FDMSDebit Component

Properties   Methods   Events   Config Settings   Errors  

The FDMSDebit component is an advanced tool used to authorize debit cards in a Retail environment, where the customer is purchasing products or services in person. This component makes authorizing debit card transactions with a customer PIN very easy.

Syntax

TibcFDMSDebit

Remarks

This component connects to the First Data Merchant Services (FDMS) processor, by way of the Datawire VXN transaction transport network. Transactions originating with these components go through Datawire, to the FDMS processor where the transaction is authorized. The result is then returned back through Datawire and received by the component. This component can be integrated into web pages or stand-alone Point Of Sale applications. Because all SSL communications are handled inside the component, any application or web page can be deployed without the need for expensive dedicated SSL servers.

The FDMSDebit component makes authorizing debit transactions (where the customer is present and inputs his PIN number) very easy by adding an additional layer of abstraction between the programmer and the protocol. There is no need to deal with raw sockets, TLS/SSL handshakes, or data packet formatting. The steps to setting up the component and sending transactions are outlined below:

First, you must register and activate your account with Datawire. Datawire will provide you with a MerchantNumber and MerchantTerminalNumber, but you'll need to use the FDMSRegister component to activate the merchant and receive a DatawireId. Once you acquire the DatawireId and receive your transaction URLs through Service Discovery, you may begin to authorize transactions.

To authorize a credit card, set the MerchantNumber and MerchantTerminalNumber with the values supplied by FDMS and Datawire, and the DatawireId with the value retrieved by the FDMSRegister component after activating your merchant account. Set the URL property with one of the URLs you retrieved during Service Discovery.

FDMSDebit.MerchantNumber = "000000999990" //Supplied by FDMS/Datawire FDMSDebit.MerchantTerminalNumber = "555555" //Supplied by FDMS/Datawire FDMSDebit.DatawireId = "0000B47FFFFFFFFFFFFF" //Retrieved with the FDMSRegister component. FDMSDebit.URL = "https://staging1.datawire.net/sd/"; //Retrieved with the FDMSRegister component. Next, set properties that contain details about the transaction. The TransactionNumber should be incremented for every transaction you send. The TransactionAmount must be set, and it should contain the amount to be charged, with an implied decimal point (ie: $1.00 is "100"). There is no IndustryType property for the FDMSDebit component. The format of the transmitted data does not change for different industry types. Do note that the FDMSDebit component can only be used in a retail environment, where the card and customer are present. The card must be swiped and track2 data must be sent in CardMagneticStripe property - debit transactions may NOT be manually-keyed. Debit transactions also require the customer to input his PIN into a certified PIN Pad device, which will return an encrypted PIN and a Key Sequence Number to the merchant. These must be submitted with the transaction in the EncryptedPIN and KSN properties. A unique ReceiptNumber used to identify the transaction on the merchant's system is also required for all transactions. This number must also be printed on the customer's receipt.

Debit sale transactions differ from credit card authorizations in that they are real-time -- Funds are immediately removed from (or added to) the customer's bank account. However, even though debit transactions are real-time, FDMS requires they be settled at the end of the day just like credit card transactions.

The example below shows how to submit a simple debit sale transaction. FDMSDebit.TransactionNumber = 1 FDMSDebit.TransactionAmount = "2500" FDMSDebit.CardMagneticStripe = "4017779999999011=12041200000000001" FDMSDebit.CardEntryDataSource = edsTrack1 FDMSDebit.EncryptedPIN = "37B8091E37FA1773" FDMSDebit.KSN = "8765432109003000018" FDMSDebit.ReceiptNumber = "123456" FDMSDebit.Sale

When the component receives a response, the result of the authorization will be available in several Response properties. The ResponseDatawireStatus and ResponseDatawireReturnCode indicate whether any errors occurred while passing the transaction through the Datawire VXN system. These two properties alone do not indicate a successful transaction, they only tell whether or not there were any problems transporting the authorization request and response through the Datawire system. If the transaction was successfully authorized by FDMS, then the ResponseCaptureFlag will be True, and the ResponseApprovalCode will contain an approval code that beings with "AP". (or "AL" for components that support partially-approved/split-tender transactions).

Once an authorization request is approved, the money in the customer's account is blocked and tagged for the merchant. This transaction must go through the Batch Settlement process in order for the blocked money to be transferred to the merchant account. This is done by passing the XML aggregate returned from the GetDetailAggregate method to the FDMSSettle component. Usually, a Batch Settlement of all authorized transactions is done at the end of each business day.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister component. (You may update your list of service provider URLs with the FDMSRegister component's ServiceDiscovery method).

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

ApplicationIdIdentifies the merchant application to the Datawire System.
CardTypeType of credit card being used in this transaction.
CardCVVDataThree digit security code on back of card (optional).
CardCVVPresenceIndicates the presence of the card verification value.
CardEntryDataSourceThis property contains a 1-character code identifying the source of the customer data.
CardExpMonthExpiration month of the credit card specified in Number .
CardExpYearExpiration year of the credit card specified in Number .
CardIsEncryptedDetermines whether data set to the Number or MagneticStripe properties is validated.
CardMagneticStripeTrack data read off of the card's magnetic stripe.
CardNumberCustomer's credit card number for the transaction.
CashBackOptional cash back amount to return to the customer.
DatawireIdIdentifies the merchant to the Datawire System.
EncryptedPINDUKPT DES encrypted pin block, retrieved from a PIN pad.
FDMSPlatformSpecifies the FDMS platform that the transactions will be processed on.
KSNClear-text Key Sequence Number retrieved from a PIN pad.
MerchantNumberA unique number used to identify the merchant within the FDMS and Datawire systems.
MerchantTerminalNumberUsed to identify a unique terminal within a merchant location.
ProxyAuthSchemeThis property is used to tell the component which type of authorization to perform when connecting to the proxy.
ProxyAutoDetectThis property tells the component whether or not to automatically detect and use proxy system settings, if available.
ProxyPasswordThis property contains a password if authentication is to be used for the proxy.
ProxyPortThis property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
ProxyServerIf a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
ProxySSLThis property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
ProxyUserThis property contains a username if authentication is to be used for the proxy.
ReceiptNumberMerchant generated number used to identify the transaction.
ResponseApprovalCodeContains an authorization code when a transaction has been approved, or an error message if declined.
ResponseAuthorizedAmountWhen supporting partial authorizations, this is the amount actually charged to the debit card.
ResponseCaptureFlagIndicates whether the authorization was successful, and whether it can be settled.
ResponseDatawireReturnCodeContains an error code providing more details about the DatawireStatus received.
ResponseDatawireStatusStatus of the communication with Datawire.
ResponseDebitNetworkIdContains the Debit Network ID.
ResponseTransactionDateLocal transaction date returned from the server in MMDDYY format.
SSLAcceptServerCertEncodedThis is the certificate (PEM/Base64 encoded).
SSLCertEncodedThis is the certificate (PEM/Base64 encoded).
SSLCertStoreThis is the name of the certificate store for the client certificate.
SSLCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLCertStoreTypeThis is the type of certificate store for this certificate.
SSLCertSubjectThis is the subject of the certificate used for client authentication.
SSLProviderThis specifies the SSL/TLS implementation to use.
SSLServerCertEncodedThis is the certificate (PEM/Base64 encoded).
TimeoutA timeout for the component.
TransactionAmountTotal amount for the debit transaction.
TransactionNumberUniquely identifies the transaction.
URLLocation of the Datawire server to which transactions are sent.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
CreditSubmits a credit transaction, returning funds to a debit card.
GetDetailAggregateReturns an aggregate containing details of this transaction, which is then used for settlement.
InterruptInterrupts the current action.
ResetClears all properties to their default values.
ReverseLastTransactionUsed to reverse/void a previous transaction.
SaleSubmits a sale transaction for a debit card.
VoidTransactionUsed to void a debit sale or credit transaction.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

ConnectedThis event is fired immediately after a connection completes (or fails).
DataPacketInFired when receiving a data packet from the transaction server.
DataPacketOutFired when sending a data packet to the transaction server.
DisconnectedThis event is fired when a connection is closed.
ErrorFired when information is available about errors during data delivery.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
StatusShows the progress of the FDMS/Datawire connection.

