GlobalCardValidator Component
Properties Methods Events Config Settings Errors
The GlobalCardValidator component is used to verify with Global Payments that a given card number is formatted properly, and could be a valid card number. Validating a card before actually submitting a transaction for authorization can reduce the fees that may be associated with invalid or declined transactions.
Syntax
TibcGlobalCardValidator
Remarks
Utilization of this component catches accidentally mistyped card numbers and allows buyers to re-input their number without having the transaction declined. It can also determine the type of credit card (Visa, MasterCard, Discover, etc) so that you can easily determine if the customer is presenting a payment type which you do not support. The component can also parse swiped track data and perform these same checks on it.
There are four checks performed by the ValidateCard method on the customer's credit card information:
- The card number is checked for validity using the Luhn mod-10 algorithm.
- The type of the card (Visa, MasterCard, etc.) is computed from the card number.
- The expiration date is checked against the current system date.
- The length of the card number is checked to see if it's a valid length for the computed card type.
In addition, the IsCommercialCard method will attempt to determine if the specified CardNumber is a commercial or purchasing card, and the GetDebitNetworkInfo method will attempt to determine if the CardNumber is a debit card. This way you can pass Level 2 data (Tax amount and purchase order number) for commercial cards, or ask for a PIN for debit cards, and receive a lower interchange rate for the transaction.
This component will query the Global Transport Server to perform the above checks. The UserId and Password is only required for the GetDebitNetworkInfo method, neither IsCommercialCard or ValidateCard require authentication to use. The first three checks made by the ValidateCard method may also be performed off-line by setting the ValidationMode configuration setting to "Local" instead of "Global". In this case, the mod-10 check will be computed mathematically by the component, and the expiration date will be checked against the current system time. The CardTypeDescription will be computed using an internal set of rules, but do note that these will not be as up-to-date as the rules the Global Payments Server uses. The length check will only be performed when ValidationMode is set to "Global" mode.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
CardExpMonth | Expiration month of the card specified in CardNumber . |
CardExpYear | Expiration month of the card specified in CardNumber . |
CardNumber | Card number to be validated. |
CardType | Indicates the results of the Luhn Digit Check algorithm. |
CardTypeDescription | Human-readable description of the CardType . |
DateCheckPassed | Indicates whether the card is expired or not. |
DigitCheckPassed | Indicates the results of the Luhn Digit Check algorithm. |
LengthCheckPassed | Indicates the results of the card number length check. |
NetworkInfoAuthorizerNumber | Two-digit code that identifies the debit network. |
NetworkInfoCode | Contains the transaction result code from the Global Transport Gateway. |
NetworkInfoId | Identification code for the debit network. |
NetworkInfoName | Name of the debit network. |
NetworkInfoOfflineSupported | Indicates whether offline transactions are supported for the debit network. |
Password | Password for authentication with the Global Payments Server . |
ProxyAuthScheme | This property is used to tell the component which type of authorization to perform when connecting to the proxy. |
ProxyAutoDetect | This property tells the component whether or not to automatically detect and use proxy system settings, if available. |
ProxyPassword | This property contains a password if authentication is to be used for the proxy. |
ProxyPort | This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). |
ProxyServer | If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified. |
ProxySSL | This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. |
ProxyUser | This property contains a username if authentication is to be used for the proxy. |
Server | Global Payments transaction server. |
SSLAcceptServerCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSLCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSLCertStore | This is the name of the certificate store for the client certificate. |
SSLCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSLCertStoreType | This is the type of certificate store for this certificate. |
SSLCertSubject | This is the subject of the certificate used for client authentication. |
SSLProvider | This specifies the SSL/TLS implementation to use. |
SSLServerCertEncoded | This is the certificate (PEM/Base64 encoded). |
Timeout | A timeout for the component. |
TrackData | Magnetic stripe data read off the card. |
TrackType | Indicates the type of the specified TrackData . |
UserId | UserId for authentication with the Global Payments Server . |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
GetDebitNetworkInfo | Determines if the card is a debit card, and which network it belongs to. |
Interrupt | Interrupt the current method. |
IsCommercialCard | Indicates whether or not the CardNumber is for a commercial/purchasing card. |
Reset | Clears all properties to their default values. |
ValidateCard | Checks the card number and expiration date for validity. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
Status | Shows the progress of the Global Payments connection. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
RawRequest | Returns the request sent to the server for debugging purposes. |
RawResponse | Returns the response received from the server for debugging purposes. |
ValidationMode | Determines whether to use the Global Utility services for validation, or compute it locally. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the component whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the component binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
CardExpMonth Property (GlobalCardValidator Component)
Expiration month of the card specified in CardNumber .
Syntax
__property int CardExpMonth = { read=FCardExpMonth, write=FSetCardExpMonth };
Default Value
1
Remarks
This field contains the month portion of the expiration date of the customer's card. This property must be in the range 1 - 12. The ValidateCard method compares this property against the system time to determine if the card is expired.
