FDMSSettle Control
Properties Methods Events Config Settings Errors
The FDMSSettle control is used to do a Batch Settlement on all transactions that were successfully authorized with the FDMSECOMMERCE or FDMSRETAIL controls. This control may also send Level 2 and Level 3 Corporate Purchasing Card data for better interchange rates.
Syntax
FDMSSettle
Remarks
This control connects to the First Data Merchant Services (FDMS) processor, by way of the Datawire VXN transaction transport network. Transactions originating with these controls go through Datawire, to the FDMS processor where the transaction is authorized. The result is then returned back through Datawire and received by the control. This control can be integrated into web pages or stand-alone Point Of Sale applications. Because all SSL communications are handled inside the control, any application or web page can be deployed without the need for expensive dedicated SSL servers.
The FDMSSettle control is used to settle all transactions previously authorized by the FDMSECommerce or FDMSRetail control. When a transaction is authorized, money in the customer's account is blocked and tagged for the merchant. However, funds do not actually change hands at this point. When transactions are settled with the FDMSSettle control the funds are deducted from the customer's account and added to the merchant's. It is essential that the authorized transactions are properly recorded and resent later in a Batch Settlement.
Sending a Batch Settlement with this control is easy. First, you must register and activate your account with Datawire. Datawire will provide you with a MerchantNumber and MerchantTerminalNumber, but you'll need to use the FDMSRegister control to activate the merchant and receive a DatawireId. Once you acquire the DatawireId and receive your transaction URLs through Service Discovery, you may begin to authorize transactions.
To authorize a credit card, set the MerchantNumber and MerchantTerminalNumber with the values supplied by FDMS and Datawire, and the DatawireId with the value retrieved by the FDMSRegister control after activating your merchant account. Set the URL property with one of the URLs you retrieved during Service Discovery.
FDMSSettle.MerchantNumber = "000000999990" 'Supplied by FDMS/Datawire
FDMSSettle.MerchantTerminalNumber = "555555" 'Supplied by FDMS/Datawire
FDMSSettle.DatawireId = "0000B47FFFFFFFFFFFFF" 'Retrieved with the FDMSRegister control.
FDMSSettle.URL = "https://staging1.datawire.net/sd/"; 'Retrieved with the FDMSRegister control.
Additionally, set the IndustryType and the BatchSequenceNumber.
FDMSSettle.IndustryType = fitDirectMarketing
FDMSSettle.BatchSequenceNumber = "4127"
At this point, you are ready to add transactions to the batch settlement. Each transaction to be settled must be added to the DetailRecordAggregate array property. First set the DetailRecordCount to the total number of transactions you wish to settle. Each index in the DetailRecordAggregate array property must be set with the XML aggregate returned from the FDMSRetail, FDMSECommerce, or FDMSDetailRecord control's GetDetailAggregate method.
FDMSSettle.DetailRecordCount = 1
FDMSSettle.DetailRecordAggregate(0) = FDMSECommerce.GetDetailAggregate()
Finally, call the SendSettlement method.
FDMSSettle.SendSettlement()
If the settlement is successful, the ResponseBatchStatus will contain "OK" and the ResponseBatchNumber will contain a number which can be used to identify the batch in the future. If the batch was not successful the control fails with an error that indicates the problem. If any individual record in the batch fails, information concerning that record will appear in the Error event when the response to that particular record is received.
Up to 1000 detail records may be settled in the above manner, just by adding transactions to the DetailRecordAggregate property. However, it is recommended that Batch Settlements be kept relatively small - around 100 transactions or so - to decrease the number of records that must be resent in the event of an error.
To void a transaction that has been authorized but has not yet been settled, simply do not include it in the batch settlement. The block on the cardholder's account will clear automatically. If you wish to explicitly void the transaction, use the FDMSDetailRecord control to modify the transaction aggregate and set the TransactionType property to fttVoid. Credits and forced transactions may also be created using the FDMSDetailRecord control and settled in the same manner as regular transactions.
To add Level 2 and Level 3 data to the settled transactions, use the FDMSLevel2 and FDMSLevel3 controls to create addendum aggregates, and then add them to the DetailRecordAddendum for the corresponding transaction stored in DetailRecordAggregate.
Note that the IndustryType from the FDMSSettle control MUST match the detail record aggregate of EACH transaction that is added to the settlement. You cannot mix industry types in a batch - you must settle a separate batch for each industry type.
Property List
The following is the full list of the properties of the control with short descriptions. Click on the links for further details.