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

AllowPartialAuthsIndicates whether partial authorizations are to be supported.
ClientTimeoutIndicates timeout client application will wait for response.
ParseAggregateParses a detail aggregate and populates the component to perform a timeout reversal.
RawRequestReturns the request sent to the server for debugging purposes.
RawResponseReturns the response received from the server for debugging purposes.
ResponseAuthorizedAmountThe amount actually charged to the debit card.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the component whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the component binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

ApplicationId Property (FDMSDebit Component)

Identifies the merchant application to the Datawire System.

Syntax

__property String ApplicationId = { read=FApplicationId, write=FSetApplicationId };

Default Value

"NSOFTDIRECTPXML"

Remarks

The Application ID includes the Merchant's application name and version number. This property is used to identify the merchant application within the Datawire system, and may be validated along with the MerchantTerminalNumber and DatawireId as connection credentials.

The default value of this property is assigned to the 4D Payments FDMS Integrator, but you may be required to have a new ApplicationId assigned for the software you create with this component.

Data Type

String

CardType Property (FDMSDebit Component)

Type of credit card being used in this transaction.

Syntax

__property TibcFDMSDebitCardTypes CardType = { read=FCardType, write=FSetCardType };
enum TibcFDMSDebitCardTypes { ctUnknown=0, ctVisa=1, ctMasterCard=2, ctAMEX=3, ctDiscover=4, ctDiners=5, ctJCB=6, ctVisaElectron=7, ctMaestro=8, ctLaser=10 };

Default Value

ctUnknown

Remarks

Type of credit card being used in this transaction. This property contains the customer's credit card type. This is automatically computed after the CardNumber is set, but it can also be changed manually. A list of valid card types is included below.

ctUnknown (0) Invalid or unknown prefix, card type not known.
ctVisa (1) Visa or Delta Card.
ctMasterCard (2) MasterCard.
ctAMEX (3) American Express Card.
ctDiscover (4) Discover Card.
ctDiners (5) Diners Club or Carte Blanche Card.
ctJCB (6) JCB Card.
ctVisaElectron (7) Visa Electron Card (runs as a Visa for most gateways)
ctMaestro (8) Maestro Card
ctLaser (10) Laser Card (Ireland)

This property is not available at design time.

Data Type

Integer

CardCVVData Property (FDMSDebit Component)

Three digit security code on back of card (optional).

Syntax

__property String CardCVVData = { read=FCardCVVData, write=FSetCardCVVData };

Default Value

""

Remarks

Three digit security code on back of card (optional).

This alphanumeric property contains the three digit Visa "Card Verification Value" (CVV), MasterCard "Card Verification Code" (CVC), or four-digit American Express "Card Identification Number" (CID). This value appears as additional characters embossed on the card signature line following the credit card account number on the back of the credit card. This is an optional property which can be used to determine if the customer is actually in possession of the credit card.

Even if the CardCVVData is incorrect, the transaction may still be authorized. It is up to the merchant to examine the ResponseCVVResult property and decide whether to honor the transaction or not.

Note: When set to a non-empty value, CardCVVPresence will be automatically set to cvpProvided. If set to empty string (""), CardCVVPresence will be automatically set to cvpNotProvided.

This property is not available at design time.

Data Type

String

CardCVVPresence Property (FDMSDebit Component)

Indicates the presence of the card verification value.

Syntax

__property TibcFDMSDebitCardCVVPresences CardCVVPresence = { read=FCardCVVPresence, write=FSetCardCVVPresence };
enum TibcFDMSDebitCardCVVPresences { cvpNotProvided=0, cvpProvided=1, cvpIllegible=2, cvpNotOnCard=3 };

Default Value

cvpNotProvided

Remarks

Indicates the presence of the card verification value.

This property is used to indicate the presence of CardCVVData.

The component will automatically set this value to cvpProvided when a CardCVVData value is specified. You can explicitly specify the CardCVVPresence indicator by setting this property.

Available values are:

  • cvpNotProvided (0)
  • cvpProvided (1)
  • cvpIllegible (2)
  • cvpNotOnCard (3)

This property is not available at design time.

Data Type

Integer

CardEntryDataSource Property (FDMSDebit Component)

This property contains a 1-character code identifying the source of the customer data.

Syntax

__property TibcFDMSDebitCardEntryDataSources CardEntryDataSource = { read=FCardEntryDataSource, write=FSetCardEntryDataSource };
enum TibcFDMSDebitCardEntryDataSources { edsTrack1=0, edsTrack2=1, edsManualEntryTrack1Capable=2, edsManualEntryTrack2Capable=3, edsManualEntryNoCardReader=4, edsTrack1Contactless=5, edsTrack2Contactless=6, edsManualEntryContactlessCapable=7, edsIVR=8, edsKiosk=9 };

Default Value

edsTrack1

Remarks

This property contains a 1-character code identifying the source of the customer data. The table below shows all supported values for this property.

edsTrack1 (0) Full Magnetic stripe read and transmit, Track 1.
edsTrack2 (1) Full magnetic stripe read and transmit, Track 2.
edsManualEntryTrack1Capable (2) Manually keyed, Track 1 capable.
edsManualEntryTrack2Capable (3)Manually keyed, Track 2 capable.
edsManualEntryNoCardReader (4)Manually keyed, terminal has no card reading capability (use this for e-commerce and MOTO transactions).
edsTrack1Contactless (5)Full magnetic stripe read (Track 1 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only).
edsTrack2Contactless (6)Full magnetic stripe read (Track 2 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only).
edsManualEntryContactlessCapable (7)Manually keyed, Chip Card read capable terminal (Visa, MasterCard, and JCB transactions only).
edsIVR (8)Interactive Voice Response processing. This is applicable to Mail Order/Telephone Order (MOTO) transactions. (CardNumber, CardExpMonth, and CardExpYear are sent).
edsKiosk (9)Automated kiosk transaction. Track1 or Track2 data must be sent in CardMagneticStripe, the transaction cannot be manually entered.

Below is a list of processors and their support EntryDataSource values:

FDMS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable, edsIVR, edsKiosk

FDMSOmaha - All EntryDataSources applicable

FDMS Rapid Connect - All EntryDataSources applicable

Global - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsIVR, edsKiosk

PTech - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable

TSYS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack2Contactless, edsManualEntryContactlessCapable

TSYSHC - Values are based on Industry type.

