSRegister class, you may then do a Service Discovery. After sending a Service Discovery transaction, the Datawire system will return a list of transaction URLs. The URL from this list with the shortest round-trip transit time from a ping is the URL you should use here.
Note: By default, this property is populated with the Datawire Staging (test) server, and is not the correct URL to use in a production environment. In a production environment, this URL is supplied by the FDMSRegister class.
Data Type
String
VoidType Property (FDMSGiftCard Class)
Identifies the type of void to execute.
Syntax
ANSI (Cross Platform) int GetVoidType();
int SetVoidType(int iVoidType); Unicode (Windows) INT GetVoidType();
INT SetVoidType(INT iVoidType);
Possible Values
VT_REDEMPTION(0),
VT_LOAD(1),
VT_ACTIVATION(2)
int dpaymentssdk_fdmsgiftcard_getvoidtype(void* lpObj);
int dpaymentssdk_fdmsgiftcard_setvoidtype(void* lpObj, int iVoidType);
int GetVoidType();
int SetVoidType(int iVoidType);
Default Value
0
Remarks
This property is used by the VoidTransaction method to indicate the type of transaction which is to be voided. Valid void types include:
vtRedemption (0) | This is used to void a purchase performed on a gift card using the RedeemCard method. It works to void regular redemptions, partial redemptions, and cashouts. A call to VoidTransaction will add the TransactionAmount back to the gift card balance. When voiding a partial redemption or cash out, the TransactionAmount must equal the actual value that was approved in the redemption, not the amount requested. |
vtLoad (1) | This voids a load, reload, refund or adjustment that was made with the LoadCard method. The TransactionAmount is removed from the current balance of the gift card account. |
vtActivation (2) | This voids the activation of the gift card made with ActivateCard, and changes the card's status back to inactive. If a financial transaction has been completed on the gift card (for instance, a redemption or load), the activation cannot be voided unless all transactions since the activation are also voided. |
Data Type
Integer
ActivateCard Method (FDMSGiftCard Class)
Activates a Gift Card.
Syntax
ANSI (Cross Platform) int ActivateCard(); Unicode (Windows) INT ActivateCard();
int dpaymentssdk_fdmsgiftcard_activatecard(void* lpObj);
int ActivateCard();
Remarks
Stored value Activation transactions provide merchants the ability to activate a new stored value card on the FDMS Closed Loop Gift Card System. Activation transactions can only be performed on cards that have not been previously activated. Merchants have the ability to activate stored value cards with a host configured pre-denominated TransactionAmount or activate non-denominated cards with a flexible TransactionAmount. With pre-denominated cards, the stored value host will either approve the transaction for the amount on the face of the card (regardless of the amount specified in TransactionAmount), or decline the transaction if the TransactionAmount doesn't match the amount printed on the card. This is dependent on individual merchant setup.
The ResponseCode and ResponseText properties indicate whether this transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
BalanceInquiry Method (FDMSGiftCard Class)
Retrieves the balance remaining on a gift card.
Syntax
ANSI (Cross Platform) int BalanceInquiry(); Unicode (Windows) INT BalanceInquiry();
int dpaymentssdk_fdmsgiftcard_balanceinquiry(void* lpObj);
int BalanceInquiry();
Remarks
A BalanceInquiry transaction requests that the FDMS Closed Loop Gift Card system return the amount of funds remaining on the customer's Stored Value (Gift) Card. No charge is made to the customer's gift card. The ResponsePreviousBalance and ResponseNewBalance properties will contain the card's current balance.
The ResponseCode and ResponseText properties indicate whether this transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Config Method (FDMSGiftCard Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* dpaymentssdk_fdmsgiftcard_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Interrupt Method (FDMSGiftCard Class)
Interrupts the current action.
Syntax
ANSI (Cross Platform) int Interrupt(); Unicode (Windows) INT Interrupt();
int dpaymentssdk_fdmsgiftcard_interrupt(void* lpObj);
int Interrupt();
Remarks
This method interrupts any processing that the class is currently executing.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
LoadCard Method (FDMSGiftCard Class)
Adds funds to a gift card.
Syntax
ANSI (Cross Platform) int LoadCard(); Unicode (Windows) INT LoadCard();
int dpaymentssdk_fdmsgiftcard_loadcard(void* lpObj);
int LoadCard();
Remarks
This method adds funds to a gift card. The gift card must have been previously activated using the ActivateCard method. ActivateCard is used when the card is originally purchased. LoadCard should be used when a customer wishes to add funds onto his card, to give the customer a refund, etc.
