FDMSRcBenefit Control

Properties   Methods   Events   Config Settings   Errors  

The FDMSRcBenefit control is used to authorize Electronic Benefits Transfer (EBT) transactions. An EBT transaction is similar to a Debit transaction, using a PIN and KSN, but is used for Food Stamp, Cash Benefit or eWIC programs. This control makes authorizing these types of transactions very easy. Supported Industry Types include retail stores and grocery or food stores.

Syntax

FDMSRcBenefit

Remarks

This control connects to the First Data Merchant Services (FDMS) processor, by way of the Datawire VXN transaction transport network. Transactions originating with these controls go through Datawire, to the FDMS processor where the transaction is authorized. The result is then returned back through Datawire and received by the control. This control can be integrated into web pages or stand-alone Point Of Sale applications. Because all SSL communications are handled inside the control, any application or web page can be deployed without the need for expensive dedicated SSL servers.

The FDMSRcBenefit control makes authorizing EBT card transactions (where the customer's card is swiped through a card reader and a PIN is supplied) very easy by adding an additional layer of abstraction between the programmer and the protocol. There is no need to deal with raw sockets, TLS/SSL handshakes, or data packet formatting.

An EBT Card (also known as Cash Benefit Card, Food Stamps or eWIC) works similar to a bank debit card. EBT is a special application of electronic funds transfer (EFT), or debit card technology, which takes money directly from one account and transfers it to another (credit cards, by comparison, simply record a sale for payment later). The steps to setting up the control and sending transactions are outlined below:

Datawire Setup

First, you must register and activate your account with Datawire. FDMS Rapid Connect will provide you with the following values:

The FDMSRegister control must be used to activate the merchant and receive a DatawireId. Once you acquire the DatawireId and receive your transaction URLs through ServiceDiscovery, you may begin to authorize transactions. For instance:

FDMSRegister.FDMSPlatform = FdmsregisterFDMSPlatforms.fpRapidConnect; FDMSRegister.MerchantNumber = "000000999990"; FDMSRegister.MerchantTerminalNumber = "555555"; FDMSRegister.Config("GroupId=20001"); //Required for Rapid Connect FDMSRegister.TransactionNumber = "1"; //any unique number will do. FDMSRegister.URL = "https://stagingsupport.datawire.net/staging_expresso/SRS.do"; FDMSRegister.Register(); FDMSRegister.TransactionNumber = FDMSRegister.TransactionNumber + 1; FDMSRegister.Activate(); FDMSRegister.ServiceDiscovery(FDMSRegister.PrimaryDiscoveryURL); for (int i = 0; i < FDMSRegister.ServiceProviders.Length; i++) { FDMSRegister.Ping(FDMSRegister.ServiceProviders[i]); Console.WriteLine(FDMSRegister.ServiceProviders[i] + " = " + FDMSRegister.PingResponseTime); }

To authorize a credit, debit, ebt or FSA/HSA card set the MerchantId, MerchantTerminalNumber, and GroupId properties with the values supplied by FDMS Rapid Connect. Set the DatawireId property with the value retrieved by the FDMSRegister control after activating your merchant account. Set the URL property with one of the URLs you retrieved during ServiceDiscovery.

Transaction Processing

To begin processing transactions first set the required merchant values. For instance: FDMSRcBenefit.TPPID = "AAA000"; FDMSRcBenefit.MerchantId = "RCTST0000001234"; //Supplied by FDMS/Datawire FDMSRcBenefit.MerchantTerminalNumber = "00000001"; //Supplied by FDMS/Datawire FDMSRcBenefit.DatawireId = "00011122233344455566"; //Retrieved with the FDMSRegister control. FDMSRcBenefit.GroupId = "20001"; //Supplied by FDMS/Datawire FDMSRcBenefit.URL = "https://stg.dw.us.fdcnet.biz/rc"; //Retrieved with the FDMSRegister control. FDMSRcBenefit.ApplicationId = "RAPIDCONNECTSRS";