ApiVersion | Identifies the application version number. |
ApplicationId | Identifies the merchant application to the Datawire System. |
BatchSequenceNumber | Starting sequence number for the transactions in this batch. |
DatawireId | Identifies the merchant to the Datawire System. |
DetailRecordCount | The number of records in the DetailRecord arrays. |
DetailRecordAddendum | Optional Detail Record Addendum data (such as Level2 or Level3 data) The DetailAggregate property contains an xml aggregate of the transaction retrieved from the FDMSECOMMERCE , FDMSRETAIL , or FDMSDETAILRECORD control's GetDetailAggregate method. |
DetailRecordAggregate | Set this property with xml aggregates of the transactions you wish to settle. |
FDMSPlatform | Specifies the FDMS platform that the transactions will be processed on. |
IndustryType | Code which indicates the industry the merchant is engaged in. |
MerchantNumber | A unique number used to identify the merchant within the FDMS and Datawire systems. |
MerchantServiceNumber | Merchant's customer service phone number. |
MerchantTerminalNumber | Used to identify a unique terminal within a merchant location. |
ProxyAuthScheme | This property is used to tell the control which type of authorization to perform when connecting to the proxy. |
ProxyAutoDetect | This property tells the control whether or not to automatically detect and use proxy system settings, if available. |
ProxyPassword | This property contains a password if authentication is to be used for the proxy. |
ProxyPort | This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). |
ProxyServer | If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified. |
ProxySSL | This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. |
ProxyUser | This property contains a username if authentication is to be used for the proxy. |
ResponseBatchNumber | FDMS-generated Id of the batch settlement. |
ResponseBatchStatus | Indicates success or failure of the entire settlement. |
ResponseDatawireReturnCode | Contains an error code providing more details about the DatawireStatus received. |
ResponseDatawireStatus | Status of the communication with Datawire. |
SSLAcceptServerCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSLCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSLCertStore | This is the name of the certificate store for the client certificate. |
SSLCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSLCertStoreType | This is the type of certificate store for this certificate. |
SSLCertSubject | This is the subject of the certificate used for client authentication. |
SSLProvider | This specifies the SSL/TLS implementation to use. |
SSLServerCertEncoded | This is the certificate (PEM/Base64 encoded). |
Timeout | A timeout for the control. |
URL | Location of the Datawire server to which transactions are sent. |
Method List
The following is the full list of the methods of the control with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Interrupt | Interrupts the current action. |
Reset | Clears all properties to their default values. |
SendSettlement | Begins a Batch Settlement transaction with the transaction server. |
Event List
The following is the full list of the events fired by the control with short descriptions. Click on the links for further details.
Connected | This event is fired immediately after a connection completes (or fails). |
DataPacketIn | Fired when receiving a data packet from the transaction server. |
DataPacketOut | Fired when sending a data packet to the transaction server. |
Disconnected | This event is fired when a connection is closed. |
Error | Fired when information is available about errors during data delivery. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
Status | Shows the progress of the FDMS/Datawire connection. |
Config Settings
The following is a list of config settings for the control with short descriptions. Click on the links for further details.
ClientTimeout | Indicates timeout client application will wait for response. |
DetailErrorIndex | Contains the detail record number that caused the error during settlement. |
RawRequest | Returns the request sent to the server for debugging purposes. |
RawResponse | Returns the response received from the server for debugging purposes. |
UseEnhancedSettlement | Forces enhanced settlement mode. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the control whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the control binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
CodePage | The system code page used for Unicode to Multibyte translations. |
MaskSensitive | Whether sensitive data is masked in log messages. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
ApiVersion Property (FDMSSettle Control)
Identifies the application version number.
Syntax
fdmssettlecontrol.ApiVersion[=string]
Default Value
"016XX0"
Remarks
The ApiVersion includes the application's version number and revision number. This field should be 6 characters long and it cannot contain periods or spaces.
The default value of this property is "016XX0" indicating the current version number of 4D Payments SDK.
Data Type
String
ApplicationId Property (FDMSSettle Control)
Identifies the merchant application to the Datawire System.
Syntax
fdmssettlecontrol.ApplicationId[=string]
Default Value
"NSOFTDIRECTPXML"
Remarks
The Application ID includes the Merchant's application name and version number. This property is used to identify the merchant application within the Datawire system, and may be validated along with the MerchantTerminalNumber and DatawireId as connection credentials.
The default value of this property is assigned to the 4D Payments FDMS Integrator, but you may be required to have a new ApplicationId assigned for the software you create with this control.
Data Type
String
BatchSequenceNumber Property (FDMSSettle Control)
Starting sequence number for the transactions in this batch.
Syntax
fdmssettlecontrol.BatchSequenceNumber[=string]
Default Value
""
Remarks
A batch settlement is made up of many separate transaction packets. The control creates these packets and posts them one-by-one to the Datawire VXN, where they are then routed to the FDMS payment processor. Each of these packets sent to Datawire must contain a unique 7 digit transaction sequence identifier. This property should contain the beginning sequence number, which the control will increment for each individual data payload sent in the batch settlement. The component will pad the entered value with trailing zeros as needed and restart at 0 when the maximum transaction sequence identifier is reached.
To retrieve the last transaction sequence identifier used by the component in the batch settlement you need to
read the value of BatchSequenceNumber after SendSettlement method is called.
...
FDMSSettle.BatchSequenceNumber = "1234";
FDMSSettle.DetailRecords.Add(new FDMSRecordType(FDMSEcommerce.GetDetailAggregate()));
FDMSSettle.SendSettlement();
// retrieve the last transaction sequence identifier used in batch settlement
// increment it and use in the consecutive transaction to First Data
String lastUsedTranNum = FDMSSettle.BatchSequenceNumber; 'this returns the last transaction sequence identifier used in batch settlement.
Data Type
String
DatawireId Property (FDMSSettle Control)
Identifies the merchant to the Datawire System.