Data Type
Integer
CardExpYear Property (GlobalCardValidator Component)
Expiration month of the card specified in CardNumber .
Syntax
__property int CardExpYear = { read=FCardExpYear, write=FSetCardExpYear };
Default Value
0
Remarks
This field contains the year portion of the expiration date of the customer's card. This property must be in the range 00-99, or 2000-2099. The ValidateCard method compares this property against the system time to determine if the card is expired.
Data Type
Integer
CardNumber Property (GlobalCardValidator Component)
Card number to be validated.
Syntax
__property String CardNumber = { read=FCardNumber, write=FSetCardNumber };
Default Value
""
Remarks
This property contains the customer's card number. A card number may be of any length, and may optionally include dashes or spaces. However, in practice the maximum length of the supported CardTypes is 19 characters (excluding whitespace), and the minimum length is 13 characters.
Data Type
String
CardType Property (GlobalCardValidator Component)
Indicates the results of the Luhn Digit Check algorithm.
Syntax
__property TibcGlobalCardValidatorCardTypes CardType = { read=FCardType };
enum TibcGlobalCardValidatorCardTypes { vctUnknown=0, vctVisa=1, vctMasterCard=2, vctAmex=3, vctDiscover=4, vctDiners=5, vctJCB=6, vctBankCard=7, vctVisaElectron=8, vctSolo=9, vctSwitch=10, vctMaestro=11, vctCUP=12, vctLaser=13, vctVisaPurchase=14, vctMCardPurchase=15, vctTempoPayments=16 };
Default Value
vctUnknown
Remarks
This property is filled after a call to the ValidateCard method. Allowable values include:
ctUnknown (0) | The component could not determine the type of the card based on the CardNumber prefix and length. |
vctVisa (1) | Visa card. |
vctMasterCard (2) | MasterCard card. |
vctAmex (3) | American Express card. |
vctDiscover (4) | Discover Card |
vctDiners (5) | Diner's Club card (Carte Blanche, International, or enRoute - the CardTypeDescription will contain the full name). |
vctJCB (6) | Japan Credit Bureau card. |
vctBankCard (7) | Australian shared brand credit card (no longer in circulation). |
vctVisaElectron (8) | International Visa debit card (not available in US or Canada). |
vctSolo (9) | UK-based debit card, similar to the Visa Electron card. |
vctSwitch (10) | Another UK-based debit card. Sister to the Solo card. |
vctMaestro (11) | International debit card (owned and operated by MasterCard). |
vctCUP (12) | China Union Pay - China's only credit card organization. |
vctLaser (13) | Primary debit card used in Ireland. |
vctVisaPurchase (14) | Visa Purchasing Card. |
vctMCardPurchase (15) | MasterCard Purchasing Card. |
vctTempoPayments (16) | Tempo Payments Card (debit). |
vctFlexCache (17) | Chase Paymentech FlexCache Stored Value Cards. |
Note that this integer value is computed by the component, the actual value returned from the Global Transport Server will be contained in CardTypeDescription.
This property is read-only and not available at design time.
Data Type
Integer
CardTypeDescription Property (GlobalCardValidator Component)
Human-readable description of the CardType .
Syntax
__property String CardTypeDescription = { read=FCardTypeDescription };
Default Value
""
Remarks
This property is filled after calling the ValidateCard method, and will contain a text description of the CardType. This is useful to distinguish different program cards. For instance, a CardType of ccDiners might have a corresponding CardTypeDescription of "Diner's Club International", "Diner's Club Carte Blanche", or "Diner's Club enRoute".
Note that this property will contain the exact text returned by the Global Transport Server.
This property is read-only.
Data Type
String
DateCheckPassed Property (GlobalCardValidator Component)
Indicates whether the card is expired or not.
Syntax
__property bool DateCheckPassed = { read=FDateCheckPassed };
Default Value
false
Remarks
The ValidateCard method checks whether the card's expiration date (CardExpMonth and CardExpYear) is a valid future date, and stores that result in the DateCheckPassed property.
This property is read-only.
Data Type
Boolean
DigitCheckPassed Property (GlobalCardValidator Component)
Indicates the results of the Luhn Digit Check algorithm.
Syntax
__property bool DigitCheckPassed = { read=FDigitCheckPassed };
Default Value
false
Remarks
The ValidateCard method checks whether or not the CardNumber conforms to the mod-10 digit check algorithm, and stores that result in the DigitCheckPassed property. Note that a card may pass this check and still be an invalid card. (Either a fake number that passes the digit check, or an unknown CardType).
This property is read-only.
Data Type
Boolean
LengthCheckPassed Property (GlobalCardValidator Component)
Indicates the results of the card number length check.
Syntax
__property bool LengthCheckPassed = { read=FLengthCheckPassed };
Default Value
false
Remarks
The ValidateCard method checks whether or not the CardNumber's length is appropriate for the card's prefix, and stores that result in the LengthCheckPassed property. Note that a card may pass this check and still be an invalid card. (For instance, a fake number that passes the length check).
This property is read-only.