TSYSHCBenefit edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable
TSYSHCECommerce edsManualEntryNoCardReader
TSYSHCRetail edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable

This property is not available at design time.

Data Type

Integer

CardExpMonth Property (FDMSDebit Component)

Expiration month of the credit card specified in Number .

Syntax

__property int CardExpMonth = { read=FCardExpMonth, write=FSetCardExpMonth };

Default Value

1

Remarks

Expiration month of the credit card specified in CardNumber.

This property contains the expiration date of the customer's credit card, and must be in the range 1 - 12.

This property is not available at design time.

Data Type

Integer

CardExpYear Property (FDMSDebit Component)

Expiration year of the credit card specified in Number .

Syntax

__property int CardExpYear = { read=FCardExpYear, write=FSetCardExpYear };

Default Value

2000

Remarks

Expiration year of the credit card specified in CardNumber.

This property contains the expiration date of the customer's credit card. This property must be in the range 0 - 99, or 2000 - 2099. Any date before the year 2000 or after 2099 cannot be specified.

This property is not available at design time.

Data Type

Integer

CardIsEncrypted Property (FDMSDebit Component)

Determines whether data set to the Number or MagneticStripe properties is validated.

Syntax

__property bool CardIsEncrypted = { read=FCardIsEncrypted, write=FSetCardIsEncrypted };

Default Value

false

Remarks

Determines whether data set to the CardNumber or CardMagneticStripe fields is validated.

By default, when the CardNumber or CardMagneticStripe fields are set, the value will be validated and normalized. For instance, "4444-33332222 1111" will be normalized as "4444333322221111" and CardMagneticStripe data will be parsed for the track specified by CardEntryDataSource. However, any other non-numerical data entered will cause an exception to be thrown. It may be useful in some gateways to send other data in the CardNumber or CardMagneticStripe fields, and this can be accomplished by setting IsEncrypted to true. However, please note that in doing so automatic calculation of the CardType may be affected, and the card number will not be verified.

This property is not available at design time.

Data Type

Boolean

CardMagneticStripe Property (FDMSDebit Component)

Track data read off of the card's magnetic stripe.

Syntax

__property String CardMagneticStripe = { read=FCardMagneticStripe, write=FSetCardMagneticStripe };

Default Value

""

Remarks

Track data read off of the card's magnetic stripe.

If CardEntryDataSource is not one of the manually entered enumerations, then this property must be set with the track1 or track2 data from the magnetic stripe on the back of the customer's credit card. This includes everything after but not including the start sentinel (% or ;) and up to but not including the end sentinel (?) and LRC check character. You may only set this property with track 1 or track 2 data, and may not pass both. Use the CardEntryDataSource property to indicate which track you are sending.

The following example shows how to set the CardMagneticStripe and CardEntryDataSource properties if the data read off the card is "%B4788250000028291^TSYS^05121015432112345678?;4788250000028291=05121015432112345678?"

component.CardMagneticStripe = "B4788250000028291^TSYS^05121015432112345678" component.CardEntryDataSource = edsTrack1 or component.CardMagneticStripe = "4788250000028291=05121015432112345678" component.CardEntryDataSource = edsTrack2

Industry regulations do not allow merchants or processors to store track data in any form of persistent storage. Failure to abide by this regulation can result in significant fines and other penalties.

This property is not available at design time.

Data Type

String

CardNumber Property (FDMSDebit Component)

Customer's credit card number for the transaction.

Syntax

__property String CardNumber = { read=FCardNumber, write=FSetCardNumber };

Default Value

""

Remarks

Customer's credit card number for the transaction.

If you're sending the transaction with CardMagneticStripe data, this property should be left empty.

This property is not available at design time.

Data Type

String

CashBack Property (FDMSDebit Component)

Optional cash back amount to return to the customer.

Syntax

__property String CashBack = { read=FCashBack, write=FSetCashBack };

Default Value

""

Remarks

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The largest possible CashBack amount is "99999", yielding a maximum US dollar amount of $999.99. This field may not contain a negative number.

For cash back transactions, the TransactionAmount must contain the sum total of the purchase amount PLUS the CashBack amount. If the purchase is for $10 and the customer requests $20 cash back, CashBack should be set to "2000" and TransactionAmount must contain "3000".

Note that only US currency is supported for debit transactions.

Data Type

String

DatawireId Property (FDMSDebit Component)

Identifies the merchant to the Datawire System.

Syntax

__property String DatawireId = { read=FDatawireId, write=FSetDatawireId };

Default Value

""

Remarks

The Datawire Id is a unique customer identifier generated by Datawire and returned to the client after successfully registering the merchant (using the FDMSRegister component). This Id (which is sent in all subsequent transactions) allows a transaction, to pass through the Datawire system and be correctly routed to the FDMS Payment processor.

The maximum length for this property is 32 characters.

Data Type

String

EncryptedPIN Property (FDMSDebit Component)

DUKPT DES encrypted pin block, retrieved from a PIN pad.

Syntax

__property String EncryptedPIN = { read=FEncryptedPIN, write=FSetEncryptedPIN };

Default Value

""

Remarks

A 16-byte encrypted PIN and associated KSN are required for all debit Sale and Credit transactions. These values must be retrieved from a certified DUKPT DES pin pad device.

The EncryptedPIN and KSN are not required for ReverseLastTransaction transactions.

The following code snippet shows how to send a simple debit sale transaction with all required properties. FDMSDebit1.MerchantNumber = "YOURNUMBER" FDMSDebit1.MerchantTerminalNumber = "YOURTERMID" FDMSDebit1.DatawireId = "YOURDID" FDMSDebit1.URL = "https://staging1.datawire.net/sd"; // test server FDMSDebit1.TransactionNumber = 4; FDMSDebit1.TransactionAmount = "100"; FDMSDebit1.Card.EntryDataSource = edsTrack2; FDMSDebit1.Card.MagneticStripe = "9876543210012341234=12041200000001"; // (pin 1234) FDMSDebit1.EncryptedPIN = "0082943935BA205D"; FDMSDebit1.KSN = "8765432109003000012"; FDMSDebit1.ReceiptNumber = "123456"; FDMSDebit1.Sale(); If the transaction is successful, the ResponseApprovalCode will start with "AP", and the ResponseCaptureFlag will be true. Even though debit transactions are on-line transactions, it is still necessary to settle them with First Data. The following example shows how to send a simple settlement. The first thing to do is to set up the FDMSSettle component's properties with the same information used for the debit sale: FDMSSettle1.MerchantNumber = FDMSDebit1.MerchantNumber; FDMSSettle1.MerchantTerminalNumber = FDMSDebit1.MerchantTerminalNumber; FDMSSettle1.DatawireId = FDMSDebit1.DatawireId; FDMSSettle1.URL = FDMSDebit1.URL; FDMSSettle1.MerchantServiceNumber = "8001234567"; FDMSSettle1.BatchSequenceNumber = "101"; FDMSSettle1.IndustryType = itRetail; Then all that needs to be done is add the detail record from the debit sale to the settlement component and call the SendSettlement method. FDMSSettle1.DetailRecords.Add(new FDMSRecordType(FDMSDebit1.GetDetailAggregate()); FDMSSettle1.SendSettlement(); Note that in a live system you would store detail records in a database and send multiple records in a single batch at the end of the business day.