Syntax
fdmssettlecontrol.DatawireId[=string]
Default Value
""
Remarks
The Datawire Id is a unique customer identifier generated by Datawire and returned to the client after successfully registering the merchant (using the FDMSRegister control). This Id (which is sent in all subsequent transactions) allows a transaction, to pass through the Datawire system and be correctly routed to the FDMS Payment processor.
The maximum length for this property is 32 characters.
Data Type
String
DetailRecordCount Property (FDMSSettle Control)
The number of records in the DetailRecord arrays.
Syntax
fdmssettlecontrol.DetailRecordCount[=integer]
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at DetailRecordCount - 1.This property is not available at design time.
Data Type
Integer
DetailRecordAddendum Property (FDMSSettle Control)
Optional Detail Record Addendum data (such as Level2 or Level3 data) The DetailAggregate property contains an xml aggregate of the transaction retrieved from the FDMSECOMMERCE , FDMSRETAIL , or FDMSDETAILRECORD control's GetDetailAggregate method.
Syntax
fdmssettlecontrol.DetailRecordAddendum(DetailRecordIndex)[=string]
Default Value
""
Remarks
Optional Detail Record Addendum data (such as Level2 or Level3 data)
The DetailRecordDetailAggregate property contains an xml aggregate of the transaction retrieved from the FDMSECommerce, FDMSRetail, or FDMSDetailRecord control's GetDetailAggregate method. If you wish to accept corporate purchasing cards you will also need to send Level2, and possibly Level3 addendum data along with the DetailRecordDetailAggregate. The DetailRecordAddendumAggregate property takes an xml aggregate containing either Level2 or Level2 plus Level3 addendum data, which will be added to the DetailRecordDetailAggregate when sending the settlement. The DetailRecordAddendumAggregate may be created with either the FDMSLevel2 or FDMSLevel3 controls, and then returned via those control's GetAddendum method.
For example:
'First, authorize the credit card
FDMSECommerce.TransactionAmount = "2720" '$27.20
FDMSECommerce.Authorize()
'Then, put the result into the settlement component
FDMSSettle.DetailRecordCount = 1
FDMSSettle.DetailRecordAggregate(0) = FDMSECommerce.GetDetailAggregate()
'Then build the Level 2 portion
FDMSLevel2.CardType = fctVisa
FDMSLevel2.CommercialCardType = FDMSECommerce.ResponseCommercialCard
FDMSLevel2.OrderDate = "230928" 'September 28th, 2023
FDMSLevel2.FreightTaxAmount = "0"
FDMSLevel2.FreightAmount = "600" '$6.00
FDMSLevel2.PurchaseIdentifier = "123456PURCHID"
FDMSLevel2.ShippedToZip = "90210"
FDMSLevel2.ShippedFromZip = "90210"
FDMSLevel2.TaxAmount = "120" '$1.20
'Now build the Level 3 portion
FDMSLevel3.CardType = fctVisa
FDMSLevel3.LineItemCount = 2
FDMSLevel3.ItemCommodityCode(0) = "4900" ' Books and printed materials
FDMSLevel3.ItemDescription(0) = "Reference manual"
FDMSLevel3.ItemDiscountAmount(0) = "" ' No discount
FDMSLevel3.ItemProductCode(0) = "ISBN123456"
FDMSLevel3.ItemTaxAmount(0) = "60" '$0.60
FDMSLevel3.ItemTaxRate(0) = "600" '6.00 percent
FDMSLevel3.ItemQuantity(0) = "2"
FDMSLevel3.ItemUnitCost(0) = "500" '$5.00
FDMSLevel3.ItemTotal(0) = "1060" '$10.60
FDMSLevel3.ItemUnits(0) = "each"
FDMSLevel3.ItemCommodityCode(1) = "4900" ' Books and printed materials
FDMSLevel3.ItemDescription(1) = "Quick Start manual"
FDMSLevel3.ItemDiscountAmount(1) = "" ' No discount
FDMSLevel3.ItemProductCode(1) = "ISBN654321"
FDMSLevel3.ItemTaxAmount(1) = "60" '$0.60
FDMSLevel3.ItemTaxRate(1) = "600" '6.00 percent
FDMSLevel3.ItemQuantity(1) = "1"
FDMSLevel3.ItemUnitCost(1) = "1000" '$10.00
FDMSLevel3.ItemTotal(1) = "1060" '$10.60
FDMSLevel3.ItemUnits(1) = "each"
'Finally, add the Level 2 and Level 3 addendum data to the settlement at the same index
'as the associated transaction.
FDMSSettle.DetailRecordAddendum(0) = FDMSLevel2.GetAddendum() & FDMSLevel3.GetAddendum()
Note that you may mix corporate and non-corporate card transactions in the same settlement. It is not necessary that all DetailRecordDetailAggregates have a corresponding DetailRecordAddendumAggregate.
The DetailRecordIndex parameter specifies the index of the item in the array. The size of the array is controlled by the DetailRecordCount property.
This property is not available at design time.
Data Type
String
DetailRecordAggregate Property (FDMSSettle Control)
Set this property with xml aggregates of the transactions you wish to settle.
Syntax
fdmssettlecontrol.DetailRecordAggregate(DetailRecordIndex)[=string]
Default Value
""
Remarks
Set this property with xml aggregates of the transactions you wish to settle.