Data Type
Boolean
NetworkInfoAuthorizerNumber Property (GlobalCardValidator Component)
Two-digit code that identifies the debit network.
Syntax
__property String NetworkInfoAuthorizerNumber = { read=FNetworkInfoAuthorizerNumber };
Default Value
""
Remarks
Two-digit code that identifies the debit network. The NetworkInfoNetworkName NetworkInfoNetworkId and NetworkInfoAuthorizerNumber properties are used to identify the debit network to which the card belongs. The current list of available networks is shown below:
NetworkInfoName | NetworkInfoId | NetworkInfoAuthorizerNumber |
Accel | ACL | 69 |
AFFN | AFN | 68 |
Alaska Option | AKO | 61 |
CU24 | C24 | 85 |
Interlink | ILK | 48 |
Jeanie | JEN | 86 |
Star Northeast (MAC) | MAC | 17 |
Maestro | MAE | 40 |
Nets | NET | 83 |
NYCE | NYC | 28 |
Pulse | PUL | 06 |
Star Southeast | SES | 07 |
Shazam | SHZ | 58 |
Star West | STX | 23 |
TYME | TYM | 78 |
This property will be blank if the card number you're validating does not belong to a debit card.
This property is read-only.
Data Type
String
NetworkInfoCode Property (GlobalCardValidator Component)
Contains the transaction result code from the Global Transport Gateway.
Syntax
__property String NetworkInfoCode = { read=FNetworkInfoCode };
Default Value
""
Remarks
Contains the transaction result code from the Global Transport Gateway. This value signifies the result of the transaction (i.e. approved, declined, etc). When programmatically validating a transaction's result, this value should ALWAYS be used instead of any response message describing the result. See the table below for a full list of result codes and descriptions.
-100 | Transaction NOT Processed; Generic Host Error. |
0 | Approved. |
2 | Invalid Transaction. |
3 | Invalid Transaction Type. |
3 | Unsupported Transaction Type. |
4 | Invalid Amount. |
4 | Invalid Cash Back Amount. |
5 | Invalid Merchant Information. |
6 | Time Out Waiting for Host Response. |
7 | Field Format Error. See Message and MessageDetail for more info. |
7 | Swiped and Card Present transactions are not supported in Card Not Present markets. |
8 | Not a Transaction Server. |
11 | Client Timeout Waiting for Response. |
12 | Declined. |
14 | Transaction Type Not Supported In This Version. |
19 | Original Transaction Id, PNRef, or Approval Code Not Found. |
20 | Customer Reference Number Not Found. |
22 | Invalid ABA Number. |
23 | Invalid Account Number. |
24 | Invalid Expiration Date. |
25 | Transaction Type Not Supported by Host. |
26 | Invalid Reference Number or PNRef. |
27 | Invalid Receipt Information. |
28 | Invalid Check Holder Name. |
29 | Invalid Check Number. |
30 | Check DL Verification Requires DL State. |
31 | Cannot perform multiple captures on a PreAuth. |
40 | Not Currently Supported. |
50 | Insufficient Funds Available. |
99 | General Error. |
100 | Invalid Transaction Returned from Host. |
101 | Timeout Value too Small or Invalid Time Out Value. |
102 | Processor Not Available. |
103 | Error Reading Response from Host. |
104 | Timeout waiting for Processor Response. |
105 | Credit Error. |
106 | Host Not Available. |
107 | Duplicate Suppression Timeout. |
108 | Void Error/Cannot void a previously voided or settled transaction. |
109 | Timeout Waiting for Host Response. |
110 | Duplicate Transaction. |
111 | Capture Error. |
112 | Failed AVS Check. |
113 | Cannot Exceed Sales Cap / Requested Refund Exceeds Available Refund Amount. |
114 | Cannot refund a voided transaction. |
115 | Sum of Tax, Tip, and Cash Back amount cannot exceed total Amount. |
116 | Unsupported Card Type. |
117 | Only Sales, Repeat Sales, Force Captures, and Post Authorizations can be refunded. |
118 | The amount of a Pre-Auth Complete (Capture) must be less than or equal to the original amount authorized. Please retry. |
200 | A Partial Authorization of a pre-paid card. This is considered an Approved transaction. Check the AuthorizedAmount property for the amount approved. See below for more information. |
1000 | Generic Host Error or General Exception. (Missing or invalid data). See Message and MessageDetail for more info. |
1001 | Invalid Login Information. |
1002 | Insufficient Privilege or Invalid Amount. |
1002 | AVS Only transactions are not supported in E-Commerce markets. |
1002 | Debit/EBT Return transactions must provide the PNRef from the original Sale. Please retry. |
1002 | Zip is required for AVS Only transaction type. |
1003 | Invalid Login Blocked. |
1004 | Invalid Login Deactivated. |
1005 | Transaction Type or Service Not Allowed. |
1006 | Unsupported Processor. |
1007 | Invalid Request Message. |
1008 | Invalid Version / The MAC value is required. |
1010 | Payment Type Not Supported. |
1011 | Error Starting Transaction. |
1012 | Error Finishing Transaction. |
1013 | Error Checking Duplicate. |
1014 | No Records To Settle (in the current batch). |
1015 | No Records To Process (in the current batch). |
A Partial Authorization transaction occurs when the issuer authorizes part of the sale amount on a pre-paid credit card. The transaction is approved for an amount less than the original TransactionAmount, and the customer must tender the remaining balance with another form of payment. When a transaction is partially approved, the NetworkInfoCode will contain "200", the NetworkInfoMessage will contain "Partial Approval", and the NetworkInfoMessageDetail will contain "PARTIAL AP", "PARTIALLY APPROVED", or "PARTIALLY APPROVED AUTHONLY" (for auth-only transactions). the NetworkInfoAuthorizedAmount will contain the amount of the transaction that was authorized, and the NetworkInfoBalanceDue property will indicate the amount still owed by the customer.