The ResponseCode and ResponseText properties indicate whether this transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
LockCard Method (FDMSGiftCard Class)
Locks funds on a gift card.
Syntax
ANSI (Cross Platform) int LockCard(); Unicode (Windows) INT LockCard();
int dpaymentssdk_fdmsgiftcard_lockcard(void* lpObj);
int LockCard();
Remarks
This transaction will lock funds on a gift card. The LockType property determines if you want to lock the full amount on the card, or a lesser amount indicated by the TransactionAmount you specify. If you lock the full amount the customer will be unable to use the card until the funds are unlocked. If you request a partial lock, the customer will still be able to make purchases on the card, unless a purchase would cause the balance on the card to drop below the locked amount. For example, if a customer uses a gift card at a restaurant, you do not know the gratuity beforehand, so you may wish to lock the amount of the bill plus 20% for any tip he might leave.
Use the RedeemCard method with the RedemptionType set to rtRedemptionWithUnlock, to unlock the card. If you made a partial lock, the TransactionAmount for this redemption must be less than or equal to the locked amount, or the transaction will be declined.
Note: A full lock also requires the TransactionAmount property to be sent in the request. If the gift card balance is less than the requested TransactionAmount, the lock transaction will be declined.
The ResponseCode and ResponseText properties indicate whether this transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
RedeemCard Method (FDMSGiftCard Class)
Removes funds from the gift card for a purchase.
Syntax
ANSI (Cross Platform) int RedeemCard(); Unicode (Windows) INT RedeemCard();
int dpaymentssdk_fdmsgiftcard_redeemcard(void* lpObj);
int RedeemCard();
Remarks
A Redemption transaction is the process of deducting value from the Gift Card, and is very similar to a Credit Card Sale transaction, except that funds are immediately removed from the balance of the gift card. There are four types of redemptions that can be made with this method, depending on the value of the RedemptionType.
Regular redemptions can be made with TransactionAmounts up to the balance on the card. Attempting to redeem a card for more than the current balance will result in a decline for insufficient funds.
In the case that the customer's gift card does not have enough funds to cover the entire TransactionAmount, the merchant may request that the host perform a Partial Redemption. With the RedemptionType set to rtPartialRedemption, the point of sale is capable of processing a Redemption transaction for more than the card balance, and still receive an approval. All of the funds remaining on the gift card will be put towards the TransactionAmount, and the merchant will be required to obtain an additional form of payment for the remaining balance. The ResponsePreviousBalance and ResponseNewBalance can then be used to calculate the amount actually removed from the card, and the amount the customer still needs to tender (via cash, credit card, etc).
If the merchant allows it, a customer may Cash Out his gift card, and receive the remainder of the gift card's stored value as cash. To cash out a gift card, clear the TransactionAmount and set the RedemptionType to rtCashOut before calling RedeemCard. If successful, the ResponseNewBalance will be zero, and the ResponsePreviousBalance will indicate the total amount removed from the card, which should be given to the customer as cash.
Finally, you can send a Redemption Unlock transaction, which redeems the card and removes a lock that was previously made with the LockCard method.
The ResponseCode and ResponseText properties indicate whether this transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (FDMSGiftCard Class)
Clears all properties to their default values.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int dpaymentssdk_fdmsgiftcard_reset(void* lpObj);
int Reset();
Remarks
This method clears all properties to their default values.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ReverseLastTransaction Method (FDMSGiftCard Class)
Reverses the last attempted transaction.
Syntax
ANSI (Cross Platform) int ReverseLastTransaction(); Unicode (Windows) INT ReverseLastTransaction();
int dpaymentssdk_fdmsgiftcard_reverselasttransaction(void* lpObj);
int ReverseLastTransaction();
Remarks
If a transaction times out or you are otherwise unsure if it completed successfully, immediately use this method to reverse it. If the transaction had gone through successfully, the ResponseCode will be "00" and the other Response properties will show the results of the reversal. If the transaction was never actually received by the FDMS Closed Loop Gift Card System you will get a ResponseCode of "33", indicating that no previous transaction was found to reverse.
The ResponseCode and ResponseText properties indicate whether this transaction was successful.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
VoidTransaction Method (FDMSGiftCard Class)
Voids a previous transaction.