Data Type

String

FDMSPlatform Property (FDMSDebit Component)

Specifies the FDMS platform that the transactions will be processed on.

Syntax

__property TibcFDMSDebitFDMSPlatforms FDMSPlatform = { read=FFDMSPlatform, write=FSetFDMSPlatform };
enum TibcFDMSDebitFDMSPlatforms { fpNorth=0, fpNashville=1 };

Default Value

fpNorth

Remarks

This property is used to identify the FDMS platform that the transactions will be sent to and processed on. The following table lists the platforms supported by this component.

fpNorth (0) North/Cardnet platform.
fpNashville (1) Nashville platform.

Data Type

Integer

KSN Property (FDMSDebit Component)

Clear-text Key Sequence Number retrieved from a PIN pad.

Syntax

__property String KSN = { read=FKSN, write=FSetKSN };

Default Value

""

Remarks

A 19 or 20-byte Key Sequence Number (KSN) and associated EncryptedPIN are required for all debit Sale and Credit transactions. These values must be retrieved from a certified DUKPT DES pin pad device. A 20-byte Key Sequence Number consists of a 1-byte pad character ('F'), a 9-byte Base Derivation Key Id (BDK ID), a 5-byte device Id, and a 5-byte transaction counter. If this property is set with a Key Sequence Number less than 20 bytes in length, the component will pad it on the left with 'F' characters.

The EncryptedPIN and KSN are not required for ReverseLastTransaction transactions.

The following code snippet shows how to send a simple debit sale transaction with all required properties. FDMSDebit1.MerchantNumber = "YOURNUMBER" FDMSDebit1.MerchantTerminalNumber = "YOURTERMID" FDMSDebit1.DatawireId = "YOURDID" FDMSDebit1.URL = "https://staging1.datawire.net/sd"; // test server FDMSDebit1.TransactionNumber = 4; FDMSDebit1.TransactionAmount = "100"; FDMSDebit1.Card.EntryDataSource = edsTrack2; FDMSDebit1.Card.MagneticStripe = "9876543210012341234=12041200000001"; // (pin 1234) FDMSDebit1.EncryptedPIN = "0082943935BA205D"; FDMSDebit1.KSN = "8765432109003000012"; FDMSDebit1.ReceiptNumber = "123456"; FDMSDebit1.Sale(); If the transaction is successful, the ResponseApprovalCode will start with "AP", and the ResponseCaptureFlag will be true. Even though debit transactions are on-line transactions, it is still necessary to settle them with First Data. The following example shows how to send a simple settlement. The first thing to do is to set up the FDMSSettle component's properties with the same information used for the debit sale: FDMSSettle1.MerchantNumber = FDMSDebit1.MerchantNumber; FDMSSettle1.MerchantTerminalNumber = FDMSDebit1.MerchantTerminalNumber; FDMSSettle1.DatawireId = FDMSDebit1.DatawireId; FDMSSettle1.URL = FDMSDebit1.URL; FDMSSettle1.MerchantServiceNumber = "8001234567"; FDMSSettle1.BatchSequenceNumber = "101"; FDMSSettle1.IndustryType = itRetail; Then all that needs to be done is add the detail record from the debit sale to the settlement component and call the SendSettlement method. FDMSSettle1.DetailRecords.Add(new FDMSRecordType(FDMSDebit1.GetDetailAggregate()); FDMSSettle1.SendSettlement(); Note that in a live system you would store detail records in a database and send multiple records in a single batch at the end of the business day.

Data Type

String

MerchantNumber Property (FDMSDebit Component)

A unique number used to identify the merchant within the FDMS and Datawire systems.

Syntax

__property String MerchantNumber = { read=FMerchantNumber, write=FSetMerchantNumber };

Default Value

""

Remarks

This property contains a unique number (typically 12 digits) which is assigned by the signing merchant's bank or processor. This field is used to identify the merchant within the FDMS and Datawire systems, and is used along with the MerchantTerminalNumber and DatawireId as connection credentials.

Data Type

String

MerchantTerminalNumber Property (FDMSDebit Component)

Used to identify a unique terminal within a merchant location.

Syntax

__property String MerchantTerminalNumber = { read=FMerchantTerminalNumber, write=FSetMerchantTerminalNumber };

Default Value

""

Remarks

This property contains a number (typically 6 digits) assigned by FDMS to uniquely identify a terminal within a merchant location, and is used along with the MerchantNumber and DatawireId as connection credentials.

Data Type

String

ProxyAuthScheme Property (FDMSDebit Component)

This property is used to tell the component which type of authorization to perform when connecting to the proxy.

Syntax

__property TibcFDMSDebitProxyAuthSchemes ProxyAuthScheme = { read=FProxyAuthScheme, write=FSetProxyAuthScheme };
enum TibcFDMSDebitProxyAuthSchemes { authBasic=0, authDigest=1, authProprietary=2, authNone=3, authNtlm=4, authNegotiate=5 };

Default Value

authBasic

Remarks

This property is used to tell the component which type of authorization to perform when connecting to the proxy. This is used only when the ProxyUser and ProxyPassword properties are set.

ProxyAuthScheme should be set to authNone (3) when no authentication is expected.

By default, ProxyAuthScheme is authBasic (0), and if the ProxyUser and ProxyPassword properties are set, the component will attempt basic authentication.

If ProxyAuthScheme is set to authDigest (1), digest authentication will be attempted instead.

If ProxyAuthScheme is set to authProprietary (2), then the authorization token will not be generated by the component. Look at the configuration file for the component being used to find more information about manually setting this token.

If ProxyAuthScheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this property will clear the values of ProxyUser and ProxyPassword.

Data Type

Integer

ProxyAutoDetect Property (FDMSDebit Component)

This property tells the component whether or not to automatically detect and use proxy system settings, if available.

Syntax

__property bool ProxyAutoDetect = { read=FProxyAutoDetect, write=FSetProxyAutoDetect };

Default Value

False

Remarks

This property tells the component whether or not to automatically detect and use proxy system settings, if available. The default value is false.

Data Type

Boolean

ProxyPassword Property (FDMSDebit Component)

This property contains a password if authentication is to be used for the proxy.

Syntax

__property String ProxyPassword = { read=FProxyPassword, write=FSetProxyPassword };

Default Value

""

Remarks

This property contains a password if authentication is to be used for the proxy.

If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.

If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.

Data Type

String

ProxyPort Property (FDMSDebit Component)

This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).

Syntax

__property int ProxyPort = { read=FProxyPort, write=FSetProxyPort };

Default Value

80

Remarks

This property contains the Transmission Control Protocol (TCP) port for the proxy ProxyServer (default 80). See the description of the ProxyServer property for details.

Data Type

Integer

ProxyServer Property (FDMSDebit Component)

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

Syntax

__property String ProxyServer = { read=FProxyServer, write=FSetProxyServer };

Default Value

""

Remarks

If a proxy ProxyServer is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the ProxyServer property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the ProxyServer property is set to the corresponding address. If the search is not successful, an error is returned.

