FDMSRcRetail Control
Properties Methods Events Config Settings Errors
The FDMSRcRetail control is an advanced tool used to authorize credit cards in a Retail environment, where the customer is purchasing products or services in person. This control makes authorizing these types of transactions very easy. Supported Industry Types include retail stores and restaurants.
Syntax
FDMSRcRetail
Remarks
This control connects to the First Data Merchant Services (FDMS) processor, by way of the Datawire VXN transaction transport network. Transactions originating with these controls go through Datawire, to the FDMS processor where the transaction is authorized. The result is then returned back through Datawire and received by the control. This control can be integrated into web pages or stand-alone Point Of Sale applications. Because all SSL communications are handled inside the control, any application or web page can be deployed without the need for expensive dedicated SSL servers.
The FDMSRcRetail control makes authorizing Card-Present transactions (where the customer's card is swiped through a card reader) very easy by adding an additional layer of abstraction between the programmer and the protocol. There is no need to deal with raw sockets, TLS/SSL handshakes, or data packet formatting. The steps to setting up the control and authorizing a transaction are outlined below:
Datawire Setup
First, you must register and activate your account with Datawire. FDMS Rapid Connect will provide you with the following values:
The FDMSRegister control must be used to activate the merchant and receive a DatawireId. Once you acquire the DatawireId and receive your transaction URLs through ServiceDiscovery, you may begin to authorize transactions. For instance:
FDMSRegister.FDMSPlatform = FdmsregisterFDMSPlatforms.fpRapidConnect;
FDMSRegister.MerchantNumber = "000000999990";
FDMSRegister.MerchantTerminalNumber = "555555";
FDMSRegister.Config("GroupId=20001"); //Required for Rapid Connect
FDMSRegister.TransactionNumber = "1"; //any unique number will do.
FDMSRegister.URL = "https://stagingsupport.datawire.net/staging_expresso/SRS.do";
FDMSRegister.Register();
FDMSRegister.TransactionNumber = FDMSRegister.TransactionNumber + 1;
FDMSRegister.Activate();
FDMSRegister.ServiceDiscovery(FDMSRegister.PrimaryDiscoveryURL);
for (int i = 0; i < FDMSRegister.ServiceProviders.Length; i++) {
FDMSRegister.Ping(FDMSRegister.ServiceProviders[i]);
Console.WriteLine(FDMSRegister.ServiceProviders[i] + " = " + FDMSRegister.PingResponseTime);
}
To authorize a credit, debit, ebt or FSA/HSA card set the MerchantId, MerchantTerminalNumber, and GroupId properties with the values supplied by FDMS Rapid Connect. Set the DatawireId property with the value retrieved by the FDMSRegister control after activating your merchant account. Set the URL property with one of the URLs you retrieved during ServiceDiscovery.
Transaction Processing
To begin processing transactions first set the required merchant values. For instance:
retail.IndustryType = FdmsrcretailIndustryTypes.fritRetail;
retail.TPPID = "AAA000";
retail.MerchantTerminalNumber = "00000001";
retail.MerchantId = "1234";
retail.GroupId = "20001";
retail.DatawireId = "00011122233344455566";
retail.URL = "https://stg.dw.us.fdcnet.biz/rc";
retail.ApplicationId = "RAPIDCONNECTVXN";
Next specify transaction specific information. These values uniquely identify the transaction to Datawire and FDMS.
retail.STAN = "112";
retail.TransactionNumber = "1234";
retail.OrderNumber = "123";
retail.ReferenceNumber = "123";
Then specify customer card and address information along with the transaction amount:
retail.Card.MagneticStripe = "B4012000033330026^FDCS TEST CARD /VISA^170410054321000000000000000 150 A";
retail.Card.EntryDataSource = EntryDataSources.edsTrack1;
retail.TransactionAmount = "1200"; //$12.00
Finally, submit the transaction by calling the Sale method.
retail.Sale();
The ResponseCode property indicates the result of the transaction. A code of 000 indicates success. For all other values please see the Response Codes section. Additional Response properties such as ResponseApprovalCode, ResponseAuthorizedAmount, ResponseText, ResponseAVSResult, ResponseCVVResult, and more, provide further details about the transaction response.
To perform subsequent operations on a transaction, such as calling Reverse to reverse a Sale, or calling Capture to capture a previous AuthOnly transaction the GetDetailAggregate method must be used to get details about the original transaction. This aggregate must be stored securely, it will contain cardholder information that is required for subsequent transactions. For instance:
retail.AuthOnly();
//Save the detail aggregate to use with Capture
string aggregate = retail.GetDetailAggregate();
//The aggregate must then be stored securely.
//At a later time the aggregate is retrieved in order to perform a capture.
//Capture
retail = new Fdmsrcretail();
...
//Specify the detail aggregate from the original transaction
retail.SetDetailAggregate(aggregate);
retail.Capture();
Transaction Types
In addition to a basic sale transaction, additional transaction types exist for other common operations. Not all transaction types are applicable for all controls. Check the method list for applicable transaction types.
AuthOnly | An authorization that must be Captured later. |
BalanceInquiry | Inquire about available balance. |
Capture | Captures a previous AuthOnly transaction for settlement. |
Credit | Credits funds to the cardholder. This is not based on a previous transaction. |
Reverse | Reverse a previous transaction. This is also used for timeout reversals. |
Sale | A basic sale, no other steps are required to complete the payment. |
VerifyCard | Verifies that a card is valid. |
HostTotals | Requests a Host Totals Report for a particular day. |
VoucherClear | Performs an online force-post entry of a voice-authorized Food Benefit or eWIC transaction. |
Note: FDMS Rapid Connect is a host capture system. No explicit calls are needed to settle or otherwise manage the batch.
Gratuity for Restaurant Transactions:
In order to add gratuity the transaction may be authorized using AuthOnly and then Captured for a different amount that includes the tip. Gratuity cannot be added later to a Sale transaction. Consult FDMS for any applicable limits on the additional amount being captured.
Level 2 Transactions
The values required for Level 2 transaction depend on the card type. The following tables indicate which properties are valid for what card type:
American Express
- Level2CustomerReferenceNumber (required if Level2TaxAmount specified)
- Level2DestinationPostalCode (required)
- Level2DiscountAmount (required if discount applied)
- Level2DutyAmount (required if duty amount applied)
- Level2FreightAmount (required if freight amount applied)
- Level2ProductDescription (required)
- Level2PurchaseIdentifier (required)
- Level2MerchantTaxId
- Level2ShipFromPostalCode
- Level2TaxAmount
- Level2TaxIndicator
- Level2CustomerReferenceNumber (required if Level2TaxAmount specified)
- Level2DiscountAmount (required if discount applied)
- Level2DutyAmount (required if duty amount applied)
- Level2FreightAmount (required if freight amount applied)
- Level2PurchaseIdentifier (required)
- Level2TaxAmount (required if Level2TaxIndicator indicates tax is applied)
- Level2TaxIndicator (required)
- Level2DestinationPostalCode
- Level2ShipFromPostalCode
- Level2MerchantTaxId
- Level2CustomerReferenceNumber (required if Level2TaxAmount specified)
- Level2DiscountAmount (required if discount applied)
- Level2DutyAmount (required if duty amount applied)
- Level2FreightAmount (required if freight amount applied)
- Level2MerchantTaxId (required)
- Level2PurchaseIdentifier (required)
- Level2TaxAmount (required if Level2TaxIndicator indicates tax is applied)
- Level2TaxIndicator (required)
- Level2DestinationPostalCode
- Level2ShipFromPostalCode
Property List
The following is the full list of the properties of the control with short descriptions. Click on the links for further details.
ApplicationId | Identifies the merchant application to the Datawire System. |
InstallmentDescription | The merchant's description of an Installment Bill Payment Transaction. |
InstallmentInvoiceNumber | The Invoice Number of an Installment Bill Payment Transaction. |
InstallmentType | The type of the Installment payment. |
MerchantAdviceCode | This property contains a code which may be returned by the issuer to provide additional information for a card not present transaction. |
MITAmount | The amount of the Recurring or Installment payment. |
MITAmountType | Identifies the type of the Recurring or Installment Payment amount. |
MITFrequency | This property indicates the frequency of a Recurring or Installment payment. |
MITPaymentCurrency | Contains the Installment Payment Currency represented as a 3 digit value. |
MITRecurringPaymentType | This property contains the type of Recurring Payment. |
MITRegistrationRefNum | This property contains a unique Reference Number for the Recurring Payment transaction. |
MITSequenceIndicator | Identifies the sequence of the transactions when multiple Installment payments will be submitted. |
MITTotalPaymentAmount | This property contains the Total Installment Amount. |
MITTotalPaymentCount | The number of Recurring payments or Installments per the Cardholder agreement with the Merchant. |
MITUniqueID | This property is used to uniquely identify each of the Recurring or Installment Payment. |
MITValidationFlag | Indicates the validation source for the validity of a transaction. |
MITValidationRef | This property contains a cryptogram generated by the validation source for each cardholder account, for an Issuer to validate a transaction. |
TransactionIndicator | Specifies the type of Bill Payment being made. |
CardType | Type of credit card being used in this transaction. |
CardCVVData | Three digit security code on back of card (optional). |
CardCVVPresence | Indicates the presence of the card verification value. |
CardEntryDataSource | This property contains a 1-character code identifying the source of the customer data. |
CardExpMonth | Expiration month of the credit card specified in Number . |
CardExpYear | Expiration year of the credit card specified in Number . |
CardIsEncrypted | Determines whether data set to the Number or MagneticStripe properties is validated. |
CardMagneticStripe | Track data read off of the card's magnetic stripe. |
CardNumber | Customer's credit card number for the transaction. |
CashBack | Optional cash back amount to return to the customer. |
CustomerAddress | The customer's billing address. |
CustomerZip | Customer's zip code (or postal code if outside of the USA). |
DatawireId | Identifies the merchant to the Datawire System. |
EMVData | The EMV Data returned from a Pin Pad after reading an EMV card. |
GroupId | The Id assigned by FDMS to identify the merchant or group of merchants. |
IndustryType | The merchant's industry type. |
Level2CustomerReferenceNumber | The reference number or order number to be reported as part of the Purchase Card data. |
Level2DestinationCountryCode | This property represents the country code of the location the items in this purchase are being delivered to. |
Level2DestinationPostalCode | This property contains the postal or zip code of the location the item(s) in this purchase are being delivered to. |
Level2DiscountAmount | This property contains the discount amount for the purchase. |
Level2DutyAmount | This property contains the duty amount for this purchase. |
Level2FreightAmount | This property contains the amount for freight included in this purchase. |
Level2MerchantTaxId | This property should contain the Tax Id collected by the merchant for this transaction. |
Level2ProductDescription | This property should contain a description of an item purchased with this card. |
Level2PurchaseIdentifier | This property represents the data used by the merchant or customer to identify the purchase. |
Level2ShipFromPostalCode | The postal or zip code the item(s) in this purchase are to be shipped from. |
Level2TaxAmount | This property contains the portion of the transaction amount that represents the tax. |
Level2TaxIndicator | This property indicates the taxable status of the transaction. |
MerchantId | A unique Id used to identify the merchant within the FDMS and Datawire systems. |
MerchantServicePhone | The merchant's phone number, used to assist cardholders. |
MerchantTerminalNumber | Used to identify a unique terminal within a merchant location. |
MerchantURL | The URL of the site performing the ECommerce transaction. |
OrderNumber | A merchant assigned order number to uniquely reference the transaction. |
ProxyAuthScheme | This property is used to tell the control which type of authorization to perform when connecting to the proxy. |
ProxyAutoDetect | This property tells the control whether or not to automatically detect and use proxy system settings, if available. |
ProxyPassword | This property contains a password if authentication is to be used for the proxy. |
ProxyPort | This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). |
ProxyServer | If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified. |
ProxySSL | This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. |
ProxyUser | This property contains a username if authentication is to be used for the proxy. |
ReferenceNumber | A value assigned by the merchant to uniquely reference a transaction and any subsequent related transactions. |
ResponseApprovalCode | The Approval Code returned from the server after a successful authorization. |
ResponseAuthorizedAmount | The amount actually charged to the card. |
ResponseAuthorizingNetworkId | This property indicates the network Id as returned by the host, if available. |
ResponseAuthorizingNetworkName | This property indicates the authorizing network name as returned by the host, when available. |
ResponseAVSResult | Contains the Address Verification System result code. |
ResponseBalance | Contains the remaining available balance left on the card. |
ResponseCardLevelResult | This property is only applicable to Visa card. |
ResponseCode | Contains the 3 digit response code indicating success or reason of failure. |
ResponseCommercialCard | Indicates whether the credit card charged is a corporate commercial card. |
ResponseCVVResult | Contains the returned CVV result code (if CVV data was sent in the request). |
ResponseDatawireReturnCode | Contains an error code providing more details about the DatawireStatus received. |
ResponseDatawireStatus | Status of the communication with Datawire. |
ResponseEMVData | Contains the EMV data returns in the response (if any). |
ResponsePOSData | This property holds transaction specific information returned by the issuer (if any). |
ResponseReturnedACI | Returned Authorization Characteristics Indicator contains CPS qualification status. |
ResponseRoutingIndicator | Indicates whether the transaction was processed as Credit or Debit. |
ResponseSettlementDate | The date the transaction will be settled in the format MMDD. |
ResponseText | This property may hold additional text which describes the reason for a decline, the property in error, etc. |
ResponseTransactionDate | The transaction date returned from the server in yyyyMMddHHmmss format. |
ResponseTransactionId | Card issuer's Transaction Reference Number. |
ReversalTransactionType | The type of transaction to reverse. |
ReversalType | The type of reversal. |
SettlementMode | Indicates whether the control uses Host Capture (0) or Terminal Capture (1) system. |
SSLAcceptServerCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSLCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSLCertStore | This is the name of the certificate store for the client certificate. |
SSLCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSLCertStoreType | This is the type of certificate store for this certificate. |
SSLCertSubject | This is the subject of the certificate used for client authentication. |
SSLProvider | This specifies the SSL/TLS implementation to use. |
SSLServerCertEncoded | This is the certificate (PEM/Base64 encoded). |
STAN | The merchant assigned System Trace Audit Number(STAN). |
Timeout | A timeout for the control. |
TPPID | Third Party Processor Identifier assigned by FDMS. |
TransactionAmount | The transaction amount to be authorized. |
TransactionNumber | Uniquely identifies the transaction. |
URL | Location of the Datawire server to which transactions are sent. |
VisaIdentifier | Additional merchant identification field used when authorizing Visa transactions. |
Method List
The following is the full list of the methods of the control with short descriptions. Click on the links for further details.
AuthOnly | Performs an authorization request. |
BalanceInquiry | Performs a Balance Inquiry Request using the specified Card data. |
Capture | Captures a previously authorized transaction. |
Config | Sets or retrieves a configuration setting. |
Credit | Submits a credit transaction. |
GetDetailAggregate | Returns a detail aggregate containing details of this transaction, which is used for Capture or Reverse transactions or settlement when using Terminal Capture mode. |
HostTotals | Performs a Host Totals request. |
Interrupt | Interrupts the current action. |
Reset | Clears all properties to their default values. |
Reverse | Reverses a transaction. |
Sale | Performs a sale transaction. |
SetDetailAggregate | Specifies the detail aggregate before calling Capture or Reverse. |
VerifyCard | Performs a zero dollar verification of the card. |
Event List
The following is the full list of the events fired by the control with short descriptions. Click on the links for further details.