To settle previously authorized transactions, this property must be set with the xml aggregate returned from the FDMSECommerce, FDMSRetail, or FDMSDetailRecord control's GetDetailAggregate method. For instance:
FDMSSettle.DetailRecords.Add(new FDMSRecordtype(FDMSRetail1.GetDetailAggregate()));
On occasion, you may need to modify these aggregates before sending them to settlement. For instance, if you're running a restaurant you may need to add a gratuity to the charge. If you're accepting installment payments, you will need to add the installment info. To accomplish this, you may use the FDMSDetailRecord control.
For example, to add a gratuity to a charge:
FDMSDetailRecord.ParseAggregate(FDMSRetail.GetDetailAggregate())
FDMSDetailRecord.Gratuity = "500"
FDMSDetailRecord.TransactionAmount = FDMSDetailRecord.TransactionAmount + FDMSDetailRecord.Gratuity
FDMSSettle.DetailAggregate(0) = FDMSDetailRecord.GetDetailAggregate()
To settle a transaction authorized with the dmtInstallment TransactionType, you must use the FDMSDetailRecord control to add the number of this installment and the total count of all installments to be made. For instance, if the purchase was for "Three easy payments of $19.95", and this is the first payment, then the installment number will be 1, and the installment count 3. An example is included below:
FDMSECommerce.TransactionType = dmtInstallment
FDMSECommerce.TransactionAmount = "1995"
FDMSECommerce.Authorize()
FDMSDetailRecord.ParseAggregate FDMSECommerce.GetDetailAggregate()
FDMSDetailRecord.InstallmentCount = 3
FDMSDetailRecord.InstallmentNumber = 1
FDMSSettle.DetailRecordAggregate(5) = FDMSDetailRecord.GetDetailAggregate()
The DetailRecordIndex parameter specifies the index of the item in the array. The size of the array is controlled by the DetailRecordCount property.
This property is not available at design time.
Data Type
String
FDMSPlatform Property (FDMSSettle Control)
Specifies the FDMS platform that the transactions will be processed on.
Syntax
fdmssettlecontrol.FDMSPlatform[=integer]
Possible Values
fpNorth(0), fpNashville(1)
Default Value
0
Remarks
This property is used to identify the FDMS platform that the transactions will be sent to and processed on. The following table lists the platforms supported by this control.
fpNorth (0) | North/Cardnet platform. |
fpNashville (1) | Nashville platform. |
Data Type
Integer
IndustryType Property (FDMSSettle Control)
Code which indicates the industry the merchant is engaged in.
Syntax
fdmssettlecontrol.IndustryType[=integer]
Possible Values
fitUnknown(0), fitRetail(1), fitRestaurant(2), fitGroceryStore(3), fitDirectMarketing(4), fitHotel(5)
Default Value
1
Remarks
This property is used to identify the industry type of the merchant submitting the authorization request. The following table lists the industry types supported by this control.
fitUnknown (0) | Unknown or unsure. |
fitRetail (1) | Retail store. |
fitRestaurant (2) | Food / Restaurant. |
fitGroceryStore (3) | Grocery store or supermarket. |
fitDirectMarketing (4) | eCommerce or Direct Marketing |
fitHotel (5) | Hotel / Lodging. |
Data Type
Integer
MerchantNumber Property (FDMSSettle Control)
A unique number used to identify the merchant within the FDMS and Datawire systems.
Syntax
fdmssettlecontrol.MerchantNumber[=string]
Default Value
""
Remarks
This property contains a unique number (typically 12 digits) which is assigned by the signing merchant's bank or processor. This field is used to identify the merchant within the FDMS and Datawire systems, and is used along with the MerchantTerminalNumber and DatawireId as connection credentials.
Data Type
String
MerchantServiceNumber Property (FDMSSettle Control)
Merchant's customer service phone number.
Syntax
fdmssettlecontrol.MerchantServiceNumber[=string]
Default Value
""
Remarks
This 10 character field contains the merchant customer service phone number without dashes or spaces. The initial "1" for long-distance or toll-free calls should be omitted. For instance, "8001234567" is acceptable, while "18001234567" or "1-800-123-4567" is not.
This property is only required when the IndustryType is set to fitDirectMarketing, and will otherwise not be sent.
Data Type
String
MerchantTerminalNumber Property (FDMSSettle Control)
Used to identify a unique terminal within a merchant location.
Syntax
fdmssettlecontrol.MerchantTerminalNumber[=string]
Default Value
""
Remarks
This property contains a number (typically 6 digits) assigned by FDMS to uniquely identify a terminal within a merchant location, and is used along with the MerchantNumber and DatawireId as connection credentials.
Data Type
String
ProxyAuthScheme Property (FDMSSettle Control)
This property is used to tell the control which type of authorization to perform when connecting to the proxy.
Syntax
fdmssettlecontrol.ProxyAuthScheme[=integer]
Possible Values
authBasic(0), authDigest(1), authProprietary(2), authNone(3), authNtlm(4), authNegotiate(5)
Default Value
0
Remarks
This property is used to tell the control which type of authorization to perform when connecting to the proxy. This is used only when the ProxyUser and ProxyPassword properties are set.
ProxyAuthScheme should be set to authNone (3) when no authentication is expected.