Syntax
ANSI (Cross Platform) int VoidTransaction(); Unicode (Windows) INT VoidTransaction();
int dpaymentssdk_fdmsgiftcard_voidtransaction(void* lpObj);
int VoidTransaction();
Remarks
This method is used to void a transaction previously made with the RedeemCard, LoadCard, or ActivateCard methods. The VoidType property indicates the type of transaction you wish to void. Voiding a redemption adds the TransactionAmount back onto the gift card. Voiding a Load removes the TransactionAmount from the card. Voiding an Activation removes the TransactionAmount from the card and resets the state of the card to unactivated. However, Activations can only be voided if any subsequent transactions after the initial activation are voided first. See the VoidType property for more information.
The ResponseCode and ResponseText properties indicate whether this transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister class. (You may update your list of service provider URLs with the FDMSRegister class's ServiceDiscovery method).
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Connected Event (FDMSGiftCard Class)
This event is fired immediately after a connection completes (or fails).
Syntax
ANSI (Cross Platform) virtual int FireConnected(FDMSGiftCardConnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } FDMSGiftCardConnectedEventParams;
Unicode (Windows) virtual INT FireConnected(FDMSGiftCardConnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } FDMSGiftCardConnectedEventParams;
#define EID_FDMSGIFTCARD_CONNECTED 1 virtual INT DPAYMENTSSDK_CALL FireConnected(INT &iStatusCode, LPSTR &lpszDescription);
class FDMSGiftCardConnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Connected(FDMSGiftCardConnectedEventParams *e);
// Or, subclass FDMSGiftCard and override this emitter function. virtual int FireConnected(FDMSGiftCardConnectedEventParams *e) {...}
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
DataPacketIn Event (FDMSGiftCard Class)
Fired when receiving a data packet from the transaction server.
Syntax
ANSI (Cross Platform) virtual int FireDataPacketIn(FDMSGiftCardDataPacketInEventParams *e);
typedef struct {
const char *DataPacket; int lenDataPacket; int reserved; } FDMSGiftCardDataPacketInEventParams;
Unicode (Windows) virtual INT FireDataPacketIn(FDMSGiftCardDataPacketInEventParams *e);
typedef struct {
LPCSTR DataPacket; INT lenDataPacket; INT reserved; } FDMSGiftCardDataPacketInEventParams;
#define EID_FDMSGIFTCARD_DATAPACKETIN 2 virtual INT DPAYMENTSSDK_CALL FireDataPacketIn(LPSTR &lpDataPacket, INT &lenDataPacket);
class FDMSGiftCardDataPacketInEventParams { public: const QByteArray &DataPacket(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void DataPacketIn(FDMSGiftCardDataPacketInEventParams *e);
// Or, subclass FDMSGiftCard and override this emitter function. virtual int FireDataPacketIn(FDMSGiftCardDataPacketInEventParams *e) {...}
Remarks
This event fires when a packet is received. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or to extract additional response properties beyond the scope of this class.
DataPacketOut Event (FDMSGiftCard Class)
Fired when sending a data packet to the transaction server.
Syntax
ANSI (Cross Platform) virtual int FireDataPacketOut(FDMSGiftCardDataPacketOutEventParams *e);
typedef struct {
const char *DataPacket; int lenDataPacket; int reserved; } FDMSGiftCardDataPacketOutEventParams;
Unicode (Windows) virtual INT FireDataPacketOut(FDMSGiftCardDataPacketOutEventParams *e);
typedef struct {
LPCSTR DataPacket; INT lenDataPacket; INT reserved; } FDMSGiftCardDataPacketOutEventParams;
#define EID_FDMSGIFTCARD_DATAPACKETOUT 3 virtual INT DPAYMENTSSDK_CALL FireDataPacketOut(LPSTR &lpDataPacket, INT &lenDataPacket);
class FDMSGiftCardDataPacketOutEventParams { public: const QByteArray &DataPacket(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void DataPacketOut(FDMSGiftCardDataPacketOutEventParams *e);
// Or, subclass FDMSGiftCard and override this emitter function. virtual int FireDataPacketOut(FDMSGiftCardDataPacketOutEventParams *e) {...}
Remarks
This event fires right before each data packet is sent. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or may be modified to support additional features beyond the scope of this class.
Disconnected Event (FDMSGiftCard Class)
This event is fired when a connection is closed.