Next specify transaction specific information. These values uniquely identify the transaction to Datawire and FDMS. FDMSRcBenefit.STAN = "112"; FDMSRcBenefit.TransactionNumber = "1234"; FDMSRcBenefit.OrderNumber = "123"; FDMSRcBenefit.ReferenceNumber = "123"; Then specify customer card and address information along with the transaction amount and EBT specific information: FDMSRcBenefit.Card.MagneticStripe = "4788250000028291=05121015432112345678"; FDMSRcBenefit.Card.EntryDataSource = EntryDataSources.edsTrack2; FDMSRcBenefit.EncryptedPIN = "7BD8948B328B21E5"; FDMSRcBenefit.KSN = "876543210F008400029"; FDMSRcBenefit.TransactionAmount = "1200"; //$12.00 FDMSRcBenefit.BenefitType = FdmsrcbenefitBenefitTypes.ebtCash;

Finally, submit the transaction by calling the Sale method.

FDMSRcBenefit.Sale();

The ResponseCode property indicates the result of the transaction. A code of 000 indicates success. For all other values please see the Response Codes section. Additional Response properties such as ResponseApprovalCode, ResponseAuthorizedAmount, ResponseText, ResponseAVSResult, ResponseCVVResult, and more, provide further details about the transaction response.

To perform subsequent operations on a transaction, such as calling Reverse to reverse a Sale, or calling Capture to capture a previous AuthOnly transaction the GetDetailAggregate method must be used to get details about the original transaction. This aggregate must be stored securely, it will contain cardholder information that is required for subsequent transactions. For instance:

FDMSRcBenefit.Sale(); //Save the detail aggregate to use with Reverse string aggregate = FDMSRcBenefit.GetDetailAggregate(); //The aggregate must then be stored securely. //At a later time the aggregate is retrieved in order to perform a reversal. //Reverse FDMSRcBenefit = new Fdmsrcbenefit(); ... //Specify the detail aggregate from the original transaction FDMSRcBenefit.SetDetailAggregate(aggregate); FDMSRcBenefit.ReversalTransactionType = FdmsrcdebitReversalTransactionTypes.frttSale; FDMSRcBenefit.ReversalType = FdmsrcdebitReversalTypes.fdrtFullReversal; FDMSRcBenefit.Reverse();

Transaction Types

In addition to a basic sale transaction, additional transaction types exist for other common operations. Not all transaction types are applicable for all controls. Check the method list for applicable transaction types.

AuthOnly An authorization that must be Captured later.
BalanceInquiry Inquire about available balance.
Capture Captures a previous AuthOnly transaction for settlement.
Credit Credits funds to the cardholder. This is not based on a previous transaction.
Reverse Reverse a previous transaction. This is also used for timeout reversals.
Sale A basic sale, no other steps are required to complete the payment.
VerifyCard Verifies that a card is valid.
HostTotals Requests a Host Totals Report for a particular day.
VoucherClear Performs an online force-post entry of a voice-authorized Food Benefit or eWIC transaction.

Note: FDMS Rapid Connect is a host capture system. No explicit calls are needed to settle or otherwise manage the batch.

Property List


The following is the full list of the properties of the control with short descriptions. Click on the links for further details.