Data Type

String

ProxySSL Property (FDMSDebit Component)

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.

Syntax

__property TibcFDMSDebitProxySSLs ProxySSL = { read=FProxySSL, write=FSetProxySSL };
enum TibcFDMSDebitProxySSLs { psAutomatic=0, psAlways=1, psNever=2, psTunnel=3 };

Default Value

psAutomatic

Remarks

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the component will use the psTunnel option. If the URL is an http URL, the component will use the psNever option.
psAlways (1)The connection is always SSL enabled.
psNever (2)The connection is not SSL enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

Data Type

Integer

ProxyUser Property (FDMSDebit Component)

This property contains a username if authentication is to be used for the proxy.

Syntax

__property String ProxyUser = { read=FProxyUser, write=FSetProxyUser };

Default Value

""

Remarks

This property contains a username if authentication is to be used for the proxy.

If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.

If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.

Data Type

String

ReceiptNumber Property (FDMSDebit Component)

Merchant generated number used to identify the transaction.

Syntax

__property String ReceiptNumber = { read=FReceiptNumber, write=FSetReceiptNumber };

Default Value

""

Remarks

This property is required for Debit transaction clearing, and should contain a unique 6-digit trace number identifying the transaction. The merchant application should generate a unique number for each Debit or EBT transaction. If a Debit or EBT transaction is voided or reversed, the ReceiptNumber of the original transaction should be used. The receipt number must be passed to the FDMS Host on both the Debit/EBT authorization request and the batch settlement detail. It must also be printed on the customer receipt. Used such, this number satisfies Debit Network Provider requirements.

Data Type

String

ResponseApprovalCode Property (FDMSDebit Component)

Contains an authorization code when a transaction has been approved, or an error message if declined.

Syntax

__property String ResponseApprovalCode = { read=FResponseApprovalCode };

Default Value

""

Remarks

Contains an authorization code when a transaction has been approved, or an error message if declined.

This property contains an authorization code when a transaction has been approved. The code will begin with "AP" and will be 8 characters in length. If the transaction was declined, it will contain one of the response messages listed in the table below:

Response MessageMeaning
AMT EXCEED LIMIT Amount exceeds withdrawal limit.
CRYPTO BOX UNAV CRYPTO Box is off-line.
DBT SWITCH UNAVL Communications link to Debit network gateway is down or responded with a "System Malfunction (96)" message.
DBT T.O. RETRY Request was switched but no reply from Debit network gateway within the time-out period.
DBTSW INV MERID EDS says that Merchant ID/SE is invalid.
DBTSW PIN XL ERR EDS has problem in decrypting our cryptogram. (PIN XLATE ERR means FDMS-RACAL6000 has problem decrypting terminal cryptogram. (This remains unchanged.)
DEBIT INV TRK-II Track II data was missing or invalid.
DECLINED Decline the transaction.
DUPLICATE TRAN Receipt/Account number duplicates. Must be unique.
ENTER LESSER Re-enter using a lower amount.
ENTER LESSER AMT Re-enter using a lower amount.
INCORRECT PIN PIN value incorrect.
INV ACCT Invalid card number.
INV ACCT NUM Invalid card number.
INV AMT Invalid amount.
INV CASHBACK AMT Cash-back amount more than total amount.
INV DRIVER NBR Invalid Driver number.
INVALID ID NBR Invalid ID used.
INV VEHICLE NBR Invalid Vehicle number.
INV TRAN Transaction not permitted/allowed to cardholder.
ISSUER UNAV Debit network gateway cannot get through to the issuer.
PIN RETRY EXCEED PIN was entered incorrectly four times (limit).
PIN XLATE ERROR PIN could not be decrypted. If new problem with existing setup, replace PIN pad. Confirm proper key setup for new PIN pads. Confirm proper host setup for new Base Derivation keys.
PLEASE RETRY Generic system error. Please try again.
RESUB EXCDS LMT Resubmission of transaction violates Debit network frequency.
REV REJECTED Reversal was rejected.
TRAN CT EXCD LMT Debit transaction count exceeds pre-determined limit in specified time.
TRAN NOT ALLOWED Transaction not allowed.
UNDEFINED CARD Debit network gateway cannot route card based on Merchant Entitlement.

This property is read-only.

Data Type

String

ResponseAuthorizedAmount Property (FDMSDebit Component)

When supporting partial authorizations, this is the amount actually charged to the debit card.

Syntax

__property String ResponseAuthorizedAmount = { read=FResponseAuthorizedAmount };

Default Value

""

Remarks

When supporting partial authorizations, this is the amount actually charged to the debit card.

This is only used when supporting partial authorizations. If the ResponseApprovalCode begins with "AL" this property will contain the amount actually charged to the debit card. This will be less than the original TransactionAmount. You must collect the remainder via another form of payment, or Reverse the authorization if the customer does not have an additional form of payment.

This property is read-only.

Data Type

String

ResponseCaptureFlag Property (FDMSDebit Component)

Indicates whether the authorization was successful, and whether it can be settled.

Syntax

__property bool ResponseCaptureFlag = { read=FResponseCaptureFlag };

Default Value

false

Remarks

Indicates whether the authorization was successful, and whether it can be settled.

After an authorization request, the ResponseCaptureFlag will be set to True if the request was successfully processed. This indicates that you may send the transaction on for batch settlement using the FDMSSettle component. If this property is False you should consider the transaction as Declined, and it may not be settled.

This property is read-only.

Data Type

Boolean

ResponseDatawireReturnCode Property (FDMSDebit Component)

Contains an error code providing more details about the DatawireStatus received.

Syntax

__property String ResponseDatawireReturnCode = { read=FResponseDatawireReturnCode };

Default Value

""

Remarks

Contains an error code providing more details about the ResponseDatawireStatus received.

When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.

The ResponseCaptureFlag and ResponseApprovalCode properties contain the actual transaction result that was returned by FDMS.

The following is a list of possible Datawire return codes:

000 Transaction successfully passed through the Datawire system to the FDMS Payment Processor and back.
200 Host Busy - The processor's Host is busy and is currently unable to service this request.
201 Host Unavailable - The processor's Host is currently unavailable. For example, the server is sending NAK.
202 Host Connect Error - Could not connect to the processor's Host.
203 Host Drop - The processor's Host disconnected during the transaction before sending a response.
204 Host Comm Error - An error was encountered while communicating with the processor's Host.
205 No Response - No response from the processor's Host
206 Host Send Error - An error has encountered when sending the request to the processor, and the Host daemon cannot continue sending packets to the processor because the connection is broken.
405 Vxn Timeout - The request could not be processed.
505 Network Error - The request could not be processed.

This property is read-only.

Data Type

String

ResponseDatawireStatus Property (FDMSDebit Component)

Status of the communication with Datawire.

Syntax

__property String ResponseDatawireStatus = { read=FResponseDatawireStatus };

Default Value

""

Remarks

Status of the communication with Datawire.

When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.

The ResponseCaptureFlag and ResponseApprovalCode properties contains the actual FDMS Transaction Result that was returned.