Connected | This event is fired immediately after a connection completes (or fails). |
DataPacketIn | Fired when receiving a data packet from the transaction server. |
DataPacketOut | Fired when sending a data packet to the transaction server. |
Disconnected | This event is fired when a connection is closed. |
Error | Fired when information is available about errors during data delivery. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
Status | Shows the progress of the FDMS/Datawire connection. |
Config Settings
The following is a list of config settings for the control with short descriptions. Click on the links for further details.
ACI | Authorization Characteristics Indicator. |
AllowPartialAuths | Indicates whether partial authorizations are supported. |
AltMerchantAddress | The alternative merchant address. |
AltMerchantCity | The alternative merchant city. |
AltMerchantCountryCode | The alternative merchant country code. |
AltMerchantEmail | The alternative merchant email. |
AltMerchantName | The alternative merchant name. |
AltMerchantState | The alternative merchant state. |
AltMerchantZip | The alternative merchant zip code. |
AuthIndicator | Indicate the type of authorization requested. |
AuthorizationIndicator | Indicates whether the authorization is a final authorization. |
AuthSource | Indicates the source of the decision for the Visa transaction. |
CardInputMode | The method used to input the card details. |
CardType | Specifies the type of card. |
CITMITFrameIndicator | CIT/MIT Frame Indicator (Mastercard only). |
ClientTimeout | Indicates timeout client application will wait for response. |
CurrencyCode | Currency Code for this transaction. |
DebugTrace | Whether to enable debug logging. |
DeviceTypeIndicator | Defines the form factor used at the POS for MasterCard PayPass transactions. |
Duration | Length of hotel stay in days. |
ECI | Identifies the security level of the ECommerce transaction. |
EMVOnlineKSN | Clear-text Key Sequence Number for EMV Online PIN transactions. |
EMVOnlinePIN | DUKPT DES encrypted PIN block for EMV Online PIN transactions. |
ExtraCharges | List of extra charges for hotel transactions. |
FolioNumber | The Folio or Room Agreement number assigned by the hotel. |
GetTransArmorToken | Allows you to retrieve a TransArmor Token for a specified card. |
HostTotalsPassword | The merchant password required in Host Totals requests. |
HostTotalsType | Indicates the Host Totals Report type requested. |
IsCOFScheduled | Indicates whether the stored credential transaction was scheduled. |
IsDeferredAuth | Indicates whether the transaction is a Deferred Authorization. |
IsOnlineRefund | Indicates whether a transaction is Online Refund Authorization. |
LocalTransactionDate | The local date of the transaction. |
LodgingReferenceNumber | A reference number assigned by the hotel/lodging establishment. |
MerchantCategoryCode | The 4 digit Merchant Category Code (MCC). |
MITTransactionId | Transaction Id associated with the original authorization of a Credential on File Transaction. |
MOTOIndicator | Indicates whether the transaction is Mail Order or Telephone Order. |
POSConditionCode | The POS condition code. |
POSId | Identifies the specific point of sale device. |
ProgramIndicator | Indicates the reason for the charge in a hotel transaction. |
RoomNumber | The Room Number assigned by the hotel. |
RoomRate | The daily room rate in a hotel transaction. |
StoredCredentialIndicator | Indicates the usage of stored credentials. |
SupportPINLessDebit | Indicates whether the terminal can support swiped PINLess Debit transactions. |
SurchargeAmount | Indicates Merchant Surcharge/Transaction Fee Amount charged to the customer to account for acquirer-assessed surcharge. |
TerminalCardCapability | The terminal's card capture capability. |
TerminalEntryCapability | The terminal's entry mode capability. |
TerminalLocationIndicator | The terminal's location. |
TerminalPinCapability | The terminal's PIN capability. |
TerminalTaxCapability | The terminal's ability to prompt for tax. |
TotalAuthorizedAmount | Total Authorized Amount. |
TransactionInitiation | Indicates how the transaction was initiated. |
TransArmorKey | Specifies the TransArmor key used to perform the encryption. |
TransArmorKeyId | Specifies the Id of the TransArmor key used to perform the encryption. |
TransArmorMode | Specifies the TransArmor Security Level to use. |
TransArmorProviderId | The Id of the Provider that issued a TransArmorToken. |
TransArmorToken | A TransArmor Token used in place of a card number or magnetic stripe data. |
TransArmorTokenType | The FDMS assigned token type. |
TransArmorTokenType | Specifies the type of TransArmor token that will be used. |
TransArmorUpdateIndicator | Indicates whether your TransArmorKey needs to be updated. |
UpdateTransArmorKey | Allows you to update your TransArmor Key. |
UTCTransactionDate | The UTC date of the transaction. |
VisaCheckoutIndicator | Indicates whether the transaction is a Visa Checkout transaction. |
VoiceApprovalCode | The voice approval. |
AcceptEncoding | Used to tell the server which types of content encodings the client supports. |
AllowHTTPCompression | This property enables HTTP compression for receiving data. |
AllowHTTPFallback | Whether HTTP/2 connections are permitted to fallback to HTTP/1.1. |
Append | Whether to append data to LocalFile. |
Authorization | The Authorization string to be sent to the server. |
BytesTransferred | Contains the number of bytes transferred in the response data. |
ChunkSize | Specifies the chunk size in bytes when using chunked encoding. |
CompressHTTPRequest | Set to true to compress the body of a PUT or POST request. |
EncodeURL | If set to True the URL will be encoded by the control. |
FollowRedirects | Determines what happens when the server issues a redirect. |
GetOn302Redirect | If set to True the control will perform a GET on the new location. |
HTTP2HeadersWithoutIndexing | HTTP2 headers that should not update the dynamic header table with incremental indexing. |
HTTPVersion | The version of HTTP used by the control. |
IfModifiedSince | A date determining the maximum age of the desired document. |
KeepAlive | Determines whether the HTTP connection is closed after completion of the request. |
KerberosSPN | The Service Principal Name for the Kerberos Domain Controller. |
LogLevel | The level of detail that is logged. |
MaxRedirectAttempts | Limits the number of redirects that are followed in a request. |
NegotiatedHTTPVersion | The negotiated HTTP version. |
OtherHeaders | Other headers as determined by the user (optional). |
ProxyAuthorization | The authorization string to be sent to the proxy server. |
ProxyAuthScheme | The authorization scheme to be used for the proxy. |
ProxyPassword | A password if authentication is to be used for the proxy. |
ProxyPort | Port for the proxy server (default 80). |
ProxyServer | Name or IP address of a proxy server (optional). |
ProxyUser | A user name if authentication is to be used for the proxy. |
SentHeaders | The full set of headers as sent by the client. |
StatusCode | The status code of the last response from the server. |
StatusLine | The first line of the last response from the server. |
TransferredData | The contents of the last response from the server. |
TransferredDataLimit | The maximum number of incoming bytes to be stored by the control. |
TransferredHeaders | The full set of headers as received from the server. |
TransferredRequest | The full request as sent by the client. |
UseChunkedEncoding | Enables or Disables HTTP chunked encoding for transfers. |
UseIDNs | Whether to encode hostnames to internationalized domain names. |
UseProxyAutoConfigURL | Whether to use a Proxy auto-config file when attempting a connection. |
UserAgent | Information about the user agent (browser). |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the control whether or not to automatically detect and use firewall system settings, if available. |
FirewallAutoDetect | Tells the control whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the control binds. |
LocalPort | The port in the local host where the control binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
CodePage | The system code page used for Unicode to Multibyte translations. |
MaskSensitive | Whether sensitive data is masked in log messages. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
ApplicationId Property (FDMSRcRetail Control)
Identifies the merchant application to the Datawire System.
Syntax
fdmsrcretailcontrol.ApplicationId[=string]
Default Value
"NSOFTDIRECTPXML"
Remarks
The Application Id identifies the application that has generated and is sending the transaction. This is a 15 character alphanumeric code that identifies each application and is provided by the Datawire Secure Transport Vendor Integration Team
This property may be validated along with the DatawireId as connection credentials.
The default value of this property is a value used for testing with Rapid Connect. You may be required to have a new ApplicationId assigned for the software you create with this control.
Data Type
String
InstallmentDescription Property (FDMSRcRetail Control)
The merchant's description of an Installment Bill Payment Transaction.
Syntax
fdmsrcretailcontrol.InstallmentDescription[=string]
Default Value
""
Remarks
The merchant's description of an Installment Bill Payment Transaction.
This field is only sent in an 'Installment' or 'Recurring' transaction.
The maximum length of this field is 15 characters.
Data Type
String
InstallmentInvoiceNumber Property (FDMSRcRetail Control)
The Invoice Number of an Installment Bill Payment Transaction.
Syntax
fdmsrcretailcontrol.InstallmentInvoiceNumber[=string]
Default Value
""
Remarks
The Invoice Number of an Installment Bill Payment Transaction.
This field is only sent in an 'Installment' or 'Recurring' transaction.
The maximum length of this field is 12 characters.
Data Type
String
InstallmentType Property (FDMSRcRetail Control)
The type of the Installment payment.
Syntax
fdmsrcretailcontrol.InstallmentType[=integer]
Possible Values
itUnspecified(0), itMerchant(1), itThirdParty(2), itIssuer(3)
Default Value
0
Remarks
The type of the Installment payment.
This field is required for all Discover, Diners (including JCB - US Domestic) Installment transactions TransactionIndicator value 3 (tiInstallment) and it is applicable to ECommerce, MOTO, and Retail transactions. Possible values are:
0 (itUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (itMerchant) | Merchant - Merchant Installment Payment |
2 (itThirdParty) | ThirdParty - Third Party Installment Payment |
3 (itIssuer) | Issuer - Issuer Installment Payment |
Data Type
Integer
MerchantAdviceCode Property (FDMSRcRetail Control)
This property contains a code which may be returned by the issuer to provide additional information for a card not present transaction.
Syntax
fdmsrcretailcontrol.MerchantAdviceCode
Default Value
""
Remarks
This field contains a code which may be returned by the issuer to provide additional information for a card not present transaction.
The following values are defined:
Response Code | Meaning |
01 | New account information available |
02 | Try again later (must wait 72 hours before sending the recurring transaction again) |
03 | Do not try again |
04 | Token requirements are not fulfilled for this token type |
05 | Card account closed or fraud |
06 | Cardholder canceled recurring payment |
07 | Cancel specific payment |
21 | Do not honor - Issuer has blocked recurring payment service / Payment Cancellation |
22 | Merchant does not qualify for product code |
24 | Retry after 1 hour |
25 | Retry after 24 hours |
26 | Retry after 2 days |
27 | Retry after 4 days |
28 | Retry after 6 days |
29 | Retry after 8 days |
30 | Retry after 10 days |
This property is read-only.
Data Type
String
MITAmount Property (FDMSRcRetail Control)
The amount of the Recurring or Installment payment.
Syntax
fdmsrcretailcontrol.MITAmount[=string]
Default Value
""
Remarks
The amount of the Recurring or Installment payment.
This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
MITAmountType Property (FDMSRcRetail Control)
Identifies the type of the Recurring or Installment Payment amount.
Syntax
fdmsrcretailcontrol.MITAmountType[=integer]
Possible Values
atUnspecified(0), atFixed(1), atVariable(2)
Default Value
0
Remarks
Identifies the type of the Recurring or Installment Payment amount.
The following values are defined:
0 (atUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (atFixed) | Fixed - subscription (e.g. monthly newspaper subscription) |
2 (atVariable) | Variable - standing order (e.g. monthly utility payment) |
Data Type
Integer
MITFrequency Property (FDMSRcRetail Control)
This property indicates the frequency of a Recurring or Installment payment.
Syntax
fdmsrcretailcontrol.MITFrequency[=integer]
Possible Values
freqUnspecified(0), freqDaily(1), freqWeekly(2), freqBiweekly(3), freqMonthly(4), freqQuarterly(5), freqBiannually(6), freqAnnually(7), freqUnscheduled(8), freqTenDays(9), freqTwiceWeekly(10), freqEveryTwoMonths(11), freqTrimester(12)
Default Value
0
Remarks
This field indicates the frequency of a Recurring or Installment payment.
The following values are defined:
0 (freqUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (freqDaily) | Daily |
2 (freqWeekly) | Weekly |
3 (freqBiweekly) | Biweekly / Fortnightly |
4 (freqMonthly) | Monthly |
5 (freqQuarterly) | Quarterly |
6 (freqBiannually) | Half-Yearly (Biannually) |
7 (freqAnnually) | Annually |
8 (freqUnscheduled) | Unscheduled (Type of MIT) |
9 (freqTenDays) | Ten days |
10 (freqTwiceWeekly) | Twice weekly |
11 (freqEveryTwoMonths) | Every two months |
12 (freqTrimester) | Trimester |
This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'.
When the Card Type is 'Discover', 'JCB', or 'Diners', the valid values are 1, 2, 3, 4, 5, 6, 7, or 8.
For Visa Recurring transactions, valid values are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12.
For Visa Installment transactions, valid values are 2, 3, or 4.
Data Type
Integer
MITPaymentCurrency Property (FDMSRcRetail Control)
Contains the Installment Payment Currency represented as a 3 digit value.
Syntax
fdmsrcretailcontrol.MITPaymentCurrency[=string]
Default Value
"840"
Remarks
Contains the Installment Payment Currency represented as a 3 digit value.
This field is only applicable when Card Type is 'Visa'. For US Dollars, use "840".
Data Type
String
MITRecurringPaymentType Property (FDMSRcRetail Control)
This property contains the type of Recurring Payment.
Syntax
fdmsrcretailcontrol.MITRecurringPaymentType[=integer]
Possible Values
rptUnspecified(0), rptRegistration(1), rptSubsequent(2), rptModification(3), rptCancellation(4)
Default Value
0
Remarks
This field contains the type of Recurring Payment.
This field is only applicable when Card Type is 'Visa'. The following values are defined:
0 (rptUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (rptRegistration) | Registration / first transaction |
2 (rptSubsequent) | Subsequent transaction |
3 (rptModification) | Modification |
4 (rptCancellation) | Cancellation |
Data Type
Integer
MITRegistrationRefNum Property (FDMSRcRetail Control)
This property contains a unique Reference Number for the Recurring Payment transaction.
Syntax
fdmsrcretailcontrol.MITRegistrationRefNum[=string]
Default Value
""
Remarks
This field contains a unique Reference Number for the Recurring Payment transaction.
This field is only applicable when Card Type is 'Visa'.
The maximum length of this field is 35 characters.
Data Type
String
MITSequenceIndicator Property (FDMSRcRetail Control)
Identifies the sequence of the transactions when multiple Installment payments will be submitted.
Syntax
fdmsrcretailcontrol.MITSequenceIndicator[=integer]
Default Value
0
Remarks
Identifies the sequence of the transactions when multiple Installment payments will be submitted.
This field should be populated in ascending order and is only applicable when Card Type is 'Discover', 'JCB', or 'Diners'.
Valid values for this field are numbers from 0 to 99.
Data Type
Integer
MITTotalPaymentAmount Property (FDMSRcRetail Control)
This property contains the Total Installment Amount.
Syntax
fdmsrcretailcontrol.MITTotalPaymentAmount[=string]
Default Value
""
Remarks
This field contains the Total Installment Amount.
This field is only applicable for Visa Installment transactions. Note : The total amount cannot exceed USD 500,000.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
MITTotalPaymentCount Property (FDMSRcRetail Control)
The number of Recurring payments or Installments per the Cardholder agreement with the Merchant.