By default, ProxyAuthScheme is authBasic (0), and if the ProxyUser and ProxyPassword properties are set, the component will attempt basic authentication.
If ProxyAuthScheme is set to authDigest (1), digest authentication will be attempted instead.
If ProxyAuthScheme is set to authProprietary (2), then the authorization token will not be generated by the control. Look at the configuration file for the control being used to find more information about manually setting this token.
If ProxyAuthScheme is set to authNtlm (4), NTLM authentication will be used.
For security reasons, setting this property will clear the values of ProxyUser and ProxyPassword.
Data Type
Integer
ProxyAutoDetect Property (FDMSSettle Control)
This property tells the control whether or not to automatically detect and use proxy system settings, if available.
Syntax
fdmssettlecontrol.ProxyAutoDetect[=boolean]
Default Value
False
Remarks
This property tells the control whether or not to automatically detect and use proxy system settings, if available. The default value is .
Data Type
Boolean
ProxyPassword Property (FDMSSettle Control)
This property contains a password if authentication is to be used for the proxy.
Syntax
fdmssettlecontrol.ProxyPassword[=string]
Default Value
""
Remarks
This property contains a password if authentication is to be used for the proxy.
If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.
If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.
Data Type
String
ProxyPort Property (FDMSSettle Control)
This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
Syntax
fdmssettlecontrol.ProxyPort[=integer]
Default Value
80
Remarks
This property contains the Transmission Control Protocol (TCP) port for the proxy ProxyServer (default 80). See the description of the ProxyServer property for details.
Data Type
Integer
ProxyServer Property (FDMSSettle Control)
If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
Syntax
fdmssettlecontrol.ProxyServer[=string]
Default Value
""
Remarks
If a proxy ProxyServer is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
If the ProxyServer property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the ProxyServer property is set to the corresponding address. If the search is not successful, an error is returned.
Data Type
String
ProxySSL Property (FDMSSettle Control)
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
Syntax
fdmssettlecontrol.ProxySSL[=integer]
Possible Values
psAutomatic(0), psAlways(1), psNever(2), psTunnel(3)
Default Value
0
Remarks
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:
psAutomatic (0) | Default setting. If the URL is an https URL, the control will use the psTunnel option. If the URL is an http URL, the control will use the psNever option. |
psAlways (1) | The connection is always SSL enabled. |
psNever (2) | The connection is not SSL enabled. |
psTunnel (3) | The connection is made through a tunneling (HTTP) proxy. |
Data Type
Integer
ProxyUser Property (FDMSSettle Control)
This property contains a username if authentication is to be used for the proxy.
Syntax
fdmssettlecontrol.ProxyUser[=string]
Default Value
""
Remarks
This property contains a username if authentication is to be used for the proxy.
If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.
If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.
Data Type
String
ResponseBatchNumber Property (FDMSSettle Control)
FDMS-generated Id of the batch settlement.
Syntax
fdmssettlecontrol.ResponseBatchNumber
Default Value
"0"
Remarks
FDMS-generated Id of the batch settlement.
This property is filled after a successful batch settlement, and contains a unique number which identifies the settlement with the FDMS processor. This number should be logged in case you have any questions about the settlement in the future.
This property is read-only.
Data Type
String
ResponseBatchStatus Property (FDMSSettle Control)
Indicates success or failure of the entire settlement.
Syntax
fdmssettlecontrol.ResponseBatchStatus
Default Value
""
Remarks
Indicates success or failure of the entire settlement.
This property will be filled after calling the SendSettlement method. If it contains "OK", the batch settlement has succeeded. If it contains any other data, an error will be generated by the control. Possible responses include:
Code | Description |
OK | Batch completed successfully. |
DUP GEN RECORD | Duplicate general record. |
DUP RECORD | Duplicate detail record. |
INVLD ACCT 1 | Merchant attempted to capture a transaction for which he is not entitled. |
INVLD ACCT 2 | Merchant entered an invalid account number (length or prefix error). |
INVLD AMT 3 | Merchant entered an invalid amount in the capture transaction. |
INVLD FIELD DATA | Invalid field data. |
INVLD GENERAL TYPE | Invalid or duplicate header record. |
INVLD LENGTH | Invalid length when extracting ISO field from data buffer. |
INVLD RECORD TYPE | Unknown record type. |
INVLD SETTLE 4 | The item count or dollar total does not agree. Correct and retransmit the entire batch. |
INVLD SETTLE 5 | System rejected batch for reasons unrelated to a specific record. |
INVLD SUPPL DATA | Invalid supplemental data. |
INVLD TRANS CODE | Invalid trans code. |
NO HEADER RECORD | No header record. |
PLEASE RETRY | Server has timed out. Please retry batch. |
SUPPL OUT OF SEQ | Supplemental batch sequence number does not match original. |
TCH OUT OF SEQ | Batch sequence number does not match count. |
UNSUPPORTED TRAN | Batch Review (Tran Code 97) not supported. |
INV SETTL TR1 | Batch rejected for invalid track 1 data |
INV SETTL TR2 | Batch rejected for invalid track 2 data |
INVLD DATA! | Data format does not correspond to fields identified in the bit map. |
(any other data) | Consider request not approved. |
This property is read-only.
Data Type
String
ResponseDatawireReturnCode Property (FDMSSettle Control)
Contains an error code providing more details about the DatawireStatus received.