ApplicationIdIdentifies the merchant application to the Datawire System.
BenefitTypeIdentifies the EBT transaction type.
CardTypeType of credit card being used in this transaction.
CardCVVDataThree digit security code on back of card (optional).
CardCVVPresenceIndicates the presence of the card verification value.
CardEntryDataSourceThis property contains a 1-character code identifying the source of the customer data.
CardExpMonthExpiration month of the credit card specified in Number .
CardExpYearExpiration year of the credit card specified in Number .
CardIsEncryptedDetermines whether data set to the Number or MagneticStripe properties is validated.
CardMagneticStripeTrack data read off of the card's magnetic stripe.
CardNumberCustomer's credit card number for the transaction.
CashBackOptional cash back amount to return to the customer.
CustomerAddressThe customer's billing address.
CustomerZipCustomer's zip code (or postal code if outside of the USA).
DatawireIdIdentifies the merchant to the Datawire System.
EBTCardSequenceNumberThe EBT Card Sequence Number.
EMVDataThe EMV Data returned from a Pin Pad after reading an EMV card.
EncryptedPINDUKPT DES encrypted pin block, retrieved from a PIN pad.
EWICDetailCountThe number of records in the EWICDetail arrays.
EWICDetailUpcItemPriceContains the store item price of this eWIC benefit/food item Detail.
EWICDetailUpcPluDataContains the UPC or PLU Data identifying this eWIC benefit/food item Detail.
EWICDetailUpcPluIndicatorContains an indicator identifying the data type of this eWIC benefit/food item Detail.
EWICDetailUpcQuantityContains the requested quantity of this eWIC benefit/food item Detail.
GroupIdThe Id assigned by FDMS to identify the merchant or group of merchants.
IndustryTypeThe merchant's industry type.
KSNClear-text Key Sequence Number retrieved from a PIN pad.
MerchantFNSNumberGovernment-issued number identifying a food-stamp-participating merchant location.
MerchantIdA unique Id used to identify the merchant within the FDMS and Datawire systems.
MerchantTerminalNumberUsed to identify a unique terminal within a merchant location.
OrderNumberA merchant assigned order number to uniquely reference the transaction.
ProxyAuthSchemeThis property is used to tell the control which type of authorization to perform when connecting to the proxy.
ProxyAutoDetectThis property tells the control whether or not to automatically detect and use proxy system settings, if available.
ProxyPasswordThis property contains a password if authentication is to be used for the proxy.
ProxyPortThis property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
ProxyServerIf a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
ProxySSLThis property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
ProxyUserThis property contains a username if authentication is to be used for the proxy.
ReferenceNumberA value assigned by the merchant to uniquely reference a transaction and any subsequent related transactions.
ResponseApprovalCodeThe Approval Code returned from the server after a successful authorization.
ResponseAuthorizedAmountThe amount actually charged to the card.
ResponseAuthorizingNetworkIdThis property indicates the network Id as returned by the host, if available.
ResponseAvailableBalanceCurrent card balance, including all pending transactions.
ResponseBeginningBalanceBeginning balance of the EBT account.
ResponseCashAvailableBalanceAvailable cash balance on the EBT card.
ResponseCashBeginningBalanceBeginning cash balance on the EBT card.
ResponseCashEndingBalanceEnding (Current/Ledger) cash balance on the EBT card.
ResponseCodeContains the 3 digit response code indicating success or reason of failure.
ResponseDatawireReturnCodeContains an error code providing more details about the DatawireStatus received.
ResponseDatawireStatusStatus of the communication with Datawire.
ResponseEarliestBenefitExpDateThe expiration date for the earliest expiring eWIC benefit/food item returned in yyyyMMdd format.
ResponseEndingBalanceCurrent balance of the EBT card, not including pending authorizations.
ResponseTextThis property may hold additional text which describes the reason for a decline, the property in error, etc.
ResponseTransactionDateThe transaction date returned from the server in yyyyMMddHHmmss format.
EWICBalanceInfoCountThe number of records in the EWICBalanceInfo arrays.
EWICBalanceInfoCategoryCodeContains a 2 digit code identifying this eWIC benefit/food item category.
EWICBalanceInfoQuantityContains the quantity of this eWIC benefit/food item balance.
EWICBalanceInfoSubCategoryCodeContains a 3 digit code identifying this eWIC benefit/food item sub category.
ResponseEWICDetailCountThe number of records in the ResponseEWICDetail arrays.
ResponseEWICDetailActionCodeIndicates the action taken by the eWIC Authorizer.
ResponseEWICDetailOriginalItemPriceContains the store item price of this eWIC benefit/food item Detail in the eWIC response.
ResponseEWICDetailOriginalQuantityContains the original quantity of this eWIC benefit/food item Detail in the eWIC response.
ResponseEWICDetailUpcItemPriceContains the approved item price of this eWIC benefit/food item Detail in the eWIC response.
ResponseEWICDetailUpcPluDataUPC or PLU Data determining this eWIC benefit/food item Detail in the eWIC response.
ResponseEWICDetailUpcPluIndicatorIndicator identifying the data type of this eWIC benefit/food item Detail in the eWIC response.
ResponseEWICDetailUpcQuantityContains the approved quantity of this eWIC benefit/food item Detail in the eWIC response.
ReversalTransactionTypeThe type of transaction to reverse.
ReversalTypeThe type of reversal.
SettlementModeIndicates whether the control uses Host Capture (0) or Terminal Capture (1) system.
SSLAcceptServerCertEncodedThis is the certificate (PEM/Base64 encoded).
SSLCertEncodedThis is the certificate (PEM/Base64 encoded).
SSLCertStoreThis is the name of the certificate store for the client certificate.
SSLCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLCertStoreTypeThis is the type of certificate store for this certificate.
SSLCertSubjectThis is the subject of the certificate used for client authentication.
SSLProviderThis specifies the SSL/TLS implementation to use.
SSLServerCertEncodedThis is the certificate (PEM/Base64 encoded).
STANThe merchant assigned System Trace Audit Number(STAN).
TimeoutA timeout for the control.
TPPIDThird Party Processor Identifier assigned by FDMS.
TransactionAmountThe transaction amount to be authorized.
TransactionNumberUniquely identifies the transaction.
URLLocation of the Datawire server to which transactions are sent.
VisaIdentifierAdditional merchant identification field used when authorizing Visa transactions.
VoucherAuthCodeUsed to clear (force) a Food Stamp or eWIC voucher that was previously voice-authorized.
VoucherNumberUsed to clear (force) a Food Stamp or eWIC voucher that was previously voice-authorized.