Syntax
fdmsrcretailcontrol.MITTotalPaymentCount[=string]
Default Value
""
Remarks
The number of Recurring payments or Installments per the Cardholder agreement with the Merchant.
The following values are defined:
Value | Description |
01 to 99 | Installment Count |
UD | Not Defined |
UC | Until Canceled |
This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'. For Discover, the valid values should be from 02 to 99, UD and UC. For Visa, the valid values should be from 01 to 99. Note: For Visa recurring payments, value of '99' means that recurring payments are authorized until canceled or that the Number of Recurring Payments is not defined.
When this field is sent for Visa or Discover (including JCB - US Domestic Only and Diners), the Bill Payment Transaction Indicator must be present with the value of 'Recurring' or 'Installment'. For Discover (including JCB - US Domestic Only and Diners) installment transactions, this field can only be sent when the Installment Type field contains the value of 'Merchant' or 'ThirdParty'. For Discover (including JCB - US Domestic Only and Diners) installment transactions, this field must be sent for ALL Installment transactions for a series of payments, and the original CIT transaction must be initiated with 3DS.
The maximum length of this field is 2 characters.
Data Type
String
MITUniqueID Property (FDMSRcRetail Control)
This property is used to uniquely identify each of the Recurring or Installment Payment.
Syntax
fdmsrcretailcontrol.MITUniqueID[=string]
Default Value
""
Remarks
This field is used to uniquely identify each of the Recurring or Installment Payment. This ID is used to reference authorization transactions.
This field is only applicable when Card Type is 'Discover', 'JCB' or 'Diners'.
The maximum length of this field is 14 characters.
Data Type
String
MITValidationFlag Property (FDMSRcRetail Control)
Indicates the validation source for the validity of a transaction.
Syntax
fdmsrcretailcontrol.MITValidationFlag[=integer]
Possible Values
vfUnspecified(0), vfValidated(1), vfNotValidated(2)
Default Value
0
Remarks
Indicates the validation source for the validity of a transaction.
This field is only applicable when Card Type is 'Visa', 'Discover', 'JCB', or 'Diners'.
The following values are defined:
0 (vfUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (vfValidated) | Validated Card Transaction |
2 (vfNotValidated) | Not Validated Card Transaction |
Data Type
Integer
MITValidationRef Property (FDMSRcRetail Control)
This property contains a cryptogram generated by the validation source for each cardholder account, for an Issuer to validate a transaction.
Syntax
fdmsrcretailcontrol.MITValidationRef[=string]
Default Value
""
Remarks
This field contains a cryptogram generated by the validation source for each cardholder account, for an Issuer to validate a transaction.
This field is only applicable when Card Type is 'Discover', 'JCB', or 'Diners'.
The maximum length of this field is 20 characters.
Data Type
String
TransactionIndicator Property (FDMSRcRetail Control)
Specifies the type of Bill Payment being made.
Syntax
fdmsrcretailcontrol.TransactionIndicator[=integer]
Possible Values
tiUnspecified(0), tiSingleTransaction(1), tiRecurring(2), tiInstallment(3), tiDeferredBilling(4)
Default Value
0
Remarks
Specifies the type of Bill Payment being made.
This property contains the type of bill payment being made. This is applicable to ECommerce, MOTO, and Retail transactions. Possible values are:
0 (tiUnspecified - default) | Unspecified - the field is not sent in the request. |
1 (tiSingleTransaction) | Single transaction |
2 (tiRecurring) | Recurring transaction |
3 (tiInstallment) | Installment transaction |
4 (tiDeferredBilling) | Deferred Billing transaction |
To settle an Installment transaction, you must use the FDMSRcDetailrecord control to add the number of this installment and the total count of all installments to be made. For instance, if the purchase was for "Three easy payments of $19.95", and this is the first payment, then the installment number will be 1, and the installment count 3. An example is included below:
FDMSRcECommerce.Config("BillPaymentType=3") // 3=Installment
FDMSRcECommerce.TransactionAmount = "1995"
FDMSRcECommerce.AuthOnly()
FDMSRcDetailRecord.ParseAggregate(FDMSRcECommerce.GetDetailAggregate())
FDMSRcDetailRecord.InstallmentCount = 3
FDMSRcDetailRecord.InstallmentNumber = 1
FDMSRcSettle.DetailRecordAggregate(5) = FDMSRcDetailRecord.GetDetailAggregate()
Data Type
Integer
CardType Property (FDMSRcRetail Control)
Type of credit card being used in this transaction.
Syntax
fdmsrcretailcontrol.CardType[=integer]
Possible Values
ctUnknown(0), ctVisa(1), ctMasterCard(2), ctAMEX(3), ctDiscover(4), ctDiners(5), ctJCB(6), ctVisaElectron(7), ctMaestro(8), ctLaser(10)
Default Value
0
Remarks
Type of credit card being used in this transaction. This property contains the customer's credit card type. This is automatically computed after the CardNumber is set, but it can also be changed manually. A list of valid card types is included below.
ctUnknown (0) | Invalid or unknown prefix, card type not known. |
ctVisa (1) | Visa or Delta Card. |
ctMasterCard (2) | MasterCard. |
ctAMEX (3) | American Express Card. |
ctDiscover (4) | Discover Card. |
ctDiners (5) | Diners Club or Carte Blanche Card. |
ctJCB (6) | JCB Card. |
ctVisaElectron (7) | Visa Electron Card (runs as a Visa for most gateways) |
ctMaestro (8) | Maestro Card |
ctLaser (10) | Laser Card (Ireland) |
This property is not available at design time.
Data Type
Integer
CardCVVData Property (FDMSRcRetail Control)
Three digit security code on back of card (optional).
Syntax
fdmsrcretailcontrol.CardCVVData[=string]
Default Value
""
Remarks
Three digit security code on back of card (optional).
This alphanumeric property contains the three digit Visa "Card Verification Value" (CVV), MasterCard "Card Verification Code" (CVC), or four-digit American Express "Card Identification Number" (CID). This value appears as additional characters embossed on the card signature line following the credit card account number on the back of the credit card. This is an optional property which can be used to determine if the customer is actually in possession of the credit card.
Even if the CardCVVData is incorrect, the transaction may still be authorized. It is up to the merchant to examine the ResponseCVVResult property and decide whether to honor the transaction or not.
Note: When set to a non-empty value, CardCVVPresence will be automatically set to cvpProvided. If set to empty string (""), CardCVVPresence will be automatically set to cvpNotProvided.
This property is not available at design time.
Data Type
String
CardCVVPresence Property (FDMSRcRetail Control)
Indicates the presence of the card verification value.
Syntax
fdmsrcretailcontrol.CardCVVPresence[=integer]
Possible Values
cvpNotProvided(0), cvpProvided(1), cvpIllegible(2), cvpNotOnCard(3)
Default Value
0
Remarks
Indicates the presence of the card verification value.
This property is used to indicate the presence of CardCVVData.
The control will automatically set this value to cvpProvided when a CardCVVData value is specified. You can explicitly specify the CardCVVPresence indicator by setting this property.
Available values are:
- cvpNotProvided (0)
- cvpProvided (1)
- cvpIllegible (2)
- cvpNotOnCard (3)
This property is not available at design time.
Data Type
Integer
CardEntryDataSource Property (FDMSRcRetail Control)
This property contains a 1-character code identifying the source of the customer data.
Syntax
fdmsrcretailcontrol.CardEntryDataSource[=integer]
Possible Values
edsTrack1(0), edsTrack2(1), edsManualEntryTrack1Capable(2), edsManualEntryTrack2Capable(3), edsManualEntryNoCardReader(4), edsTrack1Contactless(5), edsTrack2Contactless(6), edsManualEntryContactlessCapable(7), edsIVR(8), edsKiosk(9)
Default Value
0
Remarks
This property contains a 1-character code identifying the source of the customer data. The table below shows all supported values for this property.
edsTrack1 (0) | Full Magnetic stripe read and transmit, Track 1. |
edsTrack2 (1) | Full magnetic stripe read and transmit, Track 2. |
edsManualEntryTrack1Capable (2) | Manually keyed, Track 1 capable. |
edsManualEntryTrack2Capable (3) | Manually keyed, Track 2 capable. |
edsManualEntryNoCardReader (4) | Manually keyed, terminal has no card reading capability (use this for e-commerce and MOTO transactions). |
edsTrack1Contactless (5) | Full magnetic stripe read (Track 1 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only). |
edsTrack2Contactless (6) | Full magnetic stripe read (Track 2 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only). |
edsManualEntryContactlessCapable (7) | Manually keyed, Chip Card read capable terminal (Visa, MasterCard, and JCB transactions only). |
edsIVR (8) | Interactive Voice Response processing. This is applicable to Mail Order/Telephone Order (MOTO) transactions. (CardNumber, CardExpMonth, and CardExpYear are sent). |
edsKiosk (9) | Automated kiosk transaction. Track1 or Track2 data must be sent in CardMagneticStripe, the transaction cannot be manually entered. |
Below is a list of processors and their support EntryDataSource values:
FDMS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable, edsIVR, edsKiosk
FDMSOmaha - All EntryDataSources applicable
FDMS Rapid Connect - All EntryDataSources applicable
Global - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsIVR, edsKiosk
PTech - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable
TSYS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack2Contactless, edsManualEntryContactlessCapable
TSYSHC - Values are based on Industry type.
TSYSHCBenefit | edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable |
TSYSHCECommerce | edsManualEntryNoCardReader |
TSYSHCRetail | edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable |
This property is not available at design time.
Data Type
Integer
CardExpMonth Property (FDMSRcRetail Control)
Expiration month of the credit card specified in Number .
Syntax
fdmsrcretailcontrol.CardExpMonth[=integer]
Default Value
1
Remarks
Expiration month of the credit card specified in CardNumber.
This property contains the expiration date of the customer's credit card, and must be in the range 1 - 12.
This property is not available at design time.
Data Type
Integer
CardExpYear Property (FDMSRcRetail Control)
Expiration year of the credit card specified in Number .
Syntax
fdmsrcretailcontrol.CardExpYear[=integer]
Default Value
2000
Remarks
Expiration year of the credit card specified in CardNumber.
This property contains the expiration date of the customer's credit card. This property must be in the range 0 - 99, or 2000 - 2099. Any date before the year 2000 or after 2099 cannot be specified.
This property is not available at design time.
Data Type
Integer
CardIsEncrypted Property (FDMSRcRetail Control)
Determines whether data set to the Number or MagneticStripe properties is validated.
Syntax
fdmsrcretailcontrol.CardIsEncrypted[=boolean]
Default Value
False
Remarks
Determines whether data set to the CardNumber or CardMagneticStripe fields is validated.
By default, when the CardNumber or CardMagneticStripe fields are set, the value will be validated and normalized. For instance, "4444-33332222 1111" will be normalized as "4444333322221111" and CardMagneticStripe data will be parsed for the track specified by CardEntryDataSource. However, any other non-numerical data entered will cause an exception to be thrown. It may be useful in some gateways to send other data in the CardNumber or CardMagneticStripe fields, and this can be accomplished by setting IsEncrypted to true. However, please note that in doing so automatic calculation of the CardType may be affected, and the card number will not be verified.
This property is not available at design time.
Data Type
Boolean
CardMagneticStripe Property (FDMSRcRetail Control)
Track data read off of the card's magnetic stripe.
Syntax
fdmsrcretailcontrol.CardMagneticStripe[=string]
Default Value
""
Remarks
Track data read off of the card's magnetic stripe.
If CardEntryDataSource is not one of the manually entered enumerations, then this property must be set with the track1 or track2 data from the magnetic stripe on the back of the customer's credit card. This includes everything after but not including the start sentinel (% or ;) and up to but not including the end sentinel (?) and LRC check character. You may only set this property with track 1 or track 2 data, and may not pass both. Use the CardEntryDataSource property to indicate which track you are sending.
The following example shows how to set the CardMagneticStripe and CardEntryDataSource properties if the data read off the card is "%B4788250000028291^TSYS^05121015432112345678?;4788250000028291=05121015432112345678?"
control.CardMagneticStripe = "B4788250000028291^TSYS^05121015432112345678"
control.CardEntryDataSource = edsTrack1
or
control.CardMagneticStripe = "4788250000028291=05121015432112345678"
control.CardEntryDataSource = edsTrack2
Industry regulations do not allow merchants or processors to store track data in any form of persistent storage. Failure to abide by this regulation can result in significant fines and other penalties.
This property is not available at design time.
Data Type
String
CardNumber Property (FDMSRcRetail Control)
Customer's credit card number for the transaction.
Syntax
fdmsrcretailcontrol.CardNumber[=string]
Default Value
""
Remarks
Customer's credit card number for the transaction.
If you're sending the transaction with CardMagneticStripe data, this property should be left empty.
This property is not available at design time.
Data Type
String
CashBack Property (FDMSRcRetail Control)
Optional cash back amount to return to the customer.
Syntax
fdmsrcretailcontrol.CashBack[=string]
Default Value
""
Remarks
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The largest possible CashBack amount is "99999", yielding a maximum US dollar amount of $999.99. This field may not contain a negative number.
For cash back transactions, the TransactionAmount must contain the sum total of the purchase amount PLUS the CashBack amount. If the purchase is for $10 and the customer requests $20 cash back, CashBack should be set to "2000" and TransactionAmount must contain "3000".
Note that only US currency is supported for debit transactions.
Data Type
String
CustomerAddress Property (FDMSRcRetail Control)
The customer's billing address.
Syntax
fdmsrcretailcontrol.CustomerAddress[=string]
Default Value
""
Remarks
This field is used as part of the Address Verification Service (AVS) and contains the customer's street address as it appears on their monthly statement. Only the street number, street name, and apartment number are required in this field. City and state are not included, and the zip code is set in the CustomerZip property.
The maximum length of this property is 30 characters.
If the customer's address is much greater than the length of this field, it is admissible to include only the street number in this field.
Data Type
String
CustomerZip Property (FDMSRcRetail Control)
Customer's zip code (or postal code if outside of the USA).
Syntax
fdmsrcretailcontrol.CustomerZip[=string]
Default Value
""
Remarks
This field is used as part of the Address Verification Service (AVS). If the customer resides within the United States, this field should contain the five or nine digit zip code as it appears on the customer's monthly statement. If the customer's billing address is outside of the United States, this field should contain the customer's postal code.
The maximum length of this property is 9 characters.
Data Type
String
DatawireId Property (FDMSRcRetail Control)
Identifies the merchant to the Datawire System.
Syntax
fdmsrcretailcontrol.DatawireId[=string]
Default Value
""
Remarks
The Datawire Id is a unique customer identifier generated by Datawire and returned to the client after successfully registering the merchant (using the FDMSRegister control). This Id (which is sent in all subsequent transactions) allows a transaction, to pass through the Datawire system and be correctly routed to the FDMS Payment processor.
The maximum length for this property is 32 characters.
Data Type
String
EMVData Property (FDMSRcRetail Control)
The EMV Data returned from a Pin Pad after reading an EMV card.
Syntax
fdmsrcretailcontrol.EMVData[=string]
Default Value
""
Remarks
This configuration setting takes the entire TLV (tag-length-value) response received from a Pin Pad after reading an EMV card. The control will send this data in an authorization request.