The following is a list of possible Datawire response status codes:

OKTransaction has successfully passed through the Datawire system to the FDMS Payment processor and back.
AuthenticationErrorDatawireId in the request was not successfully authenticated.
UnknownServiceIDServiceId part of the URL (in the Service Discovery or Ping request) is unknown.
WrongSessionContextThe SessionContext element of the Session Transaction request does not match the SessionContext returned by the InitiateSession response (applicable to the FDMSSettle component).
AccessDeniedGenerally, occurs when you try to register a merchant after a merchant has already been activated to use the Datawire VXN.
FailedYour Merchant Registration has failed. Contact tech.support@datawire.net for more information.
RetryRegistration is not yet complete. You must send the Registration request again.
TimeoutNo response from the Service Provider was received during the expected period of time.
XMLErrorRequest contains some XML error, such as malformed XML, violation of this DTD, etc.
OtherErrorUnspecified error occurred.
008Network Error

This property is read-only.

Data Type

String

ResponseDebitNetworkId Property (FDMSDebit Component)

Contains the Debit Network ID.

Syntax

__property String ResponseDebitNetworkId = { read=FResponseDebitNetworkId };

Default Value

""

Remarks

Contains the Debit Network ID.

This property contains the Debit Network ID which is used for settlement purposes.

This property is read-only.

Data Type

String

ResponseTransactionDate Property (FDMSDebit Component)

Local transaction date returned from the server in MMDDYY format.

Syntax

__property String ResponseTransactionDate = { read=FResponseTransactionDate };

Default Value

""

Remarks

Local transaction date returned from the server in MMDDYY format.

This six digit field contains a local transaction date calculated by the authorization center. This field should be recorded and submitted in the Batch Settlement.

This property is read-only.

Data Type

String

SSLAcceptServerCertEncoded Property (FDMSDebit Component)

This is the certificate (PEM/Base64 encoded).

Syntax

__property String SSLAcceptServerCertEncoded = { read=FSSLAcceptServerCertEncoded, write=FSetSSLAcceptServerCertEncoded };
__property DynamicArray<Byte> SSLAcceptServerCertEncodedB = { read=FSSLAcceptServerCertEncodedB, write=FSetSSLAcceptServerCertEncodedB };

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.

When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.

This property is not available at design time.

Data Type

Byte Array

SSLCertEncoded Property (FDMSDebit Component)

This is the certificate (PEM/Base64 encoded).

Syntax

__property String SSLCertEncoded = { read=FSSLCertEncoded, write=FSetSSLCertEncoded };
__property DynamicArray<Byte> SSLCertEncodedB = { read=FSSLCertEncodedB, write=FSetSSLCertEncodedB };

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.

When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.

This property is not available at design time.

Data Type

Byte Array

SSLCertStore Property (FDMSDebit Component)

This is the name of the certificate store for the client certificate.

Syntax

__property String SSLCertStore = { read=FSSLCertStore, write=FSetSSLCertStore };
__property DynamicArray<Byte> SSLCertStoreB = { read=FSSLCertStoreB, write=FSetSSLCertStoreB };

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password protected, specify the password in SSLCertStorePassword.

SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

Data Type

Byte Array

SSLCertStorePassword Property (FDMSDebit Component)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

__property String SSLCertStorePassword = { read=FSSLCertStorePassword, write=FSetSSLCertStorePassword };

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Data Type

String

SSLCertStoreType Property (FDMSDebit Component)

This is the type of certificate store for this certificate.

Syntax

__property TibcFDMSDebitSSLCertStoreTypes SSLCertStoreType = { read=FSSLCertStoreType, write=FSetSSLCertStoreType };
enum TibcFDMSDebitSSLCertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };

Default Value

cstUser

Remarks

This is the type of certificate store for this certificate.

The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

SSLCertSubject Property (FDMSDebit Component)

This is the subject of the certificate used for client authentication.

Syntax

__property String SSLCertSubject = { read=FSSLCertSubject, write=FSetSSLCertSubject };

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Data Type

String

SSLProvider Property (FDMSDebit Component)

This specifies the SSL/TLS implementation to use.

Syntax

__property TibcFDMSDebitSSLProviders SSLProvider = { read=FSSLProvider, write=FSetSSLProvider };
enum TibcFDMSDebitSSLProviders { sslpAutomatic=0, sslpPlatform=1, sslpInternal=2 };

Default Value

sslpAutomatic

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the component will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The component will select a provider depending on the current platform.

When Automatic is selected the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used.

Data Type

Integer

SSLServerCertEncoded Property (FDMSDebit Component)

This is the certificate (PEM/Base64 encoded).

Syntax

__property String SSLServerCertEncoded = { read=FSSLServerCertEncoded };
__property DynamicArray<Byte> SSLServerCertEncodedB = { read=FSSLServerCertEncodedB };

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.

When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.

This property is read-only and not available at design time.

Data Type

Byte Array

Timeout Property (FDMSDebit Component)

A timeout for the component.

Syntax

__property int Timeout = { read=FTimeout, write=FSetTimeout };

Default Value

30

Remarks

If Timeout is set to a positive value, and an operation cannot be completed immediately, the component will return with an error after Timeout seconds.

The default value for Timeout is 30 (seconds).

Data Type

Integer

TransactionAmount Property (FDMSDebit Component)

Total amount for the debit transaction.

Syntax

__property String TransactionAmount = { read=FTransactionAmount, write=FSetTransactionAmount };

Default Value

""

Remarks

This property should contain the total amount to be removed from a debit card for a Sale, including any optional CashBack amount. (eg, for a sale for $10 with a cash back of $20 TransactionAmount must contain "3000"). The TransactionAmount also specifies the total amount to Credit back to a debit card.

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The allowable number of significant digits as well as the positioning of any implied decimal point is dictated by the designated CurrencyCode configuration setting. In the United States (default), the number of allowable significant digits is seven. Thus the maximum TransactionAmount is "9999999", yielding a US dollar amount of $99,999.99. This field may not contain a negative number.

Data Type

String

TransactionNumber Property (FDMSDebit Component)

Uniquely identifies the transaction.

Syntax

__property String TransactionNumber = { read=FTransactionNumber, write=FSetTransactionNumber };

Default Value

""

Remarks

The TransactionNumber (otherwise known as the Client Reference Number, or ClientRef) uniquely identifies the packet sent by the application to the Datawire system. This parameter stores some unique token of information, and is used to match the response to the initial request sent. For example, the client application could use a static counter that is increased with the each executed request.

For all components except FDMSGiftCard the maximum length of this property is 14 alphanumeric characters.

The FDMS recommended format is "tttttttVnnnnrrr" where ttttttt is a 7 digit transaction id, V is a constant, and nnn is a 3 digit version number and rrr is a 3 digit revision number. The 6 digit version number is typically static but unique for an application (Example: Version 2.5 = tttttttV002500).

For the Rapid Connect platform, the 6 character version number should be your Project/TPPID value. The entire TransactionNumber must be unique within a 24 hour time period.

The FDMSGiftCard also passes this value to the FDMS Closed Loop Gift Card system as a transaction id, and therefore the following restrictions are enforced: The maximum length is 7 characters. If the first character is an 'X', the remaining characters must be in the range '0' through 'F', indicating a hexadecimal number. Otherwise the FDMS Closed Loop Gift Card system only allows digits in this property.