If a partial authorization occurs and the customer does not wish to go through with the transaction, you must submit a reversal of the authorization in order to return funds to the prepaid card.
This property is read-only.
Data Type
String
NetworkInfoId Property (GlobalCardValidator Component)
Identification code for the debit network.
Syntax
__property String NetworkInfoId = { read=FNetworkInfoId };
Default Value
""
Remarks
Identification code for the debit network. The NetworkInfoNetworkName NetworkInfoNetworkId and NetworkInfoAuthorizerNumber properties are used to identify the debit network to which the card belongs. The current list of available networks is shown below:
NetworkInfoName | NetworkInfoId | NetworkInfoAuthorizerNumber |
Accel | ACL | 69 |
AFFN | AFN | 68 |
Alaska Option | AKO | 61 |
CU24 | C24 | 85 |
Interlink | ILK | 48 |
Jeanie | JEN | 86 |
Star Northeast (MAC) | MAC | 17 |
Maestro | MAE | 40 |
Nets | NET | 83 |
NYCE | NYC | 28 |
Pulse | PUL | 06 |
Star Southeast | SES | 07 |
Shazam | SHZ | 58 |
Star West | STX | 23 |
TYME | TYM | 78 |
This property will be blank if the card number you're validating does not belong to a debit card.
This property is read-only.
Data Type
String
NetworkInfoName Property (GlobalCardValidator Component)
Name of the debit network.
Syntax
__property String NetworkInfoName = { read=FNetworkInfoName };
Default Value
""
Remarks
Name of the debit network. The NetworkInfoNetworkName NetworkInfoNetworkId and NetworkInfoAuthorizerNumber properties are used to identify the debit network to which the card belongs. The current list of available networks is shown below:
NetworkInfoName | NetworkInfoId | NetworkInfoAuthorizerNumber |
Accel | ACL | 69 |
AFFN | AFN | 68 |
Alaska Option | AKO | 61 |
CU24 | C24 | 85 |
Interlink | ILK | 48 |
Jeanie | JEN | 86 |
Star Northeast (MAC) | MAC | 17 |
Maestro | MAE | 40 |
Nets | NET | 83 |
NYCE | NYC | 28 |
Pulse | PUL | 06 |
Star Southeast | SES | 07 |
Shazam | SHZ | 58 |
Star West | STX | 23 |
TYME | TYM | 78 |
This property will be blank if the card number you're validating does not belong to a debit card.
This property is read-only.
Data Type
String
NetworkInfoOfflineSupported Property (GlobalCardValidator Component)
Indicates whether offline transactions are supported for the debit network.
Syntax
__property bool NetworkInfoOfflineSupported = { read=FNetworkInfoOfflineSupported };
Default Value
false
Remarks
Indicates whether offline transactions are supported for the debit network.
This property is read-only.
Data Type
Boolean
Password Property (GlobalCardValidator Component)
Password for authentication with the Global Payments Server .
Syntax
__property String Password = { read=FPassword, write=FSetPassword };
Default Value
""
Remarks
The Password will be supplied to you by Global Payments.
Data Type
String
ProxyAuthScheme Property (GlobalCardValidator Component)
This property is used to tell the component which type of authorization to perform when connecting to the proxy.
Syntax
__property TibcGlobalCardValidatorProxyAuthSchemes ProxyAuthScheme = { read=FProxyAuthScheme, write=FSetProxyAuthScheme };
enum TibcGlobalCardValidatorProxyAuthSchemes { authBasic=0, authDigest=1, authProprietary=2, authNone=3, authNtlm=4, authNegotiate=5 };
Default Value
authBasic
Remarks
This property is used to tell the component which type of authorization to perform when connecting to the proxy. This is used only when the ProxyUser and ProxyPassword properties are set.
ProxyAuthScheme should be set to authNone (3) when no authentication is expected.
By default, ProxyAuthScheme is authBasic (0), and if the ProxyUser and ProxyPassword properties are set, the component will attempt basic authentication.
If ProxyAuthScheme is set to authDigest (1), digest authentication will be attempted instead.
If ProxyAuthScheme is set to authProprietary (2), then the authorization token will not be generated by the component. Look at the configuration file for the component being used to find more information about manually setting this token.