Retail EMV Example
Fdmsrcretail fdmsrcretail = new Fdmsrcretail();
fdmsrcretail.IndustryType = FdmsrcretailIndustryTypes.fritRetail;
fdmsrcretail.TPPID = "AAA000";
fdmsrcretail.MerchantTerminalNumber = "00000001";
fdmsrcretail.MerchantId = "1234";
fdmsrcretail.GroupId = "20001";
fdmsrcretail.DatawireId = "00011122233344455566";
fdmsrcretail.VisaIdentifier = "01000000000000";
fdmsrcretail.ApplicationId = "RAPIDCONNECTVXN";
fdmsrcretail.URL = "https://stg.dw.us.fdcnet.biz/rc";
fdmsrcretail.STAN = "112";
fdmsrcretail.TransactionNumber = "120013";
fdmsrcretail.ReferenceNumber = "123456";
fdmsrcretail.OrderNumber = "12000503";
fdmsrcretail.Card.MagneticStripe = "4761739001010010=15122011143804489";
fdmsrcretail.Card.EntryDataSource = EntryDataSources.edsTrack2;
fdmsrcretail.TransactionAmount = "250";
fdmsrcretail.EMVData = "9F4005F000F0A0019F...F7906123456789012";
fdmsrcretail.Sale();
Data Type
String
GroupId Property (FDMSRcRetail Control)
The Id assigned by FDMS to identify the merchant or group of merchants.
Syntax
fdmsrcretailcontrol.GroupId[=string]
Default Value
""
Remarks
This property specifies the FDMS assigned group Id. This Id identifies the merchant or group of merchants. This property is required.
Data Type
String
IndustryType Property (FDMSRcRetail Control)
The merchant's industry type.
Syntax
fdmsrcretailcontrol.IndustryType[=integer]
Possible Values
fritRetail(0), fritRestaurant(1), fritHotel(2)
Default Value
0
Remarks
The merchant's industry type. Possible values are:
0 (fritRetail - default) | Retail |
1 (fritRestaurant) | Restaurant |
2 (fritHotel) | Hotel |
Data Type
Integer
Level2CustomerReferenceNumber Property (FDMSRcRetail Control)
The reference number or order number to be reported as part of the Purchase Card data.
Syntax
fdmsrcretailcontrol.Level2CustomerReferenceNumber[=string]
Default Value
""
Remarks
The reference number or order number to be reported as part of the Purchase Card data.
If Level2TaxAmount is specified this property is required.
The value may be up to 17 characters in length.
Data Type
String
Level2DestinationCountryCode Property (FDMSRcRetail Control)
This property represents the country code of the location the items in this purchase are being delivered to.
Syntax
fdmsrcretailcontrol.Level2DestinationCountryCode[=string]
Default Value
""
Remarks
This field represents the country code of the location the items in this purchase are being delivered to.
This value is the ISO 3166 three digit numeric identifier.
Data Type
String
Level2DestinationPostalCode Property (FDMSRcRetail Control)
This property contains the postal or zip code of the location the item(s) in this purchase are being delivered to.
Syntax
fdmsrcretailcontrol.Level2DestinationPostalCode[=string]
Default Value
""
Remarks
This property contains the postal or zip code of the location the item(s) in this purchase are being delivered to.
This property is required for American Express purchase card transactions. This is the same as the Level2ShipFromPostalCode when the customer takes possession of the items at the merchant location.
The value may be up to 9 characters.
Data Type
String
Level2DiscountAmount Property (FDMSRcRetail Control)
This property contains the discount amount for the purchase.
Syntax
fdmsrcretailcontrol.Level2DiscountAmount[=string]
Default Value
""
Remarks
This property contains the discount amount for the purchase.
This property is required for Visa, MasterCard, and American Express purchase card transactions when a discount has been applied.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
Level2DutyAmount Property (FDMSRcRetail Control)
This property contains the duty amount for this purchase.
Syntax
fdmsrcretailcontrol.Level2DutyAmount[=string]
Default Value
""
Remarks
This property contains the duty amount for this purchase.
This property is required for Visa, MasterCard, and American Express purchase card transactions when a duty amount has been applied.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
Level2FreightAmount Property (FDMSRcRetail Control)
This property contains the amount for freight included in this purchase.
Syntax
fdmsrcretailcontrol.Level2FreightAmount[=string]
Default Value
""
Remarks
This property contains the amount for freight included in this purchase.
This property is required for Visa, MasterCard, and American Express purchase card transactions when a freight amount has been applied.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
Level2MerchantTaxId Property (FDMSRcRetail Control)
This property should contain the Tax Id collected by the merchant for this transaction.
Syntax
fdmsrcretailcontrol.Level2MerchantTaxId[=string]
Default Value
""
Remarks
This property should contain the Tax Id collected by the merchant for this transaction.
This property is required for MasterCard purchase card transactions.
The value may be up to 15 characters in length.
Data Type
String
Level2ProductDescription Property (FDMSRcRetail Control)
This property should contain a description of an item purchased with this card.
Syntax
fdmsrcretailcontrol.Level2ProductDescription[=string]
Default Value
""
Remarks
This property should contain a description of an item purchased with this card.
This property is required for American Express purchase card transactions and not applicable to other card types.
The value may be up to 40 characters in length.
Data Type
String
Level2PurchaseIdentifier Property (FDMSRcRetail Control)
This property represents the data used by the merchant or customer to identify the purchase.
Syntax
fdmsrcretailcontrol.Level2PurchaseIdentifier[=string]
Default Value
""
Remarks
This property represents the data used by the merchant or customer to identify the purchase. This can be a SKU, code, or reference number.
This property is required for Visa, MasterCard, and American Express purchase card transactions.
The value may be up to 25 characters in length.
Data Type
String
Level2ShipFromPostalCode Property (FDMSRcRetail Control)
The postal or zip code the item(s) in this purchase are to be shipped from.
Syntax
fdmsrcretailcontrol.Level2ShipFromPostalCode[=string]
Default Value
""
Remarks
The postal or zip code the item(s) in this purchase are to be shipped from.
The value may be up to 9 characters.
Data Type
String
Level2TaxAmount Property (FDMSRcRetail Control)
This property contains the portion of the transaction amount that represents the tax.
Syntax
fdmsrcretailcontrol.Level2TaxAmount[=string]
Default Value
""
Remarks
This property contains the portion of the transaction amount that represents the tax.
This property is required when Level2TaxIndicator is set to 2 (tiProvided).
For Visa this is the amount of state or provincial tax included in the TransactionAmount. The tax amount must be within 0.1 % and 22% of the pre-tax transaction amount.
For MasterCard the total amount of sales tax on the total purchase must be between 0.1% and 30 % of the total pre-tax transaction amount; zeros indicate that the card acceptor is capable of transmitting the tax amount and the tax amount is zero.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
Level2TaxIndicator Property (FDMSRcRetail Control)
This property indicates the taxable status of the transaction.
Syntax
fdmsrcretailcontrol.Level2TaxIndicator[=integer]
Possible Values
tiUnSet(0), tiNotProvided(1), tiProvided(2), tiExempt(3)
Default Value
0
Remarks
This field indicates the taxable status of the transaction. Possible values are:
0 (tiUnSet - default) | UnSet - no value is sent in the request |
1 (tiNotProvided) | No tax information provided |
2 (tiProvided) | Tax amount is provided |
3 (tiExempt) | Purchase item is tax exempt or non-taxable |
Data Type
Integer
MerchantId Property (FDMSRcRetail Control)
A unique Id used to identify the merchant within the FDMS and Datawire systems.
Syntax
fdmsrcretailcontrol.MerchantId[=string]
Default Value
""
Remarks
This property holds the Merchant Id assigned by FDMS. The value is an alphanumeric value up to 16 characters in length.
This property is required.
Data Type
String
MerchantServicePhone Property (FDMSRcRetail Control)
The merchant's phone number, used to assist cardholders.
Syntax
fdmsrcretailcontrol.MerchantServicePhone[=string]
Default Value
""
Remarks
This property specifies a 10 digit phone number which cardholders can call for assistance.
This value is required for MOTO transactions. It is recommended but not required for ecommerce and hotel transactions.
Data Type
String
MerchantTerminalNumber Property (FDMSRcRetail Control)
Used to identify a unique terminal within a merchant location.
Syntax
fdmsrcretailcontrol.MerchantTerminalNumber[=string]
Default Value
""
Remarks
This property contains a number assigned by FDMS to uniquely identify a terminal within a merchant location. The value is numeric and may be up to 8 digits in length.
This property is required.
Data Type
String
MerchantURL Property (FDMSRcRetail Control)
The URL of the site performing the ECommerce transaction.
Syntax
fdmsrcretailcontrol.MerchantURL[=string]
Default Value
""
Remarks
This property specifies the URL of the merchant's site. This value is required for ECommerce and Hotel AuthOnly, Sale, Capture, and Credit transactions.
For Visa and Discover transactions this value is limited to 13 characters. For all other card types this value is limited to 32 characters.
Data Type
String
OrderNumber Property (FDMSRcRetail Control)
A merchant assigned order number to uniquely reference the transaction.
Syntax
fdmsrcretailcontrol.OrderNumber[=string]
Default Value
""
Remarks
This property holds a merchant assigned order number that uniquely identifies the transaction. This must hold a numeric value up to 8 digits in length. This value cannot be all zeros.
This value is required for ECommerce and MOTO transactions. This value is optional for Retail transactions.
Data Type
String
ProxyAuthScheme Property (FDMSRcRetail Control)
This property is used to tell the control which type of authorization to perform when connecting to the proxy.
Syntax
fdmsrcretailcontrol.ProxyAuthScheme[=integer]
Possible Values
authBasic(0), authDigest(1), authProprietary(2), authNone(3), authNtlm(4), authNegotiate(5)
Default Value
0
Remarks
This property is used to tell the control which type of authorization to perform when connecting to the proxy. This is used only when the ProxyUser and ProxyPassword properties are set.
ProxyAuthScheme should be set to authNone (3) when no authentication is expected.
By default, ProxyAuthScheme is authBasic (0), and if the ProxyUser and ProxyPassword properties are set, the component will attempt basic authentication.
If ProxyAuthScheme is set to authDigest (1), digest authentication will be attempted instead.
If ProxyAuthScheme is set to authProprietary (2), then the authorization token will not be generated by the control. Look at the configuration file for the control being used to find more information about manually setting this token.
If ProxyAuthScheme is set to authNtlm (4), NTLM authentication will be used.
For security reasons, setting this property will clear the values of ProxyUser and ProxyPassword.
Data Type
Integer
ProxyAutoDetect Property (FDMSRcRetail Control)
This property tells the control whether or not to automatically detect and use proxy system settings, if available.
Syntax
fdmsrcretailcontrol.ProxyAutoDetect[=boolean]
Default Value
False
Remarks
This property tells the control whether or not to automatically detect and use proxy system settings, if available. The default value is .
Data Type
Boolean
ProxyPassword Property (FDMSRcRetail Control)
This property contains a password if authentication is to be used for the proxy.
Syntax
fdmsrcretailcontrol.ProxyPassword[=string]
Default Value
""
Remarks
This property contains a password if authentication is to be used for the proxy.
If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.
If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.
Data Type
String
ProxyPort Property (FDMSRcRetail Control)
This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
Syntax
fdmsrcretailcontrol.ProxyPort[=integer]
Default Value
80
Remarks
This property contains the Transmission Control Protocol (TCP) port for the proxy ProxyServer (default 80). See the description of the ProxyServer property for details.
Data Type
Integer
ProxyServer Property (FDMSRcRetail Control)
If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
Syntax
fdmsrcretailcontrol.ProxyServer[=string]
Default Value
""
Remarks
If a proxy ProxyServer is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
If the ProxyServer property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the ProxyServer property is set to the corresponding address. If the search is not successful, an error is returned.
Data Type
String
ProxySSL Property (FDMSRcRetail Control)
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
Syntax
fdmsrcretailcontrol.ProxySSL[=integer]
Possible Values
psAutomatic(0), psAlways(1), psNever(2), psTunnel(3)
Default Value
0
Remarks
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:
psAutomatic (0) | Default setting. If the URL is an https URL, the control will use the psTunnel option. If the URL is an http URL, the control will use the psNever option. |
psAlways (1) | The connection is always SSL enabled. |
psNever (2) | The connection is not SSL enabled. |
psTunnel (3) | The connection is made through a tunneling (HTTP) proxy. |
Data Type
Integer
ProxyUser Property (FDMSRcRetail Control)
This property contains a username if authentication is to be used for the proxy.
Syntax
fdmsrcretailcontrol.ProxyUser[=string]
Default Value
""
Remarks
This property contains a username if authentication is to be used for the proxy.
If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.
If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.
Data Type
String
ReferenceNumber Property (FDMSRcRetail Control)
A value assigned by the merchant to uniquely reference a transaction and any subsequent related transactions.
Syntax
fdmsrcretailcontrol.ReferenceNumber[=string]
Default Value
""
Remarks
This value is a merchant assigned 12 digit value. The value must be unique within a day for a given merchant id and terminal id. When performing a Capture or Reverse transaction this must be the same as the original transaction.
Data Type
String
ResponseApprovalCode Property (FDMSRcRetail Control)
The Approval Code returned from the server after a successful authorization.
Syntax
fdmsrcretailcontrol.ResponseApprovalCode
Default Value
""
Remarks
The Approval Code returned from the server after a successful authorization.
This value holds the approval code returned by the authorizer. This value will contain up to 8 characters. Only alphanumeric characters and spaces will be returned.
This property is read-only and not available at design time.
Data Type
String
ResponseAuthorizedAmount Property (FDMSRcRetail Control)
The amount actually charged to the card.
Syntax
fdmsrcretailcontrol.ResponseAuthorizedAmount
Default Value
""
Remarks
The amount actually charged to the card.
This value holds the amount charged to the card. In the case of a partial authorization this will be different than the amount specified in TransactionAmount.
You must collect the remainder via another form of payment, or Reverse the authorization if the customer does not have an additional form of payment.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
This property is read-only.
Data Type
String
ResponseAuthorizingNetworkId Property (FDMSRcRetail Control)
This property indicates the network Id as returned by the host, if available.
Syntax
fdmsrcretailcontrol.ResponseAuthorizingNetworkId
Default Value
""
Remarks
This field indicates the network Id as returned by the host, if available.
This value is up to 3 alphanumeric characters.
This property is read-only.
Data Type
String
ResponseAuthorizingNetworkName Property (FDMSRcRetail Control)
This property indicates the authorizing network name as returned by the host, when available.
Syntax
fdmsrcretailcontrol.ResponseAuthorizingNetworkName
Default Value
""
Remarks
This field indicates the authorizing network name as returned by the host, when available.
This property is read-only.
Data Type
String
ResponseAVSResult Property (FDMSRcRetail Control)
Contains the Address Verification System result code.
Syntax
fdmsrcretailcontrol.ResponseAVSResult
Default Value
""
Remarks
Contains the Address Verification System result code.
This one character field contains the Address Verification System (AVS) result code. This property is populated if a value is present in the response. An AVS result code can provide additional information concerning the authentication of a particular transaction for which cardholder address verification was requested. Possible AVS codes are listed in the table below.