Syntax
ANSI (Cross Platform) virtual int FireDisconnected(FDMSGiftCardDisconnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } FDMSGiftCardDisconnectedEventParams;
Unicode (Windows) virtual INT FireDisconnected(FDMSGiftCardDisconnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } FDMSGiftCardDisconnectedEventParams;
#define EID_FDMSGIFTCARD_DISCONNECTED 4 virtual INT DPAYMENTSSDK_CALL FireDisconnected(INT &iStatusCode, LPSTR &lpszDescription);
class FDMSGiftCardDisconnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Disconnected(FDMSGiftCardDisconnectedEventParams *e);
// Or, subclass FDMSGiftCard and override this emitter function. virtual int FireDisconnected(FDMSGiftCardDisconnectedEventParams *e) {...}
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
Error Event (FDMSGiftCard Class)
Fired when information is available about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(FDMSGiftCardErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } FDMSGiftCardErrorEventParams;
Unicode (Windows) virtual INT FireError(FDMSGiftCardErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } FDMSGiftCardErrorEventParams;
#define EID_FDMSGIFTCARD_ERROR 5 virtual INT DPAYMENTSSDK_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class FDMSGiftCardErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(FDMSGiftCardErrorEventParams *e);
// Or, subclass FDMSGiftCard and override this emitter function. virtual int FireError(FDMSGiftCardErrorEventParams *e) {...}
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
SSLServerAuthentication Event (FDMSGiftCard Class)
Fired after the server presents its certificate to the client.
Syntax
ANSI (Cross Platform) virtual int FireSSLServerAuthentication(FDMSGiftCardSSLServerAuthenticationEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } FDMSGiftCardSSLServerAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSLServerAuthentication(FDMSGiftCardSSLServerAuthenticationEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } FDMSGiftCardSSLServerAuthenticationEventParams;
#define EID_FDMSGIFTCARD_SSLSERVERAUTHENTICATION 6 virtual INT DPAYMENTSSDK_CALL FireSSLServerAuthentication(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class FDMSGiftCardSSLServerAuthenticationEventParams { public: const QByteArray &CertEncoded(); const QString &CertSubject(); const QString &CertIssuer(); const QString &Status(); bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLServerAuthentication(FDMSGiftCardSSLServerAuthenticationEventParams *e);
// Or, subclass FDMSGiftCard and override this emitter function. virtual int FireSSLServerAuthentication(FDMSGiftCardSSLServerAuthenticationEventParams *e) {...}
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (FDMSGiftCard Class)
Fired when secure connection progress messages are available.
Syntax
ANSI (Cross Platform) virtual int FireSSLStatus(FDMSGiftCardSSLStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } FDMSGiftCardSSLStatusEventParams;
Unicode (Windows) virtual INT FireSSLStatus(FDMSGiftCardSSLStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } FDMSGiftCardSSLStatusEventParams;
#define EID_FDMSGIFTCARD_SSLSTATUS 7 virtual INT DPAYMENTSSDK_CALL FireSSLStatus(LPSTR &lpszMessage);
class FDMSGiftCardSSLStatusEventParams { public: const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLStatus(FDMSGiftCardSSLStatusEventParams *e);
// Or, subclass FDMSGiftCard and override this emitter function. virtual int FireSSLStatus(FDMSGiftCardSSLStatusEventParams *e) {...}
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
Status Event (FDMSGiftCard Class)
Shows the progress of the FDMS/Datawire connection.
Syntax
ANSI (Cross Platform) virtual int FireStatus(FDMSGiftCardStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } FDMSGiftCardStatusEventParams;
Unicode (Windows) virtual INT FireStatus(FDMSGiftCardStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } FDMSGiftCardStatusEventParams;
#define EID_FDMSGIFTCARD_STATUS 8 virtual INT DPAYMENTSSDK_CALL FireStatus(LPSTR &lpszMessage);
class FDMSGiftCardStatusEventParams { public: const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Status(FDMSGiftCardStatusEventParams *e);
// Or, subclass FDMSGiftCard and override this emitter function. virtual int FireStatus(FDMSGiftCardStatusEventParams *e) {...}
Remarks
The event is fired for informational and logging purposes only. Used to track the progress of the connection.
Config Settings (FDMSGiftCard Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.FDMSGiftCard Config Settings
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this config is set to false.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to true, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This setting is only applicable when SSLProvider is set to Internal.
If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for UDP ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (FDMSGiftCard Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
FDMSGiftCard Errors
432 Invalid index. | |
501 Invalid length for this property. | |
502 Invalid data format for this property. | |
503 Value is out of range. | |
504 Credit card digit check failed. | |
505 Card date invalid. | |
506 Card expired. | |
519 Corrupt response. | |
520 Response payload empty. | |
521 Response truncated. | |
526 Invalid timeout value. | |
593 A property required for this transaction is missing. | |
529 Error in XML response. | |
530 Status code received in response indicates an error condition. | |
531 Return code received in response indicates an error condition. | |
532 Cannot generate detail aggregate - this transaction was not successfully authorized. | |
533 Internal error constructing payload. |
The class may also return one of the following error codes, which are inherited from other classes.