Syntax
fdmssettlecontrol.ResponseDatawireReturnCode
Default Value
""
Remarks
Contains an error code providing more details about the ResponseDatawireStatus received.
When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.
The ResponseCaptureFlag and ResponseApprovalCode properties contain the actual transaction result that was returned by FDMS.
The following is a list of possible Datawire return codes:
000 | Transaction successfully passed through the Datawire system to the FDMS Payment Processor and back. |
200 | Host Busy - The processor's Host is busy and is currently unable to service this request. |
201 | Host Unavailable - The processor's Host is currently unavailable. For example, the server is sending NAK. |
202 | Host Connect Error - Could not connect to the processor's Host. |
203 | Host Drop - The processor's Host disconnected during the transaction before sending a response. |
204 | Host Comm Error - An error was encountered while communicating with the processor's Host. |
205 | No Response - No response from the processor's Host |
206 | Host Send Error - An error has encountered when sending the request to the processor, and the Host daemon cannot continue sending packets to the processor because the connection is broken. |
405 | Vxn Timeout - The request could not be processed. |
505 | Network Error - The request could not be processed. |
This property is read-only.
Data Type
String
ResponseDatawireStatus Property (FDMSSettle Control)
Status of the communication with Datawire.
Syntax
fdmssettlecontrol.ResponseDatawireStatus
Default Value
""
Remarks
Status of the communication with Datawire.
When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.
The ResponseCaptureFlag and ResponseApprovalCode properties contains the actual FDMS Transaction Result that was returned.
The following is a list of possible Datawire response status codes:
OK | Transaction has successfully passed through the Datawire system to the FDMS Payment processor and back. |
AuthenticationError | DatawireId in the request was not successfully authenticated. |
UnknownServiceID | ServiceId part of the URL (in the Service Discovery or Ping request) is unknown. |
WrongSessionContext | The SessionContext element of the Session Transaction request does not match the SessionContext returned by the InitiateSession response (applicable to the FDMSSettle control). |
AccessDenied | Generally, occurs when you try to register a merchant after a merchant has already been activated to use the Datawire VXN. |
Failed | Your Merchant Registration has failed. Contact tech.support@datawire.net for more information. |
Retry | Registration is not yet complete. You must send the Registration request again. |
Timeout | No response from the Service Provider was received during the expected period of time. |
XMLError | Request contains some XML error, such as malformed XML, violation of this DTD, etc. |
OtherError | Unspecified error occurred. |
008 | Network Error |
This property is read-only.
Data Type
String
SSLAcceptServerCertEncoded Property (FDMSSettle Control)
This is the certificate (PEM/Base64 encoded).
Syntax
fdmssettlecontrol.SSLAcceptServerCertEncoded[=string]
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.
When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.
To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLAcceptServerCertEncodedB.
This property is not available at design time.
Data Type
Binary String
SSLCertEncoded Property (FDMSSettle Control)
This is the certificate (PEM/Base64 encoded).
Syntax
fdmssettlecontrol.SSLCertEncoded[=string]
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.
When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.
To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLCertEncodedB.
This property is not available at design time.
Data Type
Binary String
SSLCertStore Property (FDMSSettle Control)
This is the name of the certificate store for the client certificate.
Syntax
fdmssettlecontrol.SSLCertStore[=string]
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password protected, specify the password in SSLCertStorePassword.
SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLCertStoreB.
Data Type
Binary String
SSLCertStorePassword Property (FDMSSettle Control)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
fdmssettlecontrol.SSLCertStorePassword[=string]
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SSLCertStoreType Property (FDMSSettle Control)
This is the type of certificate store for this certificate.
Syntax
fdmssettlecontrol.SSLCertStoreType[=integer]
Possible Values
cstUser(0), cstMachine(1), cstPFXFile(2), cstPFXBlob(3), cstJKSFile(4), cstJKSBlob(5), cstPEMKeyFile(6), cstPEMKeyBlob(7), cstPublicKeyFile(8), cstPublicKeyBlob(9), cstSSHPublicKeyBlob(10), cstP7BFile(11), cstP7BBlob(12), cstSSHPublicKeyFile(13), cstPPKFile(14), cstPPKBlob(15), cstXMLFile(16), cstXMLBlob(17), cstJWKFile(18), cstJWKBlob(19), cstSecurityKey(20), cstBCFKSFile(21), cstBCFKSBlob(22), cstPKCS11(23), cstAuto(99)
Default Value
0
Remarks
This is the type of certificate store for this certificate.
The control supports both public and private keys in a variety of formats. When the cstAuto value is used, the control will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr control. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SSLCertSubject Property (FDMSSettle Control)
This is the subject of the certificate used for client authentication.
Syntax
fdmssettlecontrol.SSLCertSubject[=string]
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SSLProvider Property (FDMSSettle Control)
This specifies the SSL/TLS implementation to use.
Syntax
fdmssettlecontrol.SSLProvider[=integer]
Possible Values
sslpAutomatic(0), sslpPlatform(1), sslpInternal(2)
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the control will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The control will select a provider depending on the current platform.
When Automatic is selected the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used.
Data Type
Integer
SSLServerCertEncoded Property (FDMSSettle Control)
This is the certificate (PEM/Base64 encoded).