Visa Card AVS Codes
Code | Description |
A | Street address matches, postal code does not match |
B | Street addresses match; postal code not verified due to incompatible formats |
C | Street address and postal code not verified |
D | Street address and postal code match (International only) |
F | Street address and postal code match (UK) |
G | Address information not verified for international transaction. Issuer is not an AVS Participant, or, AVS data was present in the request but the issuer did not return an AVS result, or no address on file (International only) |
I | Address verification service not performed (International only) |
M | Street address and postal codes match (International only) |
N | No match; neither the street addresses nor the postal codes match |
P | Postal code matches; street address not verified |
R | Retry, system unavailable to process |
S | Service not supported |
U | Address information is unavailable |
Y | Both postal code and address match |
Z | Postal code matches, Street address does not match or Street address not included in request |
MasterCard AVS Codes
A | Street address matches, postal code does not match |
E | Error: Transaction ineligible for address verification or edit error found in the message that prevents AVS from being performed |
N | No match; neither the street addresses nor the postal codes match |
R | Retry, system unavailable to process |
S | Service not supported |
U | Address information is unavailable |
W | U.S. - Street Address does not match, nine digit postal code matches; For address outside the U.S., postal code matches, address does not |
X | Exact: U.S. - Address and 9-digit postal code match; For address outside the U.S., postal code matches, address does not |
Y | Yes: Address and 5-digit postal code match for US address |
Z | Five digit postal code matches, address does not match |
Amex AVS Codes
A | Street address matches, postal code does not match |
N | No match; neither the street addresses nor the postal code matches |
R | Retry, system unavailable to process |
S | Service not supported |
U | Address information is unavailable |
Y | Both postal code and address match |
Z | Nine or five digit postal code matches, address does not match |
L | Card member Name and Billing Postal Code match |
M | Card member Name, Billing Address and Postal Code match |
O | Card member Name and Billing Address match |
K | Card member Name matches |
D | Card member Name incorrect, Billing Postal Code matches |
E | Card member Name incorrect, Billing Address and Postal Code match |
F | Card member Name incorrect, Billing Address matches |
W | No, Card member Name, Billing Address and Postal Code are all incorrect |
Discover or JCB
A | Both address and five digit postal code match |
G | Address information not verified for international transaction |
N | No match; neither the street addresses nor the postal code matches |
R | Retry, system unable to process |
S | Service not supported |
T | No data received from Issuer |
W | Nine digit postal code matches, address does not match |
X | All digits match (nine digit zip code) |
Y | Street address matches, postal code does not match |
Z | Five digit postal code matches, address does not match |
This property is read-only.
Data Type
String
ResponseBalance Property (FDMSRcRetail Control)
Contains the remaining available balance left on the card.
Syntax
fdmsrcretailcontrol.ResponseBalance
Default Value
""
Remarks
Contains the remaining available balance left on the card.
This balance amount will only be returned for prepaid cards.
This property is read-only and not available at design time.
Data Type
String
ResponseCardLevelResult Property (FDMSRcRetail Control)
This property is only applicable to Visa card.
Syntax
fdmsrcretailcontrol.ResponseCardLevelResult
Default Value
""
Remarks
This property is only applicable to Visa card. This property holds a two character value returned by Visa to designate the type of card product used to process the transaction.
This property is read-only and not available at design time.
Data Type
String
ResponseCode Property (FDMSRcRetail Control)
Contains the 3 digit response code indicating success or reason of failure.
Syntax
fdmsrcretailcontrol.ResponseCode
Default Value
""
Remarks
Contains the 3 digit response code indicating success or reason of failure.
This property contains a 3 digit code indicating success or the reason of failure. A value of 000 indicates approval. For all other values please see the Response Codes section.
This property is read-only.
Data Type
String
ResponseCommercialCard Property (FDMSRcRetail Control)
Indicates whether the credit card charged is a corporate commercial card.
Syntax
fdmsrcretailcontrol.ResponseCommercialCard
Possible Values
rcctNotCommercial(0), rcctPurchaseCard(1), rcctCorporateCard(2), rcctBusinessCard(3), rcctUnknown(4)
Default Value
0
Remarks
Indicates whether the credit card charged is a corporate commercial card.
This is only applicable to Visa cards. Visa Business, corporate, and purchasing cards are subsets of commercial cards. Therefore, the user should send Level 2 (and possibly Level 3) data when calling Capture when this property indicates a commercial card was used. The following table indicates the type of commercial card:
fccNotCommercial (0) | Card presented for authorization is not a commercial card |
fccPurchaseCard (1) | Card presented for authorization is a Visa Purchasing Card. |
fccCorporateCard (2) | Card presented for authorization is a Visa Corporate Card. |
fccBusinessCard (3) | Card presented for authorization is a Visa Business Card. |
fccUnknown (4) | Unable to obtain information from processor. |
Note: Tax amounts should be included with the Level2 or Level3 data when calling Capture in order to receive the best interchange rate.
This property is read-only.
Data Type
Integer
ResponseCVVResult Property (FDMSRcRetail Control)
Contains the returned CVV result code (if CVV data was sent in the request).
Syntax
fdmsrcretailcontrol.ResponseCVVResult
Default Value
""
Remarks
Contains the returned CVV result code (if CVV data was sent in the request).
If a CVV value was sent in the authorization, this property will contain the host returned Card Verification Value result code. This property is populated if a value is present in the response. The following is a list of current result codes:
Match | Values match |
NoMtch | Values do not match |
NotPrc | Not processed |
NotPrv | Value not provided |
NotPrt | Issuer not participating |
Unknwn | Unknown |
This property is read-only.
Data Type
String
ResponseDatawireReturnCode Property (FDMSRcRetail Control)
Contains an error code providing more details about the DatawireStatus received.
Syntax
fdmsrcretailcontrol.ResponseDatawireReturnCode
Default Value
""
Remarks
Contains an error code providing more details about the ResponseDatawireStatus received.
When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.
The ResponseApprovalCode contains the actual transaction result that was returned by FDMS.
The following is a list of possible Datawire return codes:
000 | Transaction successfully passed through the Datawire system to the FDMS Payment Processor and back. |
200 | Host Busy - The processor's Host is busy and is currently unable to service this request. |
201 | Host Unavailable - The processor's Host is currently unavailable. For example, the server is sending NAK. |
202 | Host Connect Error - Could not connect to the processor's Host. |
203 | Host Drop - The processor's Host disconnected during the transaction before sending a response. |
204 | Host Comm Error - An error was encountered while communicating with the processor's Host. |
205 | No Response - No response from the processor's Host |
206 | Host Send Error - An error has encountered when sending the request to the processor, and the Host daemon cannot continue sending packets to the processor because the connection is broken. |
405 | Vxn Timeout - The request could not be processed. |
505 | Network Error - The request could not be processed. |
This property is read-only.
Data Type
String
ResponseDatawireStatus Property (FDMSRcRetail Control)
Status of the communication with Datawire.
Syntax
fdmsrcretailcontrol.ResponseDatawireStatus
Default Value
""
Remarks
Status of the communication with Datawire.
When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.
The ResponseApprovalCode contains the actual FDMS Transaction Result that was returned.
The following is a list of possible Datawire response status codes:
OK | Transaction has successfully passed through the Datawire system to the FDMS Payment processor and back. |
AuthenticationError | DatawireId in the request was not successfully authenticated. |
UnknownServiceID | ServiceId part of the URL (in the Service Discovery or Ping request) is unknown. |
WrongSessionContext | The SessionContext element of the Session Transaction request does not match the SessionContext returned by the InitiateSession response (applicable to the FDMSSettle control). |
AccessDenied | Generally, occurs when you try to register a merchant after a merchant has already been activated to use the Datawire VXN. |
Failed | Your Merchant Registration has failed. Contact tech.support@datawire.net for more information. |
Retry | Registration is not yet complete. You must send the Registration request again. |
Timeout | No response from the Service Provider was received during the expected period of time. |
XMLError | Request contains some XML error, such as malformed XML, violation of this DTD, etc. |
OtherError | Unspecified error occurred. |
008 | Network Error |
This property is read-only.
Data Type
String
ResponseEMVData Property (FDMSRcRetail Control)
Contains the EMV data returns in the response (if any).
Syntax
fdmsrcretailcontrol.ResponseEMVData
Default Value
""
Remarks
Contains the EMV data returns in the response (if any).
This property is only applicable to Retail and Debit transactions.
This property is read-only and not available at design time.
Data Type
String
ResponsePOSData Property (FDMSRcRetail Control)
This property holds transaction specific information returned by the issuer (if any).
Syntax
fdmsrcretailcontrol.ResponsePOSData
Default Value
""
Remarks
This property holds transaction specific information returned by the issuer (if any). This is only applicable to MasterCard, Discover, and AmEx card transactions.
This property is read-only and not available at design time.
Data Type
String
ResponseReturnedACI Property (FDMSRcRetail Control)
Returned Authorization Characteristics Indicator contains CPS qualification status.
Syntax
fdmsrcretailcontrol.ResponseReturnedACI
Default Value
""
Remarks
Returned Authorization Characteristics Indicator contains CPS qualification status.
This one character field contains the returned Authorization Characteristics Indicator (ACI) for Visa transactions. This value provides information concerning the transaction's Customer Payment Service (CPS) qualification status. It is not recommended that the Point of Sale (POS) system attempt to interpret the meaning of this value.
Possible returned ACI values are:
Value | Description |
A | Card Present |
B | Tokenized Ecommerce via mobile device (Payment Token) |
C | Card present with merchant name and location data (cardholder activated) |
E | Card present with merchant name and location data |
F | Card not present, Account Funding |
I | Incremental Authorization |
J | Card not present Recurring bill payment transaction |
K | Key Entered Transaction (error while reading magnetic stripe data) |
N | Not a custom payment service transaction |
P | Card-not-present (preferred customer participation) |
R | Card-not-present, AVS not required |
S | Card not present, e-commerce 3-D secure attempt |
T | Transaction cannot participate in CPS programs |
U | Card not present, 3-D secure |
V | Card-not-present, AVS requested |
W | Card not present, e-commerce non-3-D secure |
This property is read-only.
Data Type
String
ResponseRoutingIndicator Property (FDMSRcRetail Control)
Indicates whether the transaction was processed as Credit or Debit.
Syntax
fdmsrcretailcontrol.ResponseRoutingIndicator
Default Value
""
Remarks
Indicates whether the transaction was processed as Credit or Debit. Possible values are:
Value | Meaning |
C | Credit |
D | Debit |
This property is read-only.
Data Type
String
ResponseSettlementDate Property (FDMSRcRetail Control)
The date the transaction will be settled in the format MMDD.
Syntax
fdmsrcretailcontrol.ResponseSettlementDate
Default Value
""
Remarks
The date the transaction will be settled in the format MMDD.
This property is read-only.
Data Type
String
ResponseText Property (FDMSRcRetail Control)
This property may hold additional text which describes the reason for a decline, the property in error, etc.
Syntax
fdmsrcretailcontrol.ResponseText
Default Value
""
Remarks
This property may hold additional text which describes the reason for a decline, the field in error, etc. Applications should not be coded to the text in this property as it is subject to change.
This property is read-only.
Data Type
String
ResponseTransactionDate Property (FDMSRcRetail Control)
The transaction date returned from the server in yyyyMMddHHmmss format.
Syntax
fdmsrcretailcontrol.ResponseTransactionDate
Default Value
""
Remarks
The transaction date returned from the server in yyyyMMddHHmmss format.
This 15 digit field contains the transaction date and time returned by the Rapid Connect system. This is not a local datetime, it is the time according the Rapid Connect system.
This property is read-only.
Data Type
String
ResponseTransactionId Property (FDMSRcRetail Control)
Card issuer's Transaction Reference Number.
Syntax
fdmsrcretailcontrol.ResponseTransactionId
Default Value
""
Remarks
Card issuer's Transaction Reference Number.
This property contains a Visa Transaction Id, MasterCard BankNet data, American Express Transaction Id, or Discover Network Result Indicator (NRID). If returned in the response, this property should be printed on the receipt.
This property is read-only and not available at design time.
Data Type
String
ReversalTransactionType Property (FDMSRcRetail Control)
The type of transaction to reverse.
Syntax
fdmsrcretailcontrol.ReversalTransactionType[=integer]
Possible Values
frttAuthOnly(0), frttCapture(1), frttCredit(2), frttSale(3)
Default Value
0
Remarks
This property specifies the type of transaction to reverse. Possible values are:
0 (frttAuthOnly - default | AuthOnly. |
1 (frttCapture) | Capture. Only applicable when ReversalType is set to frtTimeoutReversal. |
2 (frttCredit) | Credit. Only applicable when ReversalType is set to frtTimeoutReversal. |
3 (frttSale) | Sale. |
Data Type
Integer
ReversalType Property (FDMSRcRetail Control)
The type of reversal.
Syntax
fdmsrcretailcontrol.ReversalType[=integer]
Possible Values
frtFullReversal(0), frtTimeoutReversal(1), frtVoidForSuspectedFraud(2), frtPartialReversal(3)
Default Value
0
Remarks
This property specifies the type of reversal. Possible values are:
0 (frtFullReversal - default) | Void / Full Reversal |
1 (frtTimeoutReversal) | Timeout Reversal |
2 (frtVoidForSuspectedFraud) | Full Reversal with suspected fraud as the reason. This is only applicable to MasterCard. |
3 (frtPartialReversal) | Partial Reversal |
Timeout Reversals are applicable to the following transaction types:
Full Reversals are applicable to the following transaction types:
Data Type
Integer
SettlementMode Property (FDMSRcRetail Control)
Indicates whether the control uses Host Capture (0) or Terminal Capture (1) system.
Syntax
fdmsrcretailcontrol.SettlementMode[=integer]
Possible Values
smiHostCapture(0), smiTerminalCapture(1)
Default Value
0
Remarks
Possible values are:
0 (smiHostCapture - default) | Host Capture |
1 (smiTerminalCapture) | Terminal Capture |
Host-Capture means that you authorize your transactions using the AuthOnly or Sale methods, and you process refunds and capture outstanding authorizations with the Credit and Capture methods. FDMS Rapid Connect handles all batch management.
Terminal-Capture means that you handle all of the batch management yourself. This is necessary for the Hotel/Lodging IndustryType, because the final settlement amount may be more than (or less than) the amount that was originally authorized. For instance, a customer may stay longer or shorter than originally planned, or incur additional charges (mini bar, telephone call, room service, etc), and the settlement amount must be adjusted accordingly.
All industry types may be processed in Terminal Capture mode. However, Hotel/Lodging transactions MUST be authorized and settled in Terminal Capture mode. Attempting to authorize a Hotel/Lodging transaction with the Host Capture mode will cause the control fails with an error.
Data Type
Integer
SSLAcceptServerCertEncoded Property (FDMSRcRetail Control)
This is the certificate (PEM/Base64 encoded).
Syntax
fdmsrcretailcontrol.SSLAcceptServerCertEncoded[=string]
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.
When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.
To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLAcceptServerCertEncodedB.
This property is not available at design time.
Data Type
Binary String
SSLCertEncoded Property (FDMSRcRetail Control)
This is the certificate (PEM/Base64 encoded).
Syntax
fdmsrcretailcontrol.SSLCertEncoded[=string]
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.
When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.
To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLCertEncodedB.
This property is not available at design time.
Data Type
Binary String
SSLCertStore Property (FDMSRcRetail Control)
This is the name of the certificate store for the client certificate.
Syntax
fdmsrcretailcontrol.SSLCertStore[=string]
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password protected, specify the password in SSLCertStorePassword.
SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLCertStoreB.
Data Type
Binary String
SSLCertStorePassword Property (FDMSRcRetail Control)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
fdmsrcretailcontrol.SSLCertStorePassword[=string]
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SSLCertStoreType Property (FDMSRcRetail Control)
This is the type of certificate store for this certificate.