Data Type

String

URL Property (FDMSDebit Component)

Location of the Datawire server to which transactions are sent.

Syntax

__property String URL = { read=FURL, write=FSetURL };

Default Value

"https://staging1.datawire.net/sd/"

Remarks

This is the URL to which all authorization and settlement transactions are sent. This URL is acquired by using the FDMSRegister component. Once you Register and Activate the merchant using the FDMSRegister component, you may then do a Service Discovery. After sending a Service Discovery transaction, the Datawire system will return a list of transaction URLs. The URL from this list with the shortest round-trip transit time from a ping is the URL you should use here.

Note: By default, this property is populated with the Datawire Staging (test) server, and is not the correct URL to use in a production environment. In a production environment, this URL is supplied by the FDMSRegister component.

Data Type

String

Config Method (FDMSDebit Component)

Sets or retrieves a configuration setting.

Syntax

String __fastcall Config(String ConfigurationString);

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Credit Method (FDMSDebit Component)

Submits a credit transaction, returning funds to a debit card.

Syntax

void __fastcall Credit();

Remarks

Debit card credit (return) transactions differ from credit card off-line credits in that they are real-time -- Funds are immediately added to the customer's bank account, instead of the funds transfer taking place several days after settlement. Debit card transactions also must use track2 data read from the card's magnetic stripe. Track1 data is not acceptable, and a debit card may not be manually keyed. The customer enters his or her PIN number into a certified PIN Pad device, and both an EncryptedPIN and KSN (Key Sequence Number) are returned from the pad to the merchant, and must be submitted in the Credit/Return transaction.

Even though debit transactions are real-time, FDMS requires they be settled at the end of the day just like credit card transactions.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister component. (You may update your list of service provider URLs with the FDMSRegister component's ServiceDiscovery method).

GetDetailAggregate Method (FDMSDebit Component)

Returns an aggregate containing details of this transaction, which is then used for settlement.

Syntax

String __fastcall GetDetailAggregate();

Remarks

This method returns an aggregate containing all of the required data to send a transaction to settlement. This aggregate must be passed to the FDMSSettle component's DetailAggregate array property in order to settle the transaction. If you wish to view or change any part of the aggregate (such as adding a gratuity or additional info for an Installment payment), you may use the FDMSDetailRecord component to do so.

Note: This method may only be called after a successful authorization. If the authorization was not successful (and the ResponseCaptureFlag is false) the method raises an exception.

An example of how this method is used is shown below:

FDMSRetail.AuthorizeTrack1() If (FDMSRetail.ResponseCaptureFlag = True) Then FDMSSettle.DetailRecordCount = FDMSSettle.DetailRecordCount + 1 FDMSSettle.DetailRecordsAggregate[FDMSSettle.DetailRecordCount - 1] = FDMSRetail.GetDetailAggregate() End If

Interrupt Method (FDMSDebit Component)

Interrupts the current action.

Syntax

void __fastcall Interrupt();

Remarks

This method interrupts any processing that the component is currently executing.

Reset Method (FDMSDebit Component)

Clears all properties to their default values.

Syntax

void __fastcall Reset();

Remarks

This method clears all properties to their default values.

ReverseLastTransaction Method (FDMSDebit Component)

Used to reverse/void a previous transaction.

Syntax

void __fastcall ReverseLastTransaction();

Remarks

This method is used to reverse a previous transaction in the case a response was not received from the host or to void a previous Sale or Credit transaction.

A Timeout Reversal is needed when a terminal initiates a debit transaction (Sale or Credit) to the FDMS host, but the host fails to send a response back to the terminal for any reason. If a transaction times out or you receive a network connectivity error, you should immediately call ReverseLastTransaction. In this situation you don't know whether the host received the request and the response back to you was lost, or if the host ever received the request at all. Therefore the ReverseLastTransaction method can used to reverse the last transaction sent by this component. You must not change any properties or call any other methods (including Reset), as ReverseLastTransaction operates based on the current state of the component.

First Data will always send an ResponseApprovalCode of "AP888888" or "AP868686" on a reversal response, and the ResponseCaptureFlag value will be False. First Data does not check whether the original transaction occurred or not.

If you do not receive a response to the reversal (eg, it also times out), you must continue to call ReverseLastTransaction until you do receive a response.

Note: A Debit Reversal must not be used by the merchant as a way to credit a customer for returned merchandise.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister component. (You may update your list of service provider URLs with the FDMSRegister component's ServiceDiscovery method).

Sale Method (FDMSDebit Component)

Submits a sale transaction for a debit card.

Syntax

void __fastcall Sale();

Remarks

Debit sale transactions differ from credit card authorizations in that they are real-time -- Funds are immediately removed from the customer's bank account. Debit card transactions also must use track2 data read from the card's magnetic stripe. Track1 data is not acceptable, and a debit card may not be manually keyed. The customer enters his or her PIN number into a certified PIN Pad device, and both an EncryptedPIN and KSN (Key Sequence Number) are returned from the pad to the merchant, and must be submitted in the Sale transaction.

Even though debit transactions are real-time, FDMS requires they be settled at the end of the day just like credit card transactions.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister component. (You may update your list of service provider URLs with the FDMSRegister component's ServiceDiscovery method).

VoidTransaction Method (FDMSDebit Component)

Used to void a debit sale or credit transaction.

Syntax

void __fastcall VoidTransaction();

Remarks

This method can be used to void a Sale or Credit transaction that was previously made using this component. A Debit Void is a specialized transaction that corrects the impact of an approved Financial Transaction (Sale or Credit) because an error was discovered in the transaction or the customer changed his or her mind. A Debit Void is not used by the merchant as a way to credit a customer for returned merchandise.

The ReceiptNumber, KSN, TransactionAmount, CashBack, TransactionNumber, and all Card properties must be identical to the values submitted in the original sale, and the ApprovalCode parameter should contain the ResponseApprovalCode received in the original Response.

First Data will always send an ResponseApprovalCode of "AP888888" or "AP868686" as a response to a debit void, regardless of whether the original transaction occurred or not.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister component. (You may update your list of service provider URLs with the FDMSRegister component's ServiceDiscovery method).

Connected Event (FDMSDebit Component)

This event is fired immediately after a connection completes (or fails).

Syntax

typedef struct {
  int StatusCode;
  String Description;
} TibcFDMSDebitConnectedEventParams;
typedef void __fastcall (__closure *TibcFDMSDebitConnectedEvent)(System::TObject* Sender, TibcFDMSDebitConnectedEventParams *e);
__property TibcFDMSDebitConnectedEvent OnConnected = { read=FOnConnected, write=FOnConnected };

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

DataPacketIn Event (FDMSDebit Component)

Fired when receiving a data packet from the transaction server.

Syntax

typedef struct {
  String DataPacket;
  DynamicArray<Byte> DataPacketB;
} TibcFDMSDebitDataPacketInEventParams;
typedef void __fastcall (__closure *TibcFDMSDebitDataPacketInEvent)(System::TObject* Sender, TibcFDMSDebitDataPacketInEventParams *e);
__property TibcFDMSDebitDataPacketInEvent OnDataPacketIn = { read=FOnDataPacketIn, write=FOnDataPacketIn };

Remarks

This event fires when a packet is received. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or to extract additional response properties beyond the scope of this component.