Syntax
fdmssettlecontrol.SSLServerCertEncoded
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.
When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.
To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLServerCertEncodedB.
This property is read-only and not available at design time.
Data Type
Binary String
Timeout Property (FDMSSettle Control)
A timeout for the control.
Syntax
fdmssettlecontrol.Timeout[=integer]
Default Value
30
Remarks
If Timeout is set to a positive value, and an operation cannot be completed immediately, the control will return with an error after Timeout seconds.
The default value for Timeout is 30 (seconds).
Data Type
Integer
URL Property (FDMSSettle Control)
Location of the Datawire server to which transactions are sent.
Syntax
fdmssettlecontrol.URL[=string]
Default Value
"https://staging1.datawire.net/sd/"
Remarks
This is the URL to which all authorization and settlement transactions are sent. This URL is acquired by using the FDMSRegister control. Once you Register and Activate the merchant using the FDMSRegister control, you may then do a Service Discovery. After sending a Service Discovery transaction, the Datawire system will return a list of transaction URLs. The URL from this list with the shortest round-trip transit time from a ping is the URL you should use here.
Note: By default, this property is populated with the Datawire Staging (test) server, and is not the correct URL to use in a production environment. In a production environment, this URL is supplied by the FDMSRegister control.
Data Type
String
Config Method (FDMSSettle Control)
Sets or retrieves a configuration setting.
Syntax
fdmssettlecontrol.Config ConfigurationString
Remarks
Config is a generic method available in every control. It is used to set and retrieve configuration settings for the control.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Interrupt Method (FDMSSettle Control)
Interrupts the current action.
Syntax
fdmssettlecontrol.Interrupt
Remarks
This method interrupts any processing that the control is currently executing.
Reset Method (FDMSSettle Control)
Clears all properties to their default values.
Syntax
fdmssettlecontrol.Reset
Remarks
This method clears all properties to their default values.
SendSettlement Method (FDMSSettle Control)
Begins a Batch Settlement transaction with the transaction server.
Syntax
fdmssettlecontrol.SendSettlement
Remarks
This begins a Batch Settlement transaction. The control begins a session with the Datawire system, and then posts a header record, all the detail records, all the Level 2 and Level 3 addendum records (if any), and a trailer record in sequence. The session is then automatically terminated, and the ResponseBatchStatus property will indicate the result of the settlement as returned by the FDMS processor.
Connected Event (FDMSSettle Control)
This event is fired immediately after a connection completes (or fails).
Syntax
Sub fdmssettlecontrol_Connected(StatusCode As Integer, Description As String)
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error. The corresponding Visual Basic error code can be obtained by adding 15001 to this value.
Please refer to the Error Codes section for more information.
DataPacketIn Event (FDMSSettle Control)
Fired when receiving a data packet from the transaction server.
Syntax
Sub fdmssettlecontrol_DataPacketIn(DataPacket As String)
Remarks
This event fires when a packet is received. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or to extract additional response properties beyond the scope of this control.
DataPacketOut Event (FDMSSettle Control)
Fired when sending a data packet to the transaction server.
Syntax
Sub fdmssettlecontrol_DataPacketOut(DataPacket As String)
Remarks
This event fires right before each data packet is sent. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or may be modified to support additional features beyond the scope of this control.
Disconnected Event (FDMSSettle Control)
This event is fired when a connection is closed.
Syntax
Sub fdmssettlecontrol_Disconnected(StatusCode As Integer, Description As String)
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error. The corresponding Visual Basic error code can be obtained by adding 15001 to this value.
Please refer to the Error Codes section for more information.
Error Event (FDMSSettle Control)
Fired when information is available about errors during data delivery.
Syntax
Sub fdmssettlecontrol_Error(ErrorCode As Integer, Description As String)
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the control fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
SSLServerAuthentication Event (FDMSSettle Control)
Fired after the server presents its certificate to the client.
Syntax
Sub fdmssettlecontrol_SSLServerAuthentication(CertEncoded As String, CertSubject As String, CertIssuer As String, Status As String, Accept As Boolean)
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (FDMSSettle Control)
Fired when secure connection progress messages are available.
Syntax
Sub fdmssettlecontrol_SSLStatus(Message As String)
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
Status Event (FDMSSettle Control)
Shows the progress of the FDMS/Datawire connection.
Syntax
Sub fdmssettlecontrol_Status(Message As String)
Remarks
The event is fired for informational and logging purposes only. Used to track the progress of the connection.
Config Settings (FDMSSettle Control)
The control accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.FDMSSettle Config Settings
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by controls that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the control returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.
If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this config is set to false.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to true, the control will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the control is the same.
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When set to 0 (default) the CRL check will not be performed by the control. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
When set to 0 (default) the control will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the control will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the control will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the control when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This setting is only applicable when SSLProvider is set to Internal.
If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the control will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the control will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the control will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the control fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for UDP ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
This setting only works on these controls: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to tells the control to use the internal implementation instead of using the system security libraries.
This setting is set to by default on all platforms.