Syntax
fdmsrcretailcontrol.SSLCertStoreType[=integer]
Possible Values
cstUser(0), cstMachine(1), cstPFXFile(2), cstPFXBlob(3), cstJKSFile(4), cstJKSBlob(5), cstPEMKeyFile(6), cstPEMKeyBlob(7), cstPublicKeyFile(8), cstPublicKeyBlob(9), cstSSHPublicKeyBlob(10), cstP7BFile(11), cstP7BBlob(12), cstSSHPublicKeyFile(13), cstPPKFile(14), cstPPKBlob(15), cstXMLFile(16), cstXMLBlob(17), cstJWKFile(18), cstJWKBlob(19), cstSecurityKey(20), cstBCFKSFile(21), cstBCFKSBlob(22), cstPKCS11(23), cstAuto(99)
Default Value
0
Remarks
This is the type of certificate store for this certificate.
The control supports both public and private keys in a variety of formats. When the cstAuto value is used, the control will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr control. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SSLCertSubject Property (FDMSRcRetail Control)
This is the subject of the certificate used for client authentication.
Syntax
fdmsrcretailcontrol.SSLCertSubject[=string]
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SSLProvider Property (FDMSRcRetail Control)
This specifies the SSL/TLS implementation to use.
Syntax
fdmsrcretailcontrol.SSLProvider[=integer]
Possible Values
sslpAutomatic(0), sslpPlatform(1), sslpInternal(2)
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the control will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The control will select a provider depending on the current platform.
When Automatic is selected the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used.
Data Type
Integer
SSLServerCertEncoded Property (FDMSRcRetail Control)
This is the certificate (PEM/Base64 encoded).
Syntax
fdmsrcretailcontrol.SSLServerCertEncoded
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.
When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.
To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLServerCertEncodedB.
This property is read-only and not available at design time.
Data Type
Binary String
STAN Property (FDMSRcRetail Control)
The merchant assigned System Trace Audit Number(STAN).
Syntax
fdmsrcretailcontrol.STAN[=string]
Default Value
""
Remarks
This property represents a six digit number assigned by the merchant to uniquely reference the transaction. This number must be unique within a day per Merchant ID and Terminal ID.
Valid values are from 000001 to 999999 inclusive.
Data Type
String
Timeout Property (FDMSRcRetail Control)
A timeout for the control.
Syntax
fdmsrcretailcontrol.Timeout[=integer]
Default Value
30
Remarks
If Timeout is set to a positive value, and an operation cannot be completed immediately, the control will return with an error after Timeout seconds.
The default value for Timeout is 30 (seconds).
Data Type
Integer
TPPID Property (FDMSRcRetail Control)
Third Party Processor Identifier assigned by FDMS.
Syntax
fdmsrcretailcontrol.TPPID[=string]
Default Value
""
Remarks
The Third Party Processor Identifier (TPPID. Also sometimes referred to as a "Vendor Id") is assigned by FDMS to each third party who is processing transactions. Each merchant will receive a TPPID from FDMS.
The default value is "" (empty string). This should be set to the FDMS assigned TPPID.
A VisaIdentifier is also required for Visa transactions.
Data Type
String
TransactionAmount Property (FDMSRcRetail Control)
The transaction amount to be authorized.
Syntax
fdmsrcretailcontrol.TransactionAmount[=string]
Default Value
""
Remarks
This property contains the transaction amount to be authorized.
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
Data Type
String
TransactionNumber Property (FDMSRcRetail Control)
Uniquely identifies the transaction.
Syntax
fdmsrcretailcontrol.TransactionNumber[=string]
Default Value
""
Remarks
The TransactionNumber (otherwise known as the Client Reference Number, or ClientRef) uniquely identifies the packet sent by the application to the Datawire system. This parameter stores some unique token of information, and is used to match the response to the initial request sent. For example, the client application could use a static counter that is increased with the each executed request.
For all controls except FDMSGiftCard the maximum length of this property is 14 alphanumeric characters.
The FDMS recommended format is "tttttttVnnnnrrr" where ttttttt is a 7 digit transaction id, V is a constant, and nnn is a 3 digit version number and rrr is a 3 digit revision number. The 6 digit version number is typically static but unique for an application (Example: Version 2.5 = tttttttV002500).
For the Rapid Connect platform, the 6 character version number should be your Project/TPPID value. The entire TransactionNumber must be unique within a 24 hour time period.
The FDMSGiftCard also passes this value to the FDMS Closed Loop Gift Card system as a transaction id, and therefore the following restrictions are enforced: The maximum length is 7 characters. If the first character is an 'X', the remaining characters must be in the range '0' through 'F', indicating a hexadecimal number. Otherwise the FDMS Closed Loop Gift Card system only allows digits in this property.
Data Type
String
URL Property (FDMSRcRetail Control)
Location of the Datawire server to which transactions are sent.
Syntax
fdmsrcretailcontrol.URL[=string]
Default Value
"https://staging1.datawire.net/sd/"
Remarks
This is the URL to which all authorization and settlement transactions are sent. This URL is acquired by using the FDMSRegister control. Once you Register and Activate the merchant using the FDMSRegister control, you may then do a Service Discovery. After sending a Service Discovery transaction, the Datawire system will return a list of transaction URLs. The URL from this list with the shortest round-trip transit time from a ping is the URL you should use here.
Note: By default, this property is populated with the Datawire Staging (test) server, and is not the correct URL to use in a production environment. In a production environment, this URL is supplied by the FDMSRegister control.
Data Type
String
VisaIdentifier Property (FDMSRcRetail Control)
Additional merchant identification field used when authorizing Visa transactions.
Syntax
fdmsrcretailcontrol.VisaIdentifier[=string]
Default Value
""
Remarks
First Data will require the Agent Identification Service from all Third Party Servicers (TPS) or Merchant Servicers (MS). Each Visa Agent Identifier in the chain is composed of the following pieces:
First (up to) 10 bytes: | The Business Identifier (BID) provided by Visa to Third Party Servicers (TPS). This value may be less than 10 bytes. |
Final 12 bytes: | Text representation of the hexadecimal Visa secret Agent Unique Account Result (AUAR). {0x01, 0x02, 0x03, 0x04, 0x05, 0xFF} will be represented as "0102030405FF". |
A VisaIdentifier (Agent Identification Service - AUAR) is required for Visa transactions. A VisaIdentifier value is assigned by Visa as part of their Trusted Agent Program (TAP). Therefore it is suggested that you contact your FDMS certification analyst as they should be able to provide you with further information and put you in contact with the required party at Visa. Unfortunately more specific information on this matter cannot be provided as we do not handle live customer data and thus are not required to register in this particular program. However below is some additional information in regards to the requirements of a Visa Identifier.
Any merchant that transmits, processes, or stores cardholder data on server(s) that you own, manage, or operate on behalf of your clients (who are other merchant account holders) must meet the PCI Data Security Standard and follow additional steps to register as a service provider. Applicable services commonly include webhosting, software as a service, or collecting payment on behalf of a client. Any company providing these services must register with Visa's Third Party Agent (TAP) program.
You can register for the Visa Third Party Agent Program at http://usa.visa.com/merchants/risk_management/third-party-registration.html
If you find that you are not required to register with this program you can send all spaces for the BID and all zeros for the AUAR for instance:
" 000000000000"
Data Type
String
AuthOnly Method (FDMSRcRetail Control)
Performs an authorization request.
Syntax
fdmsrcretailcontrol.AuthOnly
Remarks
This method performs an authorization request. This transaction places a hold on the funds. To capture the funds the Capture method must be called.
After calling this method call GetDetailAggregate to generate a detail aggregate. The detail aggregate should be saved for use with Capture or Reverse later.
When ready to Capture or Reverse the transaction call SetDetailAggregate to the previously stored detail aggregate before calling the method.
After this method returns check the value of ResponseCode to determine if the transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister control. (You may update your list of service provider URLs with the FDMSRegister control's ServiceDiscovery method).
Retail AuthOnly Example
retail.TPPID = "AAA000";
retail.MerchantTerminalNumber = "00000001";
retail.MerchantId = "1234";
retail.GroupId = "20001";
retail.DatawireId = "00011122233344455566";
retail.URL = "https://stg.dw.us.fdcnet.biz/rc";
retail.ApplicationId = "RAPIDCONNECTVXN";
retail.IndustryType = FdmsrcretailIndustryTypes.fritRetail;
retail.STAN = "112";
retail.TransactionNumber = "1234";
retail.OrderNumber = "123";
retail.TransactionAmount = "1200";
retail.ReferenceNumber = "123";
retail.Card.MagneticStripe = "B4012000033330026^FDCS TEST CARD /VISA^170410054321000000000000000 150 A";
retail.Card.EntryDataSource = EntryDataSources.edsTrack1;
retail.AuthOnly();
BalanceInquiry Method (FDMSRcRetail Control)
Performs a Balance Inquiry Request using the specified Card data.
Syntax
fdmsrcretailcontrol.BalanceInquiry
Remarks
This methods allows you to perform a Balance Inquiry Request using the specified Card data. The balance amount will be returned via ResponseBalance. Note that Balance Inquiries do not place a hold on a cardholder's funds and are not captured.
Note: This method is only applicable to swiped MasterCards.
Capture Method (FDMSRcRetail Control)
Captures a previously authorized transaction.
Syntax
fdmsrcretailcontrol.Capture
Remarks
This method captures a previously authorized transaction. Before calling this method call SetDetailAggregate to specify the detail aggregate from the original AuthOnly transaction.
After this method returns check the value of ResponseCode to determine if the transaction was successful.
FDMS Recommendations:
Vendors/Gateways, who systematically send all Capture transactions during their end of day processing or at a specific time for their entire chain, must configure/program their systems to send the Capture transactions for all locations or merchants varying times of day based on the MerchantId or MerchantTerminalNumber (whichever provides a more random value).
To assist with implementing this logic, FDMS Rapid Connect recommends sending the Capture transactions based on the MerchantTerminalNumber in each location. For example If the last digit of the MerchantTerminalNumber is 0, set the time for the Capture transactions to be sent as xx:00 (xx=hh:00=mm). The time for the MerchantTerminalNumber ending with 1 would be xx:05. The time for the MerchantTerminalNumber ending with 2 would be xx:10. All remaining MerchantTerminalNumbers would follow this same logic. This logic would be applied across the entire chain or merchant base, to ensure that all Captures for all merchants are not systematically sent to First Data at the same time. FDMS recommends that the software calculate the offset of time based on the MerchantId or MerchantTerminalNumber, and not rely on a user to specify the time as noted above.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister control. (You may update your list of service provider URLs with the FDMSRegister control's ServiceDiscovery method).
Retail AuthOnly and Capture Example
retail.TPPID = "AAA000";
retail.MerchantTerminalNumber = "00000001";
retail.MerchantId = "1234";
retail.GroupId = "20001";
retail.DatawireId = "00011122233344455566";
retail.URL = "https://stg.dw.us.fdcnet.biz/rc";
retail.ApplicationId = "RAPIDCONNECTVXN";
retail.IndustryType = FdmsrcretailIndustryTypes.fritRetail;
retail.STAN = "112";
retail.TransactionNumber = "1234";
retail.OrderNumber = "123";
retail.ReferenceNumber = "123456";
retail.TransactionAmount = "1200";
retail.Card.MagneticStripe = "B4012000033330026^FDCS TEST CARD /VISA^170410054321000000000000000 150 A";
retail.Card.EntryDataSource = EntryDataSources.edsTrack1;
retail.AuthOnly();
string aggregate = retail.GetDetailAggregate();
//Capture
retail = new Fdmsrcretail();
retail.TPPID = "AAA000";
retail.MerchantTerminalNumber = "00000001";
retail.MerchantId = "1234";
retail.GroupId = "20001";
retail.DatawireId = "00011122233344455566";
retail.URL = "https://stg.dw.us.fdcnet.biz/rc";
retail.ApplicationId = "RAPIDCONNECTVXN";
retail.IndustryType = FdmsrcretailIndustryTypes.fritRetail;
retail.STAN = "113";
retail.TransactionNumber = "1235";
retail.ReferenceNumber = "123457";
retail.SetDetailAggregate(aggregate);
//The TransactionAmount is populated when SetDetailAggregate is called.
//TransactionAmount may be set to a different amount when capturing,
//for instance to include Gratuity.
retail.TransactionAmount = "1600";
retail.Capture();
Config Method (FDMSRcRetail Control)
Sets or retrieves a configuration setting.
Syntax
fdmsrcretailcontrol.Config ConfigurationString
Remarks
Config is a generic method available in every control. It is used to set and retrieve configuration settings for the control.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Credit Method (FDMSRcRetail Control)
Submits a credit transaction.
Syntax
fdmsrcretailcontrol.Credit
Remarks
This method credits funds to the card. This is not based on a previous transaction. This may be used to return funds to a card if a previous transaction has already been settled. To void or cancel a transaction before it has been settled call Reverse instead.
After this method returns check the value of ResponseCode to determine if the transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister control. (You may update your list of service provider URLs with the FDMSRegister control's ServiceDiscovery method).
Retail Credit Example
retail.TPPID = "AAA000";
retail.MerchantTerminalNumber = "00000001";
retail.MerchantId = "1234";
retail.GroupId = "20001";
retail.DatawireId = "00011122233344455566";
retail.URL = "https://stg.dw.us.fdcnet.biz/rc";
retail.ApplicationId = "RAPIDCONNECTVXN";
retail.IndustryType = FdmsrcretailIndustryTypes.fritRetail;
retail.STAN = "112";
retail.TransactionNumber = "1234";
retail.OrderNumber = "123";
retail.ReferenceNumber = "123";
retail.TransactionAmount = "1200";
retail.Card.MagneticStripe = "B4012000033330026^FDCS TEST CARD /VISA^170410054321000000000000000 150 A";
retail.Card.EntryDataSource = EntryDataSources.edsTrack1;
retail.Credit();
;
GetDetailAggregate Method (FDMSRcRetail Control)
Returns a detail aggregate containing details of this transaction, which is used for Capture or Reverse transactions or settlement when using Terminal Capture mode.
Syntax
fdmsrcretailcontrol.GetDetailAggregate
Remarks
This method will return a detail aggregate representing the transaction. After calling AuthOnly or Sale call this method to obtain a detail aggregate. The aggregate will be required when calling Capture or Reverse.
When using Terminal Capture Settlement Mode this aggregate must be passed to the FDMSRcSettle control's DetailAggregate array property in order to settle the transaction. If you wish to view or change any part of the aggregate (such as adding a gratuity or additional info for an Installment payment), you may use the FDMSRcDetailrecord control to do so.
Note: This method may only be called after a successful authorization. If the authorization was not successful the method fails with an error.
To set the aggregate before calling Capture Reverse or SendSettlement call SetDetailAggregate. Save this aggregate in a secure location.
HostTotals Method (FDMSRcRetail Control)
Performs a Host Totals request.
Syntax
fdmsrcretailcontrol.HostTotals
Remarks
This method performs a Host Totals transaction submitted to request a Host Totals Report for a particular day.
You need to set the required merchant password and report type fields using the HostTotalsPassword and HostTotalsType configuration settings, respectively.
Retail HostTotals Example
retail.TPPID = "AAA000";
retail.MerchantTerminalNumber = "00000001";
retail.MerchantId = "1234";
retail.GroupId = "20001";
retail.DatawireId = "00011122233344455566";
retail.URL = "https://stg.dw.us.fdcnet.biz/rc";
retail.ApplicationId = "RAPIDCONNECTVXN";
retail.STAN = "112";
retail.TransactionNumber = "1234";
retail.Config("CurrencyCode=840");
retail.Config("HostTotalsType=1");
retail.Config("HostTotalsPassword=111111");
retail.HostTotals();
Interrupt Method (FDMSRcRetail Control)
Interrupts the current action.