If ProxyAuthScheme is set to authNtlm (4), NTLM authentication will be used.
For security reasons, setting this property will clear the values of ProxyUser and ProxyPassword.
Data Type
Integer
ProxyAutoDetect Property (GlobalCardValidator Component)
This property tells the component whether or not to automatically detect and use proxy system settings, if available.
Syntax
__property bool ProxyAutoDetect = { read=FProxyAutoDetect, write=FSetProxyAutoDetect };
Default Value
False
Remarks
This property tells the component whether or not to automatically detect and use proxy system settings, if available. The default value is false.
Data Type
Boolean
ProxyPassword Property (GlobalCardValidator Component)
This property contains a password if authentication is to be used for the proxy.
Syntax
__property String ProxyPassword = { read=FProxyPassword, write=FSetProxyPassword };
Default Value
""
Remarks
This property contains a password if authentication is to be used for the proxy.
If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.
If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.
Data Type
String
ProxyPort Property (GlobalCardValidator Component)
This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
Syntax
__property int ProxyPort = { read=FProxyPort, write=FSetProxyPort };
Default Value
80
Remarks
This property contains the Transmission Control Protocol (TCP) port for the proxy ProxyServer (default 80). See the description of the ProxyServer property for details.
Data Type
Integer
ProxyServer Property (GlobalCardValidator Component)
If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
Syntax
__property String ProxyServer = { read=FProxyServer, write=FSetProxyServer };
Default Value
""
Remarks
If a proxy ProxyServer is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
If the ProxyServer property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the ProxyServer property is set to the corresponding address. If the search is not successful, an error is returned.
Data Type
String
ProxySSL Property (GlobalCardValidator Component)
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
Syntax
__property TibcGlobalCardValidatorProxySSLs ProxySSL = { read=FProxySSL, write=FSetProxySSL };
enum TibcGlobalCardValidatorProxySSLs { psAutomatic=0, psAlways=1, psNever=2, psTunnel=3 };
Default Value
psAutomatic
Remarks
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:
psAutomatic (0) | Default setting. If the URL is an https URL, the component will use the psTunnel option. If the URL is an http URL, the component will use the psNever option. |
psAlways (1) | The connection is always SSL enabled. |
psNever (2) | The connection is not SSL enabled. |
psTunnel (3) | The connection is made through a tunneling (HTTP) proxy. |
Data Type
Integer
ProxyUser Property (GlobalCardValidator Component)
This property contains a username if authentication is to be used for the proxy.
Syntax
__property String ProxyUser = { read=FProxyUser, write=FSetProxyUser };
Default Value
""
Remarks
This property contains a username if authentication is to be used for the proxy.
If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.
If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.
Data Type
String
Server Property (GlobalCardValidator Component)
Global Payments transaction server.
Syntax
__property String Server = { read=FServer, write=FSetServer };
Default Value
"https://api.globalpay.com"
Remarks
This is the server to which all transactions are sent. The live URL for Global Payments is "https://api.globalpay.com". For testing and certification purposes you may set this to the test server located at "https://certapia.globalpay.com" instead.
Data Type
String
SSLAcceptServerCertEncoded Property (GlobalCardValidator Component)
This is the certificate (PEM/Base64 encoded).
Syntax
__property String SSLAcceptServerCertEncoded = { read=FSSLAcceptServerCertEncoded, write=FSetSSLAcceptServerCertEncoded }; __property DynamicArray<Byte> SSLAcceptServerCertEncodedB = { read=FSSLAcceptServerCertEncodedB, write=FSetSSLAcceptServerCertEncodedB };
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.
When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Byte Array
SSLCertEncoded Property (GlobalCardValidator Component)
This is the certificate (PEM/Base64 encoded).
Syntax
__property String SSLCertEncoded = { read=FSSLCertEncoded, write=FSetSSLCertEncoded }; __property DynamicArray<Byte> SSLCertEncodedB = { read=FSSLCertEncodedB, write=FSetSSLCertEncodedB };
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.
When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Byte Array
SSLCertStore Property (GlobalCardValidator Component)
This is the name of the certificate store for the client certificate.
Syntax
__property String SSLCertStore = { read=FSSLCertStore, write=FSetSSLCertStore }; __property DynamicArray<Byte> SSLCertStoreB = { read=FSSLCertStoreB, write=FSetSSLCertStoreB };
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password protected, specify the password in SSLCertStorePassword.
SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Byte Array
SSLCertStorePassword Property (GlobalCardValidator Component)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
__property String SSLCertStorePassword = { read=FSSLCertStorePassword, write=FSetSSLCertStorePassword };
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SSLCertStoreType Property (GlobalCardValidator Component)
This is the type of certificate store for this certificate.
Syntax
__property TibcGlobalCardValidatorSSLCertStoreTypes SSLCertStoreType = { read=FSSLCertStoreType, write=FSetSSLCertStoreType };
enum TibcGlobalCardValidatorSSLCertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };
Default Value
cstUser
Remarks
This is the type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SSLCertSubject Property (GlobalCardValidator Component)
This is the subject of the certificate used for client authentication.