DataPacketOut Event (FDMSDebit Component)

Fired when sending a data packet to the transaction server.

Syntax

typedef struct {
  String DataPacket;
  DynamicArray<Byte> DataPacketB;
} TibcFDMSDebitDataPacketOutEventParams;
typedef void __fastcall (__closure *TibcFDMSDebitDataPacketOutEvent)(System::TObject* Sender, TibcFDMSDebitDataPacketOutEventParams *e);
__property TibcFDMSDebitDataPacketOutEvent OnDataPacketOut = { read=FOnDataPacketOut, write=FOnDataPacketOut };

Remarks

This event fires right before each data packet is sent. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or may be modified to support additional features beyond the scope of this component.

Disconnected Event (FDMSDebit Component)

This event is fired when a connection is closed.

Syntax

typedef struct {
  int StatusCode;
  String Description;
} TibcFDMSDebitDisconnectedEventParams;
typedef void __fastcall (__closure *TibcFDMSDebitDisconnectedEvent)(System::TObject* Sender, TibcFDMSDebitDisconnectedEventParams *e);
__property TibcFDMSDebitDisconnectedEvent OnDisconnected = { read=FOnDisconnected, write=FOnDisconnected };

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

Error Event (FDMSDebit Component)

Fired when information is available about errors during data delivery.

Syntax

typedef struct {
  int ErrorCode;
  String Description;
} TibcFDMSDebitErrorEventParams;
typedef void __fastcall (__closure *TibcFDMSDebitErrorEvent)(System::TObject* Sender, TibcFDMSDebitErrorEventParams *e);
__property TibcFDMSDebitErrorEvent OnError = { read=FOnError, write=FOnError };

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the component raises an exception.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

SSLServerAuthentication Event (FDMSDebit Component)

Fired after the server presents its certificate to the client.

Syntax

typedef struct {
  String CertEncoded;
  DynamicArray<Byte> CertEncodedB;
  String CertSubject;
  String CertIssuer;
  String Status;
  bool Accept;
} TibcFDMSDebitSSLServerAuthenticationEventParams;
typedef void __fastcall (__closure *TibcFDMSDebitSSLServerAuthenticationEvent)(System::TObject* Sender, TibcFDMSDebitSSLServerAuthenticationEventParams *e);
__property TibcFDMSDebitSSLServerAuthenticationEvent OnSSLServerAuthentication = { read=FOnSSLServerAuthentication, write=FOnSSLServerAuthentication };

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (FDMSDebit Component)

Fired when secure connection progress messages are available.

Syntax

typedef struct {
  String Message;
} TibcFDMSDebitSSLStatusEventParams;
typedef void __fastcall (__closure *TibcFDMSDebitSSLStatusEvent)(System::TObject* Sender, TibcFDMSDebitSSLStatusEventParams *e);
__property TibcFDMSDebitSSLStatusEvent OnSSLStatus = { read=FOnSSLStatus, write=FOnSSLStatus };

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

Status Event (FDMSDebit Component)

Shows the progress of the FDMS/Datawire connection.

Syntax

typedef struct {
  String Message;
} TibcFDMSDebitStatusEventParams;
typedef void __fastcall (__closure *TibcFDMSDebitStatusEvent)(System::TObject* Sender, TibcFDMSDebitStatusEventParams *e);
__property TibcFDMSDebitStatusEvent OnStatus = { read=FOnStatus, write=FOnStatus };

Remarks

The event is fired for informational and logging purposes only. Used to track the progress of the connection.

Config Settings (FDMSDebit Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

FDMSDebit Config Settings

AllowPartialAuths:   Indicates whether partial authorizations are to be supported.

When this setting is True, if the debit card being authorized does not contain sufficient funds to cover the TransactionAmount, the card will not be declined. Instead, the transaction will be authorized for a lesser amount. The customer must then use another form of payment to make up the remainder. The total amount authorized by FDMS will be returned in the ResponseAuthorizedAmount configuration setting. For instance, if the TransactionAmount is $100.00, but card only has a $50.00 balance, the card is charged for $50.00, and the ResponseAuthorizedAmount will be "50.00". The merchant may then collect the remaining $50 in cash, check, credit card, or any other acceptable form of payment. This setting is False by default.

ClientTimeout:   Indicates timeout client application will wait for response.

This setting indicates the interval of time, in seconds, a client will wait for the response for any given request. Normally this value is set to a value 5 seconds less than the Timeout value to allow for a response to be received from Datawire. It may be changed independently by setting this configuration setting AFTER setting the Timeout property. Note that too small a value will cause Datawire to reject a transaction immediately.

ParseAggregate:   Parses a detail aggregate and populates the component to perform a timeout reversal.

This is only used to perform a timeout reversal or void, specifically when a new component instance is required to be created to perform the reversal/void calls. Therefore you can retrieve the detail aggregate from the original transaction you wish to reverse/void. ParseAggregate can then be called, using the obtained detail aggregate, to populate the component properties and ReverseLastTransaction or VoidTransaction will then reverse or void the transaction. Note due to the requirements of timeout reversals, voids, and your implementation requirements, it is possible that this config may need to be used. However in most cases it will not be necessary.

RawRequest:   Returns the request sent to the server for debugging purposes.

After an operation this setting may be queried to return the request as it was sent to the server. This is useful for debugging purposes.

RawResponse:   Returns the response received from the server for debugging purposes.

After an operation this setting may be queried to return the response as it was received from the server. This is useful for debugging purposes.

ResponseAuthorizedAmount:   The amount actually charged to the debit card.

When supporting partial authorizations, this is the amount actually charged to the debit card. This is only applicable when AllowPartialAuths is True.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the component will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the component whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the component raises an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the component raises an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the component binds.

This must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the component will use IPv4 exclusively. When set to 1, the component will use IPv6 exclusively. To instruct the component to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the component will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the component is the same.

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the component will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component raises an exception.

When set to 0 (default) the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the component will use OCSP to check the validity of the server certificate. If set to 1 or 2, the component will first obtain the OCSP URL from the server certificate's OCSP extension. The component will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component raises an exception.

When set to 0 (default) the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30) [Platform Only]
SSL2 12 (Hex 0C) [Platform Only]

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the component will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the component will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the component raises an exception.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the component will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.

This setting is set to false by default on all platforms.

Trappable Errors (FDMSDebit Component)

FDMSDebit Errors

432   Invalid index.
501   Invalid length for this property.
502   Invalid data format for this property.
503   Value is out of range.
504   Credit card digit check failed.
505   Card date invalid.
506   Card expired.
519   Corrupt response.
520   Response payload empty.
521   Response truncated.
526   Invalid timeout value.
593   A property required for this transaction is missing.
529   Error in XML response.
530   Status code received in response indicates an error condition.
531   Return code received in response indicates an error condition.
532   Cannot generate detail aggregate - this transaction was not successfully authorized.
533   Internal error constructing payload.

The component may also return one of the following error codes, which are inherited from other components.

HTTP Errors

118   Firewall Error. Error description contains detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in URL
153   Specified URLScheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Can't open AttachedFile.

The component may also return one of the following error codes, which are inherited from other components.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the component is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).