Syntax
fdmsrcretailcontrol.Interrupt
Remarks
This method interrupts any processing that the control is currently executing.
Reset Method (FDMSRcRetail Control)
Clears all properties to their default values.
Syntax
fdmsrcretailcontrol.Reset
Remarks
This method clears all properties to their default values.
Reverse Method (FDMSRcRetail Control)
Reverses a transaction.
Syntax
fdmsrcretailcontrol.Reverse
Remarks
This method reverses a transaction that has not been settled.
To void/reverse a Sale or AuthOnly transaction first set ReversalTransactionType to specify the type of original transaction that is being reversed. Next set ReversalType to frtFullReversal and call this method.
If the previous transaction did not receive a response and the state of the transaction is uncertain you may perform a Timeout Reversal. To perform a timeout reversal set ReversalTransactionType to specify the type of original transaction that is being reversed. Next set ReversalType to frtTimeoutReversal and call this method.
Timeout Reversals are applicable to the following transaction types:
Full Reversals are applicable to the following transaction types:
After this method returns check the value of ResponseCode to determine if the transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister control. (You may update your list of service provider URLs with the FDMSRegister control's ServiceDiscovery method).
Retail Sale and Reverse Example
retail.TPPID = "AAA000";
retail.MerchantTerminalNumber = "00000001";
retail.MerchantId = "1234";
retail.GroupId = "20001";
retail.DatawireId = "00011122233344455566";
retail.URL = "https://stg.dw.us.fdcnet.biz/rc";
retail.ApplicationId = "RAPIDCONNECTVXN";
retail.IndustryType = FdmsrcretailIndustryTypes.fritRetail;
retail.STAN = "112";
retail.TransactionNumber = "1234";
retail.OrderNumber = "123";
retail.ReferenceNumber = "123";
retail.TransactionAmount = "1200";
retail.Card.MagneticStripe = "B4012000033330026^FDCS TEST CARD /VISA^170410054321000000000000000 150 A";
retail.Card.EntryDataSource = EntryDataSources.edsTrack1;
retail.Sale();
string aggregate = retail.GetDetailAggregate();
//Reverse
retail = new Fdmsrcretail();
retail.TPPID = "AAA000";
retail.MerchantTerminalNumber = "00000001";
retail.MerchantId = "1234";
retail.GroupId = "20001";
retail.DatawireId = "00011122233344455566";
retail.URL = "https://stg.dw.us.fdcnet.biz/rc";
retail.ApplicationId = "RAPIDCONNECTVXN";
retail.STAN = "113";
retail.TransactionNumber = "1235";
retail.ReferenceNumber = "123457";
retail.SetDetailAggregate(aggregate);
retail.Reverse();
Sale Method (FDMSRcRetail Control)
Performs a sale transaction.
Syntax
fdmsrcretailcontrol.Sale
Remarks
This method performs a sale transaction. Once a sale is performed no further action is needed, the funds will automatically be captured by FDMS.
After this method returns check the value of ResponseCode to determine if the transaction was successful.
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister control. (You may update your list of service provider URLs with the FDMSRegister control's ServiceDiscovery method).
Retail Sale Example
retail.TPPID = "AAA000";
retail.MerchantTerminalNumber = "00000001";
retail.MerchantId = "1234";
retail.GroupId = "20001";
retail.DatawireId = "00011122233344455566";
retail.URL = "https://stg.dw.us.fdcnet.biz/rc";
retail.ApplicationId = "RAPIDCONNECTVXN";
retail.IndustryType = FdmsrcretailIndustryTypes.fritRetail;
retail.STAN = "112";
retail.TransactionNumber = "1234";
retail.OrderNumber = "123";
retail.ReferenceNumber = "123";
retail.TransactionAmount = "1200";
retail.Card.MagneticStripe = "B4012000033330026^FDCS TEST CARD /VISA^170410054321000000000000000 150 A";
retail.Card.EntryDataSource = EntryDataSources.edsTrack1;
retail.Sale();
SetDetailAggregate Method (FDMSRcRetail Control)
Specifies the detail aggregate before calling Capture or Reverse.
Syntax
fdmsrcretailcontrol.SetDetailAggregate aggregate
Remarks
This method specifies the detail aggregate from the original AuthOnly or Sale transaction. This must be set before calling Capture or Reverse.
The aggregate specified here should have been obtained from the GetDetailAggregate method after the original AuthOnly or Sale transaction.
VerifyCard Method (FDMSRcRetail Control)
Performs a zero dollar verification of the card.
Syntax
fdmsrcretailcontrol.VerifyCard
Remarks
This method performs a card verification without charging any funds. This can be used to simply verify if the card is valid, or perform AVS and CVV checks without actually charging any funds to the card.
When calling this method TransactionAmount must be set to 0. Set either CustomerAddress or CustomerZip to perform AVS checks. Set CardCVVData to perform CVV checks.
The following combinations are supported:
Card Type | Verification | w/ AVS | w/ CVV | w/ AVS and CVV | Swiped w/ AVS |
Visa | Y | Y | Y | N | Y |
MasterCard | Y | Y | Y | Y | Y |
American Express | N | Y | N | N | Y |
Discover | Y | Y | Y | Y | Y |
JCB (Domestic US) | N | N | N | N | N |
Diners Club | Y | Y | Y | Y | Y |
Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister control. (You may update your list of service provider URLs with the FDMSRegister control's ServiceDiscovery method).
Retail VerifyCard Example
retail.TPPID = "AAA000";
retail.MerchantTerminalNumber = "00000001";
retail.MerchantId = "1234";
retail.GroupId = "20001";
retail.DatawireId = "00011122233344455566";
retail.ApplicationId = "RAPIDCONNECTVXN";
retail.URL = "https://stg.dw.us.fdcnet.biz/rc";
retail.IndustryType = FdmsrcretailIndustryTypes.fritRetail;
retail.URL = "https://stg.dw.us.fdcnet.biz/rc";
retail.STAN = "112";
retail.TransactionNumber = "1234";
retail.ReferenceNumber = "123";
retail.TransactionAmount = "0";
retail.CustomerZip = "11747";
//Card data can be swiped or manually keyed
retail.Card.Number = "373953123443227";
retail.Card.ExpMonth = 12;
retail.Card.ExpYear = 2018;
retail.Card.EntryDataSource = EntryDataSources.edsManualEntryTrack1Capable;
retail.VerifyCard();
Connected Event (FDMSRcRetail Control)
This event is fired immediately after a connection completes (or fails).
Syntax
Sub fdmsrcretailcontrol_Connected(StatusCode As Integer, Description As String)
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error. The corresponding Visual Basic error code can be obtained by adding 15001 to this value.
Please refer to the Error Codes section for more information.
DataPacketIn Event (FDMSRcRetail Control)
Fired when receiving a data packet from the transaction server.
Syntax
Sub fdmsrcretailcontrol_DataPacketIn(DataPacket As String)
Remarks
This event fires when a packet is received. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or to extract additional response properties beyond the scope of this control.
DataPacketOut Event (FDMSRcRetail Control)
Fired when sending a data packet to the transaction server.
Syntax
Sub fdmsrcretailcontrol_DataPacketOut(DataPacket As String)
Remarks
This event fires right before each data packet is sent. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or may be modified to support additional features beyond the scope of this control.
Disconnected Event (FDMSRcRetail Control)
This event is fired when a connection is closed.
Syntax
Sub fdmsrcretailcontrol_Disconnected(StatusCode As Integer, Description As String)
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error. The corresponding Visual Basic error code can be obtained by adding 15001 to this value.
Please refer to the Error Codes section for more information.
Error Event (FDMSRcRetail Control)
Fired when information is available about errors during data delivery.
Syntax
Sub fdmsrcretailcontrol_Error(ErrorCode As Integer, Description As String)
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the control fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
SSLServerAuthentication Event (FDMSRcRetail Control)
Fired after the server presents its certificate to the client.
Syntax
Sub fdmsrcretailcontrol_SSLServerAuthentication(CertEncoded As String, CertSubject As String, CertIssuer As String, Status As String, Accept As Boolean)
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (FDMSRcRetail Control)
Fired when secure connection progress messages are available.
Syntax
Sub fdmsrcretailcontrol_SSLStatus(Message As String)
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
Status Event (FDMSRcRetail Control)
Shows the progress of the FDMS/Datawire connection.
Syntax
Sub fdmsrcretailcontrol_Status(Message As String)
Remarks
The event is fired for informational and logging purposes only. Used to track the progress of the connection.
Config Settings (FDMSRcRetail Control)
The control accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.FDMSRcRetail Config Settings
Value | Visa | Mastercard | Discover | |
P | X | X | Preferred Rate/Customer Status (Lodging or Auto Rental) | |
I | X | X | X | Incremental Authorization |
Y (Default) | X | Transaction requests participation | ||
R | X | Card-not-present, AVS not required (permitted for certain MCCs only) |
1 | Re-authorization (Visa and Discover only) |
2 | Resubmission (Visa and Discover only) |
3 | Estimated Authorization (Visa only) |
4 | Credential on File (Visa, Discover, Amex, and Mastercard only) |
0 | Preauthorization - The Settlement amount may be different than the amount authorized. |
1 | Final Authorization -The settlement amount must equal the approved authorized amount. |
Note: When this field is set to '1' in the original transaction, you cannot send a Partial Reversal subsequent transaction. Set the AuthorizationIndicator to '0' when the settlement amount may be different than the approved amount authorized.
0 | Timeout - Response Provided by STIP, Timed Out by Switch |
1 | Visa Stand-In Processing - Response Provided by STIP, Transaction Amount was Below Issuer Limit or Below Sliding Dollar Amount |
2 | Suppress Inquiry Mode - Response Provided by STIP, Issuer is in Suppress Inquiry (SI) Mode |
3 | Issuer Unavailable - Response Provided by STIP for One of the Following Reasons: Issuer was Not Available for Processing (for reasons other than being in SI Mode) or CCV or iCCV was Invalid and Visa has Acted on the Negative Results |
4 | Issuer - Response Provided by Issuer |
00 | Unspecified |
01 | Manual (Key entered) |
03 | Barcode |
04 | OCR (Optical Character Reader) |
05 | Integrated Circuit Read (CVV data Reliable) |
07 | Contactless Integrated Circuit Read (Reliable) |
08 | AMEX Digital Wallet |
09 | MasterCard remote chip entry |
10 | Credential on File |
79 | EMV fallback to manual entry |
80 | EMV fallback to Magnetic Stripe entry |
82 | Contactless Mobile Commerce |
86 | EMV Transaction switched from Contactless to Contact entry |
90 | Magnetic Stripe - Track Read |
91 | Contactless Magnetic Stripe Read |
95 | Integrated Circuit Read (CVV data unreliable) |
This should not be set unless there is a specific reason to do so.
Possible values are:
0 | Invalid or unknown prefix, card type not known |
1 | Visa |
2 | MasterCard |
3 | American Express |
4 | Discover |
5 | Diners |
6 | JCB |
7 | Visa Electron |
8 | Maestro |
9 | China Union Pay |
Valid values are:
Customer Initiated Transaction (CIT)
Value | Description |
C101 | Credential on File |
C102 | Standing Order (variable amount, fixed frequency) |
C103 | Subscription (fixed amount and fixed frequency) |
C104 | Installment |
Merchant Initiated Transaction (MIT)
Value | Description |
M101 | Unscheduled Credential on File |
M102 | Standing Order (variable amount, fixed frequency) |
M103 | Subscription (fixed amount and fixed frequency) |
M104 | Installment |
Merchant Initiated Transaction (MIT) - Industry Practice
Value | Description |
M205 | Partial Shipment |
M206 | Related/Delayed Charge |
M207 | No show Charge |
M208 | Resubmission |
0 | Card |
1 | Mobile Network Operator (MNO) controlled removable secure element (SIM or UICC) personalized for use with a Mobile Phone or Smartphone |
2 | Key Fob |
3 | Watch |
4 | Mobile Tag |
5 | Wristband |
6 | Mobile Phone Case or Sleeve |
7 | Mobile Phone or Smartphone with a fixed (non-removable) secure element controlled by the MNO, for example, code division multiple accesses (CDMA). |
8 | Removable secure element not controlled by the MNO, for example, memory card personalized for use with a Mobile Phone or Smartphone. |
9 | Mobile Phone or Smartphone with a fixed (non- removable) secure element not controlled by the MNO. |
10 | MNO controlled removable secure element (SIM or UICC) personalized for use with a Tablet or E-Book reader. |
11 | Tablet or E-Book reader with a fixed (non- removable) secure element controlled by the MNO. |
12 | Removable secure element not controlled by the MNO, for example, (SD Card) personalized for use with a Tablet or E- Book reader. |
13 | Tablet or E-Book with fixed (non- removable) secure element not controlled by the MNO |
01 | Merchant is 3-D Secure capable and the cardholder information is fully authenticated. |
02 | Merchant is 3-D Secure capable but the cardholder was not authenticated. Use this value when authentication was attempted but the issuer is not participating in 3-D Secure, the cardholder is not participating in 3-D Secure, or the authentication server was not available. |
03 | 3-D Secure was not attempted. |
Value | Hotel Definition |
0 | None. |
2 | Restaurant. |
3 | Gift Shop. |
4 | Mini Bar. |
5 | Telephone. |
6 | Other. |
7 | Laundry. |
For example, to indicate charges in both the gift shop and mini bar, ExtraCharges should equal "34".
This field is only applicable to Visa card transactions when IndustryType is Hotel and will not be sent for any other industry types.
0 (default) | Close Batch Report |
1 | Previous Day Report |
Possible values are:
True | Scheduled |
False | Unscheduled |
Note: This field has limited platform availability. For more information, please contact your Account Representative.
The default value is False
control.Config("StoredCredentialIndicator=S"); // S - Subsequent
control.Config("IsCOFScheduled=False"); // Unscheduled
control.Config("AuthIndicator=4"); // Credential on File
control.Config("TransactionInitiation=1"); // Merchant initiated
control.Config("MITTransactionId=" + transId); // TransactionId saved from the Response of the initial COF transaction
control.AuthOnly();
1 | Mail Order |
2 | Telephone Order |
00 | Cardholder Present, Card Present |
01 | Cardholder Present, Unspecified |
02 | Cardholder Present, Unattended Device |
03 | Cardholder Present, Suspect Fraud |
04 | Cardholder Not Present - Recurring |
05 | Cardholder Present, Card Not Present |
06 | Cardholder Present, Identity Verified |
08 | Cardholder Not Present, Mail Order/Telephone Order |
59 | Cardholder Not Present, Ecommerce |
71 | Cardholder Present, Magnetic Stripe Could Not Be Read |
Valid Values:
Value | Description |
1 (Default) | Normal Charge (Visa, Amex) |
2 | Assured Reservation No Show (Visa, Amex, Discover) |
3 | Card Deposit (Visa, Amex) |
4 | Delayed Charge (Visa, Amex, Discover) |
5 | Express Service (Visa, Amex) |
6 | Assured Reservation (Visa, Amex) |
I | Initial |
S | Subsequent |
Note: This field is mandatory in a transaction where AuthIndicator value is "4" (Credential on File).
This field must be present with the value of "S" (Subsequent) when the CardInputMode config value is "10" (Credential on File).
This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.
The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.
0 | Terminal has no capture capability or no terminal used |
1 | Terminal has card capture capability |
Note: If set to 0 track data must not be specified.