Syntax
__property String SSLCertSubject = { read=FSSLCertSubject, write=FSetSSLCertSubject };
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SSLProvider Property (GlobalCardValidator Component)
This specifies the SSL/TLS implementation to use.
Syntax
__property TibcGlobalCardValidatorSSLProviders SSLProvider = { read=FSSLProvider, write=FSetSSLProvider };
enum TibcGlobalCardValidatorSSLProviders { sslpAutomatic=0, sslpPlatform=1, sslpInternal=2 };
Default Value
sslpAutomatic
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the component will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The component will select a provider depending on the current platform.
When Automatic is selected the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used.
Data Type
Integer
SSLServerCertEncoded Property (GlobalCardValidator Component)
This is the certificate (PEM/Base64 encoded).
Syntax
__property String SSLServerCertEncoded = { read=FSSLServerCertEncoded }; __property DynamicArray<Byte> SSLServerCertEncodedB = { read=FSSLServerCertEncodedB };
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.
When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.
This property is read-only and not available at design time.
Data Type
Byte Array
Timeout Property (GlobalCardValidator Component)
A timeout for the component.
Syntax
__property int Timeout = { read=FTimeout, write=FSetTimeout };
Default Value
60
Remarks
If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.
If Timeout is set to a positive value, the component will wait for the operation to complete before returning control.
The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.
If Timeout expires, and the operation is not yet complete, the component raises an exception.
Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 60 seconds.
Data Type
Integer
TrackData Property (GlobalCardValidator Component)
Magnetic stripe data read off the card.
Syntax
__property String TrackData = { read=FTrackData, write=FSetTrackData };
Default Value
""
Remarks
This property may be set with the magnetic stripe read off the back of a card using any commercially available card reader. You may set this property with either Track1 or Track2 data. If TrackData is set, the values contained in CardNumber, CardExpMonth, and CardExpYear are ignored when calling ValidateCard. Instead, these properties are parsed out of the track data. This allows you to easily retrieve the expiration date and card number from either Track1 or Track2 data. For instance:
CardValidator1.TrackData = "4012000033330026=09121015432112345678"
CardValidator1.ValidateCard()
The CardNumber, CardExpMonth, and CardExpYear will now contain the values parsed from the track data. TrackType will also indicate whether the TrackData is Track1 or Track2 (in this case, it's Track2 data).
Data Type
String
TrackType Property (GlobalCardValidator Component)
Indicates the type of the specified TrackData .
Syntax
__property TibcGlobalCardValidatorTrackTypes TrackType = { read=FTrackType };
enum TibcGlobalCardValidatorTrackTypes { ttUnknown=0, ttTrack1=1, ttTrack2=2 };
Default Value
ttUnknown
Remarks
This property will be filled after a call to ValidateCard. If magnetic stripe data was supplied in the TrackData field, this property will indicate which type of track was entered. If no track data was entered (ie, the CardNumber was specified instead) then the TrackType will be ttUnknown.
This property is read-only and not available at design time.
Data Type
Integer
UserId Property (GlobalCardValidator Component)
UserId for authentication with the Global Payments Server .
Syntax
__property String UserId = { read=FUserId, write=FSetUserId };
Default Value
""
Remarks
The UserId will be supplied to you by Global Payments.
Data Type
String
Config Method (GlobalCardValidator Component)
Sets or retrieves a configuration setting.
Syntax
String __fastcall Config(String ConfigurationString);
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
GetDebitNetworkInfo Method (GlobalCardValidator Component)
Determines if the card is a debit card, and which network it belongs to.
Syntax
void __fastcall GetDebitNetworkInfo();
Remarks
This method retrieves the name, Id, and Authorizer number of the U.S. Debit Network, if the CardNumber matches a debit network's BIN range. The possible networks are detailed in the table below. If there is a match, the card can likely be processed through the U.S. debit network as a PIN-based debit transaction.
NetworkInfoName | NetworkInfoId | NetworkInfoAuthorizerNumber |
Accel | ACL | 69 |
AFFN | AFN | 68 |
Alaska Option | AKO | 61 |
CU24 | C24 | 85 |
Interlink | ILK | 48 |
Jeanie | JEN | 86 |
Star Northeast (MAC) | MAC | 17 |
Maestro | MAE | 40 |
Nets | NET | 83 |
NYCE | NYC | 28 |
Pulse | PUL | 06 |
Star Southeast | SES | 07 |
Shazam | SHZ | 58 |
Star West | STX | 23 |
TYME | TYM | 78 |
If the CardNumber is not a debit card or there is an error communicating with Global Payments, an error code will be stored in the NetworkInfoCode property, and a detailed error message will be contained in the NetworkInfoName property.
Interrupt Method (GlobalCardValidator Component)
Interrupt the current method.
Syntax
void __fastcall Interrupt();
Remarks
If there is no method in progress, Interrupt simply returns, doing nothing.