HTTP Errors
118 Firewall Error. Error description contains detailed message. | |
143 Busy executing current method. | |
151 HTTP protocol error. The error message has the server response. | |
152 No server specified in URL | |
153 Specified URLScheme is invalid. | |
155 Range operation is not supported by server. | |
156 Invalid cookie index (out of range). | |
301 Interrupted. | |
302 Can't open AttachedFile. |
The class may also return one of the following error codes, which are inherited from other classes.
TCPClient Errors
100 You cannot change the RemotePort at this time. A connection is in progress. | |
101 You cannot change the RemoteHost (Server) at this time. A connection is in progress. | |
102 The RemoteHost address is invalid (0.0.0.0). | |
104 Already connected. If you want to reconnect, close the current connection first. | |
106 You cannot change the LocalPort at this time. A connection is in progress. | |
107 You cannot change the LocalHost at this time. A connection is in progress. | |
112 You cannot change MaxLineLength at this time. A connection is in progress. | |
116 RemotePort cannot be zero. Please specify a valid service port number. | |
117 You cannot change the UseConnection option while the class is active. | |
135 Operation would block. | |
201 Timeout. | |
211 Action impossible in control's present state. | |
212 Action impossible while not connected. | |
213 Action impossible while listening. | |
301 Timeout. | |
302 Could not open file. | |
434 Unable to convert string to selected CodePage. | |
1105 Already connecting. If you want to reconnect, close the current connection first. | |
1117 You need to connect first. | |
1119 You cannot change the LocalHost at this time. A connection is in progress. | |
1120 Connection dropped by remote host. |
SSL Errors
270 Cannot load specified security library. | |
271 Cannot open certificate store. | |
272 Cannot find specified certificate. | |
273 Cannot acquire security credentials. | |
274 Cannot find certificate chain. | |
275 Cannot verify certificate chain. | |
276 Error during handshake. | |
280 Error verifying certificate. | |
281 Could not find client certificate. | |
282 Could not find server certificate. | |
283 Error encrypting data. | |
284 Error decrypting data. |
TCP/IP Errors
10004 [10004] Interrupted system call. | |
10009 [10009] Bad file number. | |
10013 [10013] Access denied. | |
10014 [10014] Bad address. | |
10022 [10022] Invalid argument. | |
10024 [10024] Too many open files. | |
10035 [10035] Operation would block. | |
10036 [10036] Operation now in progress. | |
10037 [10037] Operation already in progress. | |
10038 [10038] Socket operation on non-socket. | |
10039 [10039] Destination address required. | |
10040 [10040] Message too long. | |
10041 [10041] Protocol wrong type for socket. | |
10042 [10042] Bad protocol option. | |
10043 [10043] Protocol not supported. | |
10044 [10044] Socket type not supported. | |
10045 [10045] Operation not supported on socket. | |
10046 [10046] Protocol family not supported. | |
10047 [10047] Address family not supported by protocol family. | |
10048 [10048] Address already in use. | |
10049 [10049] Can't assign requested address. | |
10050 [10050] Network is down. | |
10051 [10051] Network is unreachable. | |
10052 [10052] Net dropped connection or reset. | |
10053 [10053] Software caused connection abort. | |
10054 [10054] Connection reset by peer. | |
10055 [10055] No buffer space available. | |
10056 [10056] Socket is already connected. | |
10057 [10057] Socket is not connected. | |
10058 [10058] Can't send after socket shutdown. | |
10059 [10059] Too many references, can't splice. | |
10060 [10060] Connection timed out. | |
10061 [10061] Connection refused. | |
10062 [10062] Too many levels of symbolic links. | |
10063 [10063] File name too long. | |
10064 [10064] Host is down. | |
10065 [10065] No route to host. | |
10066 [10066] Directory not empty | |
10067 [10067] Too many processes. | |
10068 [10068] Too many users. | |
10069 [10069] Disc Quota Exceeded. | |
10070 [10070] Stale NFS file handle. | |
10071 [10071] Too many levels of remote in path. | |
10091 [10091] Network subsystem is unavailable. | |
10092 [10092] WINSOCK DLL Version out of range. | |
10093 [10093] Winsock not loaded yet. | |
11001 [11001] Host not found. | |
11002 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
11003 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
11004 [11004] Valid name, no data record (check DNS setup). |