Trappable Errors (FDMSSettle Control)
FDMSSettle Errors
20433 Invalid index. | |
20502 Invalid length for this property. | |
20503 Invalid data format for this property. | |
20504 Value is out of range. | |
20505 Credit card digit check failed. | |
20506 Card date invalid. | |
20507 Card expired. | |
20520 Corrupt response. | |
20521 Response payload empty. | |
20522 Response truncated. | |
20527 Invalid timeout value. | |
20594 A property required for this transaction is missing. | |
20530 Error in XML response. | |
20531 Status code received in response indicates an error condition. | |
20532 Return code received in response indicates an error condition. | |
20533 Cannot generate detail aggregate - this transaction was not successfully authorized. | |
20534 Internal error constructing payload. | |
20551 Payload received from FDMS indicates settlement error. | |
20552 The XML aggregate contained in DetailRecordAggregate or DetailRecordAddendum is in error. | |
20553 No session context. | |
20554 Cannot send empty payload. | |
20556 URL Cache is empty. |
The control may also return one of the following error codes, which are inherited from other controls.
HTTP Errors
20119 Firewall Error. Error description contains detailed message. | |
20144 Busy executing current method. | |
20152 HTTP protocol error. The error message has the server response. | |
20153 No server specified in URL | |
20154 Specified URLScheme is invalid. | |
20156 Range operation is not supported by server. | |
20157 Invalid cookie index (out of range). | |
20302 Interrupted. | |
20303 Can't open AttachedFile. |
The control may also return one of the following error codes, which are inherited from other controls.
TCPClient Errors
20101 You cannot change the RemotePort at this time. A connection is in progress. | |
20102 You cannot change the RemoteHost (Server) at this time. A connection is in progress. | |
20103 The RemoteHost address is invalid (0.0.0.0). | |
20105 Already connected. If you want to reconnect, close the current connection first. | |
20107 You cannot change the LocalPort at this time. A connection is in progress. | |
20108 You cannot change the LocalHost at this time. A connection is in progress. | |
20113 You cannot change MaxLineLength at this time. A connection is in progress. | |
20117 RemotePort cannot be zero. Please specify a valid service port number. | |
20118 You cannot change the UseConnection option while the control is active. | |
20136 Operation would block. | |
20202 Timeout. | |
20212 Action impossible in control's present state. | |
20213 Action impossible while not connected. | |
20214 Action impossible while listening. | |
20302 Timeout. | |
20303 Could not open file. | |
20435 Unable to convert string to selected CodePage. | |
21106 Already connecting. If you want to reconnect, close the current connection first. | |
21118 You need to connect first. | |
21120 You cannot change the LocalHost at this time. A connection is in progress. | |
21121 Connection dropped by remote host. |
SSL Errors
20271 Cannot load specified security library. | |
20272 Cannot open certificate store. | |
20273 Cannot find specified certificate. | |
20274 Cannot acquire security credentials. | |
20275 Cannot find certificate chain. | |
20276 Cannot verify certificate chain. | |
20277 Error during handshake. | |
20281 Error verifying certificate. | |
20282 Could not find client certificate. | |
20283 Could not find server certificate. | |
20284 Error encrypting data. | |
20285 Error decrypting data. |
TCP/IP Errors
25005 [10004] Interrupted system call. | |
25010 [10009] Bad file number. | |
25014 [10013] Access denied. | |
25015 [10014] Bad address. | |
25023 [10022] Invalid argument. | |
25025 [10024] Too many open files. | |
25036 [10035] Operation would block. | |
25037 [10036] Operation now in progress. | |
25038 [10037] Operation already in progress. | |
25039 [10038] Socket operation on non-socket. | |
25040 [10039] Destination address required. | |
25041 [10040] Message too long. | |
25042 [10041] Protocol wrong type for socket. | |
25043 [10042] Bad protocol option. | |
25044 [10043] Protocol not supported. | |
25045 [10044] Socket type not supported. | |
25046 [10045] Operation not supported on socket. | |
25047 [10046] Protocol family not supported. | |
25048 [10047] Address family not supported by protocol family. | |
25049 [10048] Address already in use. | |
25050 [10049] Can't assign requested address. | |
25051 [10050] Network is down. | |
25052 [10051] Network is unreachable. | |
25053 [10052] Net dropped connection or reset. | |
25054 [10053] Software caused connection abort. | |
25055 [10054] Connection reset by peer. | |
25056 [10055] No buffer space available. | |
25057 [10056] Socket is already connected. | |
25058 [10057] Socket is not connected. | |
25059 [10058] Can't send after socket shutdown. | |
25060 [10059] Too many references, can't splice. | |
25061 [10060] Connection timed out. | |
25062 [10061] Connection refused. | |
25063 [10062] Too many levels of symbolic links. | |
25064 [10063] File name too long. | |
25065 [10064] Host is down. | |
25066 [10065] No route to host. | |
25067 [10066] Directory not empty | |
25068 [10067] Too many processes. | |
25069 [10068] Too many users. | |
25070 [10069] Disc Quota Exceeded. | |
25071 [10070] Stale NFS file handle. | |
25072 [10071] Too many levels of remote in path. | |
25092 [10091] Network subsystem is unavailable. | |
25093 [10092] WINSOCK DLL Version out of range. | |
25094 [10093] Winsock not loaded yet. | |
26002 [11001] Host not found. | |
26003 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
26004 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
26005 [11004] Valid name, no data record (check DNS setup). |