IsCommercialCard Method (GlobalCardValidator Component)
Indicates whether or not the CardNumber is for a commercial/purchasing card.
Syntax
bool __fastcall IsCommercialCard();
Remarks
This method queries the Global Payments servers as to whether or not the credit card number specified by CardNumber is a commercial card. The Global Payments server compares the card prefix against the latest BIN ranges to determine this. However, please note that due to the dynamic nature of card BIN ranges, not all Commercial/Purchasing cards can be determined by this method. Developers should keep this in mind when designing applications.
The CardNumber is the only property required for this method. If the CardNumber does fall within a Commercial or Purchasing card BIN range, the IsCommercialCard method will return True. If it is not - or if the transaction fails, this method will return False.
Reset Method (GlobalCardValidator Component)
Clears all properties to their default values.
Syntax
void __fastcall Reset();
Remarks
This method clears all properties to their default values.
ValidateCard Method (GlobalCardValidator Component)
Checks the card number and expiration date for validity.
Syntax
void __fastcall ValidateCard();
Remarks
This method performs several checks on customer information to determine if the card information submitted could be valid. This should be done before submitting an actual transaction for authorization. The tests performed are listed below:
Luhn Digit Check | The Global Transport Server checks the digits of the CardNumber to make sure that it could be a valid card number. The result of this check is stored in the DigitCheckPassed property. |
Card Type Check | The beginning digits of the CardNumber are compared to a BIN range by the Global Transport Server to determine if it is a valid card type. The result of this check is stored in the CardTypeDescription property. (the CardType is determined by the component, not by Global Payments). |
Expiration Date Check | The date given in CardExpMonth and CardExpYear is checked by the Global Transport Server to make sure that the card is still valid. The DateCheckPassed property is populated with the result. |
Length Check | Indicates whether the CardNumber's length is appropriate for the card's prefix, and stores the results in the LengthCheckPassed property. |
This component will query the Global Transport Server to perform the above checks. The UserId and Password is only required for the GetDebitNetworkInfo method, neither IsCommercialCard or ValidateCard require authentication to use. The first three checks made by the ValidateCard method may also be performed off-line by setting the ValidationMode configuration setting to "Local" instead of "Global". In this case, the mod-10 check will be computed mathematically by the component, and the expiration date will be checked against the current system time. The CardTypeDescription will be computed using an internal set of rules, but do note that these will not be as up-to-date as the rules the Global Payments Server uses. The length check will only be performed when ValidationMode is set to "Global" mode.
Error Event (GlobalCardValidator Component)
Fired when information is available about errors during data delivery.
Syntax
typedef struct { int ErrorCode; String Description; } TibcGlobalCardValidatorErrorEventParams; typedef void __fastcall (__closure *TibcGlobalCardValidatorErrorEvent)(System::TObject* Sender, TibcGlobalCardValidatorErrorEventParams *e); __property TibcGlobalCardValidatorErrorEvent OnError = { read=FOnError, write=FOnError };
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the component raises an exception.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
SSLServerAuthentication Event (GlobalCardValidator Component)
Fired after the server presents its certificate to the client.
Syntax
typedef struct { String CertEncoded; DynamicArray<Byte> CertEncodedB; String CertSubject; String CertIssuer; String Status; bool Accept; } TibcGlobalCardValidatorSSLServerAuthenticationEventParams; typedef void __fastcall (__closure *TibcGlobalCardValidatorSSLServerAuthenticationEvent)(System::TObject* Sender, TibcGlobalCardValidatorSSLServerAuthenticationEventParams *e); __property TibcGlobalCardValidatorSSLServerAuthenticationEvent OnSSLServerAuthentication = { read=FOnSSLServerAuthentication, write=FOnSSLServerAuthentication };
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (GlobalCardValidator Component)
Fired when secure connection progress messages are available.
Syntax
typedef struct { String Message; } TibcGlobalCardValidatorSSLStatusEventParams; typedef void __fastcall (__closure *TibcGlobalCardValidatorSSLStatusEvent)(System::TObject* Sender, TibcGlobalCardValidatorSSLStatusEventParams *e); __property TibcGlobalCardValidatorSSLStatusEvent OnSSLStatus = { read=FOnSSLStatus, write=FOnSSLStatus };
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
Status Event (GlobalCardValidator Component)
Shows the progress of the Global Payments connection.
Syntax
typedef struct { String Message; } TibcGlobalCardValidatorStatusEventParams; typedef void __fastcall (__closure *TibcGlobalCardValidatorStatusEvent)(System::TObject* Sender, TibcGlobalCardValidatorStatusEventParams *e); __property TibcGlobalCardValidatorStatusEvent OnStatus = { read=FOnStatus, write=FOnStatus };
Remarks
The event is fired for informational and logging purposes only. Used to track the progress of the connection.
Config Settings (GlobalCardValidator Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.GlobalCardValidator Config Settings
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this config is set to false.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to true, the component will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the component is the same.
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When set to 0 (default) the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
When set to 0 (default) the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This setting is only applicable when SSLProvider is set to Internal.