00 | Unspecified |
01 | Terminal not used |
02 | Magnetic stripe only |
03 | Magnetic stripe and key entry |
04 | Magnetic stripe, key entry, and chip |
05 | Bar code |
06 | Proximity terminal - contactless chip / RFID |
07 | OCR |
08 | Chip only |
09 | Chip and magnetic stripe |
10 | Manual entry only |
11 | Proximity terminal - contactless magnetic stripe |
12 | Hybrid - Magnetic stripe, Integrated Circuit Card Reader, and contactless capabilities |
13 | Terminal does not read card data |
Note: A value of 04, 06, 08, 09, or 12 cannot be specified unless the client is certified and the device is enabled for EMV.
0 | On Premises; Used in a Card Present environment |
1 | Off Premises; Used in a Card not Present environment |
Note: For MOTO and eCommerce transactions the value is set to 1 by default.
0 | Unspecified |
1 | PIN entry capability |
2 | No PIN entry capability |
3 | PIN Pad Inoperative |
4 | PIN verified by terminal device |
0 | Terminal is not tax prompt capable |
1 | Terminal is tax prompt capable |
1 | Transaction initiated by Merchant |
2 | Transaction initiated by Terminal |
3 | Transaction initiated by Customer |
Note: This field is mandatory in a transaction where AuthIndicator value is "4" (Credential on File) or ACI value is "I" (Incremental Authorization).
0 (default) | TransArmor security is not used. |
1 | TransArmor Encryption and Tokenization. The Card data will be encrypted using the specified TransArmorKey in the initial authorization. All subsequent requests (including settlement) will use the returned TransArmorToken. The type of encryption used is RSA and is currently the only supported encryption type. |
2 | TransArmor Tokenization only. The Card data will not be encrypted. A TransArmorToken will be returned for the transaction and will be used in all subsequent requests (including settlement). |
Note: Your merchant account must be configured to use TransArmor. The configuration is 'Mode' specific and thus you must inform FDMS which type of TransArmor Security Level you wish to use.
HTTP Config Settings
When True, the control adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".
The default value is True.
If set to True (default), the control will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the control fails with an error if the server does not support HTTP/2.
The default value is True.
This property is provided so that the HTTP control can be extended with other security schemes in addition to the authorization schemes already implemented by the control.
The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".
The default value is False.
If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the control fails with an error.
Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.
Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.
A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).
The default value is 0 (Never). In this case, redirects are never followed, and the control fails with an error instead.
Following are the valid options:
- 0 - Never
- 1 - Always
- 2 - Same Scheme
- "1.0"
- "1.1" (default)
- "2.0"
- "3.0"
When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.
HTTP/2 Notes
When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.
If the server does not support HTTP/2, the control will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.
HTTP/3 Notes
HTTP/3 is supported only in .NET and Java.
When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.
The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example:
Sat, 29 Oct 2017 19:43:31 GMT.
The default value for KeepAlive is .
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data are logged. |
3 (Debug) | Debug data are logged. |
The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.
The value 2 (Verbose) logs additional information about the request and response.
The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).
The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF (Chr$(13) & Chr$(10)) .
Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.
This configuration setting is useful for extending the functionality of the control beyond what is provided.
.NET
Http http = new Http();
http.Config("TransferredRequest=on");
http.PostData = "body";
http.Post("http://someserver.com");
Console.WriteLine(http.Config("TransferredRequest"));
C++
HTTP http;
http.Config("TransferredRequest=on");
http.SetPostData("body", 5);
http.Post("http://someserver.com");
printf("%s\r\n", http.Config("TransferredRequest"));
Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.
The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001.
When True (default), the control will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.
Override the default with the name and version of your software.
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Name or IP address of firewall (optional).If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Name or IP address of firewall (optional).If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Password to be used if authentication is to be used when connecting through the firewall.If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the control fails with an error.Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Password to be used if authentication is to be used when connecting through the firewall.If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the control fails with an error.Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by controls that do not directly expose Firewall properties.
The TCP port for the FirewallHost;.The FirewallPort is set automatically when FirewallType is set to a valid value.Note: This configuration setting is provided for use by controls that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by controls that do not directly expose Firewall properties.
The TCP port for the FirewallHost;.The FirewallPort is set automatically when FirewallType is set to a valid value.Note: This configuration setting is provided for use by controls that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Determines the type of firewall to connect through.The appropriate values are as follows:0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Determines the type of firewall to connect through.The appropriate values are as follows:0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
A user name if authentication is to be used connecting through a firewall.If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the control fails with an error.Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Note: This setting is provided for use by controls that do not directly expose Firewall properties.
A user name if authentication is to be used connecting through a firewall.If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the control fails with an error.Note: This setting is provided for use by controls that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.Note: This value is not applicable in macOS.
Note: This value is not applicable in macOS.
The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.Note: This value is not applicable in macOS.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the control returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
When set to True, connections are terminated gracefully.This property controls how a connection is closed. The default is True.In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the control returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the control returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
When set to True, connections are terminated gracefully.This property controls how a connection is closed. The default is True.In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the control returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.
If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
The name of the local host through which connections are initiated or accepted. The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.
If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.
If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
The name of the local host through which connections are initiated or accepted. The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.
If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
The port in the local host where the control binds. This must be set before a connection is attempted. It instructs the control to bind to a specific port (or communication endpoint) in the local machine.Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
The port in the local host where the control binds. This must be set before a connection is attempted. It instructs the control to bind to a specific port (or communication endpoint) in the local machine.Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
The maximum amount of data to accumulate when no EOL is found.MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
The maximum amount of data to accumulate when no EOL is found.MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
A semicolon separated list of hosts and IPs to bypass when using a proxy.This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:www.google.com;www.nsoftware.com
www.google.com;www.nsoftware.com
A semicolon separated list of hosts and IPs to bypass when using a proxy.This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
Determines whether or not the keep alive socket option is enabled.If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.Note: This value is not applicable in Java.
Note: This value is not applicable in Java.
Determines whether or not the keep alive socket option is enabled.If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.Note: This value is not applicable in Java.
By default, this config is set to false.
Whether or not to delay when sending packets. When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.By default, this config is set to false.
By default, this config is set to false.
Whether or not to delay when sending packets. When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.By default, this config is set to false.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
Controls whether SSL packets are logged when using the internal security API.When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
Controls whether SSL packets are logged when using the internal security API.When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The path to a directory containing CA certificates.This functionality is available only when the provider is OpenSSL.The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The path to a directory containing CA certificates.This functionality is available only when the provider is OpenSSL.The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
Name of the file containing the list of CA's trusted by your application.This functionality is available only when the provider is OpenSSL.The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
Name of the file containing the list of CA's trusted by your application.This functionality is available only when the provider is OpenSSL.The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
A string that controls the ciphers to be used by SSL.This functionality is available only when the provider is OpenSSL.The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
A string that controls the ciphers to be used by SSL.This functionality is available only when the provider is OpenSSL.The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
The data to seed the pseudo random number generator (PRNG).This functionality is available only when the provider is OpenSSL.By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
The data to seed the pseudo random number generator (PRNG).This functionality is available only when the provider is OpenSSL.By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to true, the control will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the control is the same.
If set to true, the control will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the control is the same.
If set to true, the control will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the control is the same.
If set to true, the control will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the control is the same.
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificate to use during SSL client authentication.This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificate to use during SSL client authentication.This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When set to 0 (default) the CRL check will not be performed by the control. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
Whether to check the Certificate Revocation List for the server certificate.This setting specifies whether the control will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the control will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The control will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.When set to 0 (default) the CRL check will not be performed by the control. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
When set to 0 (default) the CRL check will not be performed by the control. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
Whether to check the Certificate Revocation List for the server certificate.This setting specifies whether the control will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the control will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The control will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.When set to 0 (default) the CRL check will not be performed by the control. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
When set to 0 (default) the control will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
Whether to use OCSP to check the status of the server certificate.This setting specifies whether the control will use OCSP to check the validity of the server certificate. If set to 1 or 2, the control will first obtain the OCSP URL from the server certificate's OCSP extension. The control will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.When set to 0 (default) the control will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
When set to 0 (default) the control will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
Whether to use OCSP to check the status of the server certificate.This setting specifies whether the control will use OCSP to check the validity of the server certificate. If set to 1 or 2, the control will first obtain the OCSP URL from the server certificate's OCSP extension. The control will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.When set to 0 (default) the control will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
The minimum cipher strength used for bulk encryption. This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
The minimum cipher strength used for bulk encryption. This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the control will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
The cipher suite to be used in an SSL negotiation.The enabled cipher suites to be used in SSL negotiation.By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the control will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the control will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
The cipher suite to be used in an SSL negotiation.The enabled cipher suites to be used in SSL negotiation.By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the control will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the control will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the control when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
Used to enable/disable the supported security protocols.Used to enable/disable the supported security protocols.Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the control will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the control when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the control will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the control when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
Used to enable/disable the supported security protocols.Used to enable/disable the supported security protocols.Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the control will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the control when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This setting is only applicable when SSLProvider is set to Internal.
Whether the renegotiation_info SSL extension is supported.This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is by default, but can be set to to disable the extension.This setting is only applicable when SSLProvider is set to Internal.
This setting is only applicable when SSLProvider is set to Internal.
Whether the renegotiation_info SSL extension is supported.This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is by default, but can be set to to disable the extension.This setting is only applicable when SSLProvider is set to Internal.
If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
Whether the entire certificate chain is included in the SSLServerAuthentication event.This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
Whether the entire certificate chain is included in the SSLServerAuthentication event.This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the control will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the control will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
The location of a file where per-session secrets are written for debugging purposes.This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.When set, the control will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the control will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
When set, the control will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the control will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
The location of a file where per-session secrets are written for debugging purposes.This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.When set, the control will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the control will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
Flags that control certificate verification.The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
Flags that control certificate verification.The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificate to use during SSL server certificate validation.This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificate to use during SSL server certificate validation.This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the control will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the control fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.When specified the control will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the control fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
When specified the control will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the control fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.When specified the control will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the control fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
The supported groups for (EC)DHE key exchange.This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
The supported groups for (EC)DHE key exchange.This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for UDP ports.
Determines whether timeouts are inactivity timeouts or absolute timeouts.If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.Note: This option is not valid for UDP ports.
Note: This option is not valid for UDP ports.
Determines whether timeouts are inactivity timeouts or absolute timeouts.If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.Note: This option is not valid for UDP ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the incoming queue of the socket. This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the incoming queue of the socket. This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the outgoing queue of the socket.This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the outgoing queue of the socket.This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
This setting only works on these controls: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to tells the control to use the internal implementation instead of using the system security libraries.
This setting is set to by default on all platforms.
Trappable Errors (FDMSRcRetail Control)
FDMSRcRetail Errors
20433 Invalid index. | |
20502 Invalid length for this property. | |
20503 Invalid data format for this property. | |
20504 Value is out of range. | |
20505 Credit card digit check failed. | |
20506 Card date invalid. | |
20507 Card expired. | |
20520 Corrupt response. | |
20521 Response payload empty. | |
20522 Response truncated. | |
20527 Invalid timeout value. | |
20594 A property required for this transaction is missing. | |
20530 Error in XML response. | |
20531 Status code received in response indicates an error condition. | |
20532 Return code received in response indicates an error condition. | |
20533 Cannot generate detail aggregate - this transaction was not successfully authorized. | |
20534 Internal error constructing payload. |
The control may also return one of the following error codes, which are inherited from other controls.
HTTP Errors
20119 Firewall Error. Error description contains detailed message. | |
20144 Busy executing current method. | |
20152 HTTP protocol error. The error message has the server response. | |
20153 No server specified in URL | |
20154 Specified URLScheme is invalid. | |
20156 Range operation is not supported by server. | |
20157 Invalid cookie index (out of range). | |
20302 Interrupted. | |
20303 Can't open AttachedFile. |
The control may also return one of the following error codes, which are inherited from other controls.
TCPClient Errors
20101 You cannot change the RemotePort at this time. A connection is in progress. | |
20102 You cannot change the RemoteHost (Server) at this time. A connection is in progress. | |
20103 The RemoteHost address is invalid (0.0.0.0). | |
20105 Already connected. If you want to reconnect, close the current connection first. | |
20107 You cannot change the LocalPort at this time. A connection is in progress. | |
20108 You cannot change the LocalHost at this time. A connection is in progress. | |
20113 You cannot change MaxLineLength at this time. A connection is in progress. | |
20117 RemotePort cannot be zero. Please specify a valid service port number. | |
20118 You cannot change the UseConnection option while the control is active. | |
20136 Operation would block. | |
20202 Timeout. | |
20212 Action impossible in control's present state. | |
20213 Action impossible while not connected. | |
20214 Action impossible while listening. | |
20302 Timeout. | |
20303 Could not open file. | |
20435 Unable to convert string to selected CodePage. | |
21106 Already connecting. If you want to reconnect, close the current connection first. | |
21118 You need to connect first. | |
21120 You cannot change the LocalHost at this time. A connection is in progress. | |
21121 Connection dropped by remote host. |
SSL Errors
20271 Cannot load specified security library. | |
20272 Cannot open certificate store. | |
20273 Cannot find specified certificate. | |
20274 Cannot acquire security credentials. | |
20275 Cannot find certificate chain. | |
20276 Cannot verify certificate chain. | |
20277 Error during handshake. | |
20281 Error verifying certificate. | |
20282 Could not find client certificate. | |
20283 Could not find server certificate. | |
20284 Error encrypting data. | |
20285 Error decrypting data. |
TCP/IP Errors
25005 [10004] Interrupted system call. | |
25010 [10009] Bad file number. | |
25014 [10013] Access denied. | |
25015 [10014] Bad address. | |
25023 [10022] Invalid argument. | |
25025 [10024] Too many open files. | |
25036 [10035] Operation would block. | |
25037 [10036] Operation now in progress. | |
25038 [10037] Operation already in progress. | |
25039 [10038] Socket operation on non-socket. | |
25040 [10039] Destination address required. | |
25041 [10040] Message too long. | |
25042 [10041] Protocol wrong type for socket. | |
25043 [10042] Bad protocol option. | |
25044 [10043] Protocol not supported. | |
25045 [10044] Socket type not supported. | |
25046 [10045] Operation not supported on socket. | |
25047 [10046] Protocol family not supported. | |
25048 [10047] Address family not supported by protocol family. | |
25049 [10048] Address already in use. | |
25050 [10049] Can't assign requested address. | |
25051 [10050] Network is down. | |
25052 [10051] Network is unreachable. | |
25053 [10052] Net dropped connection or reset. | |
25054 [10053] Software caused connection abort. | |
25055 [10054] Connection reset by peer. | |
25056 [10055] No buffer space available. | |
25057 [10056] Socket is already connected. | |
25058 [10057] Socket is not connected. | |
25059 [10058] Can't send after socket shutdown. | |
25060 [10059] Too many references, can't splice. | |
25061 [10060] Connection timed out. | |
25062 [10061] Connection refused. | |
25063 [10062] Too many levels of symbolic links. | |
25064 [10063] File name too long. | |
25065 [10064] Host is down. | |
25066 [10065] No route to host. | |
25067 [10066] Directory not empty | |
25068 [10067] Too many processes. | |
25069 [10068] Too many users. | |
25070 [10069] Disc Quota Exceeded. | |
25071 [10070] Stale NFS file handle. | |
25072 [10071] Too many levels of remote in path. | |
25092 [10091] Network subsystem is unavailable. | |
25093 [10092] WINSOCK DLL Version out of range. | |
25094 [10093] Winsock not loaded yet. | |
26002 [11001] Host not found. | |
26003 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
26004 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
26005 [11004] Valid name, no data record (check DNS setup). |