If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the component will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the component will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the component raises an exception.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for UDP ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.
This setting is set to false by default on all platforms.
Trappable Errors (GlobalCardValidator Component)
GlobalCardValidator Errors
432 Invalid index. | |
501 Invalid length for this property. | |
502 Invalid data format for this property. | |
503 Value is out of range. | |
504 Credit card digit check failed. | |
505 Card date invalid. | |
506 Card expired. | |
519 Corrupt response. | |
520 Response payload empty. | |
526 Invalid timeout value. | |
593 A property required for this transaction is missing. | |
529 Error in XML response. | |
533 Internal error constructing payload. |
The component may also return one of the following error codes, which are inherited from other components.
HTTP Errors
118 Firewall Error. Error description contains detailed message. | |
143 Busy executing current method. | |
151 HTTP protocol error. The error message has the server response. | |
152 No server specified in URL | |
153 Specified URLScheme is invalid. | |
155 Range operation is not supported by server. | |
156 Invalid cookie index (out of range). | |
301 Interrupted. | |
302 Can't open AttachedFile. |
The component may also return one of the following error codes, which are inherited from other components.
TCPClient Errors
100 You cannot change the RemotePort at this time. A connection is in progress. | |
101 You cannot change the RemoteHost (Server) at this time. A connection is in progress. | |
102 The RemoteHost address is invalid (0.0.0.0). | |
104 Already connected. If you want to reconnect, close the current connection first. | |
106 You cannot change the LocalPort at this time. A connection is in progress. | |
107 You cannot change the LocalHost at this time. A connection is in progress. | |
112 You cannot change MaxLineLength at this time. A connection is in progress. | |
116 RemotePort cannot be zero. Please specify a valid service port number. | |
117 You cannot change the UseConnection option while the component is active. | |
135 Operation would block. | |
201 Timeout. | |
211 Action impossible in control's present state. | |
212 Action impossible while not connected. | |
213 Action impossible while listening. | |
301 Timeout. | |
302 Could not open file. | |
434 Unable to convert string to selected CodePage. | |
1105 Already connecting. If you want to reconnect, close the current connection first. | |
1117 You need to connect first. | |
1119 You cannot change the LocalHost at this time. A connection is in progress. | |
1120 Connection dropped by remote host. |
SSL Errors
270 Cannot load specified security library. | |
271 Cannot open certificate store. | |
272 Cannot find specified certificate. | |
273 Cannot acquire security credentials. | |
274 Cannot find certificate chain. | |
275 Cannot verify certificate chain. | |
276 Error during handshake. | |
280 Error verifying certificate. | |
281 Could not find client certificate. | |
282 Could not find server certificate. | |
283 Error encrypting data. | |
284 Error decrypting data. |
TCP/IP Errors
10004 [10004] Interrupted system call. | |
10009 [10009] Bad file number. | |
10013 [10013] Access denied. | |
10014 [10014] Bad address. | |
10022 [10022] Invalid argument. | |
10024 [10024] Too many open files. | |
10035 [10035] Operation would block. | |
10036 [10036] Operation now in progress. | |
10037 [10037] Operation already in progress. | |
10038 [10038] Socket operation on non-socket. | |
10039 [10039] Destination address required. | |
10040 [10040] Message too long. | |
10041 [10041] Protocol wrong type for socket. | |
10042 [10042] Bad protocol option. | |
10043 [10043] Protocol not supported. | |
10044 [10044] Socket type not supported. | |
10045 [10045] Operation not supported on socket. | |
10046 [10046] Protocol family not supported. | |
10047 [10047] Address family not supported by protocol family. | |
10048 [10048] Address already in use. | |
10049 [10049] Can't assign requested address. | |
10050 [10050] Network is down. | |
10051 [10051] Network is unreachable. | |
10052 [10052] Net dropped connection or reset. | |
10053 [10053] Software caused connection abort. | |
10054 [10054] Connection reset by peer. | |
10055 [10055] No buffer space available. | |
10056 [10056] Socket is already connected. | |
10057 [10057] Socket is not connected. | |
10058 [10058] Can't send after socket shutdown. | |
10059 [10059] Too many references, can't splice. | |
10060 [10060] Connection timed out. | |
10061 [10061] Connection refused. | |
10062 [10062] Too many levels of symbolic links. | |
10063 [10063] File name too long. | |
10064 [10064] Host is down. | |
10065 [10065] No route to host. | |
10066 [10066] Directory not empty | |
10067 [10067] Too many processes. | |
10068 [10068] Too many users. | |
10069 [10069] Disc Quota Exceeded. | |
10070 [10070] Stale NFS file handle. | |
10071 [10071] Too many levels of remote in path. | |
10091 [10091] Network subsystem is unavailable. | |
10092 [10092] WINSOCK DLL Version out of range. | |
10093 [10093] Winsock not loaded yet. | |
11001 [11001] Host not found. | |
11002 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
11003 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
11004 [11004] Valid name, no data record (check DNS setup). |