Method List


The following is the full list of the methods of the control with short descriptions. Click on the links for further details.

AuthOnlyPerforms an authorization request.
BalanceInquiryPerforms a Balance Inquiry Request using the specified Card data.
CaptureCaptures a previously authorized transaction.
ConfigSets or retrieves a configuration setting.
CreditSubmits a credit transaction.
GetDetailAggregateReturns a detail aggregate containing details of this transaction, which is used for Capture or Reverse transactions or settlement when using Terminal Capture mode.
InterruptInterrupts the current action.
ResetClears all properties to their default values.
ReverseReverses a transaction.
SalePerforms a sale transaction.
SetDetailAggregateSpecifies the detail aggregate before calling Capture or Reverse.
VoucherClearPerforms a voucher clear request.

Event List


The following is the full list of the events fired by the control with short descriptions. Click on the links for further details.

ConnectedThis event is fired immediately after a connection completes (or fails).
DataPacketInFired when receiving a data packet from the transaction server.
DataPacketOutFired when sending a data packet to the transaction server.
DisconnectedThis event is fired when a connection is closed.
ErrorFired when information is available about errors during data delivery.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
StatusShows the progress of the FDMS/Datawire connection.

Config Settings


The following is a list of config settings for the control with short descriptions. Click on the links for further details.

AllowPartialAuthsIndicates whether partial authorizations are supported.
AltMerchantAddressThe alternative merchant address.
AltMerchantCityThe alternative merchant city.
AltMerchantCountryCodeThe alternative merchant country code.
AltMerchantEmailThe alternative merchant email.
AltMerchantNameThe alternative merchant name.
AltMerchantStateThe alternative merchant state.
AltMerchantZipThe alternative merchant zip code.
AuthIndicatorIndicate the type of authorization requested.
AuthorizationIndicatorIndicates whether the authorization is a final authorization.
AuthorizationIndicatorIndicates whether the authorization is a final authorization.
AuthSourceIndicates the source of the decision for the Visa transaction.
CardInputModeThe method used to input the card details.
CardTypeSpecifies the type of card.
ClientTimeoutIndicates timeout client application will wait for response.
CurrencyCodeCurrency Code for this transaction.
DebugTraceWhether to enable debug logging.
DeviceTypeIndicatorDefines the form factor used at the POS for MasterCard PayPass transactions.
EMVOnlineKSNClear-text Key Sequence Number for EMV Online PIN transactions.
EMVOnlinePINDUKPT DES encrypted PIN block for EMV Online PIN transactions.
GetTransArmorTokenAllows you to retrieve a TransArmor Token for a specified card.
HostTotalsPasswordThe merchant password required in Host Totals requests.
HostTotalsTypeIndicates the Host Totals Report type requested.
IsDeferredAuthIndicates whether the transaction is a Deferred Authorization.
IsOnlineRefundIndicates whether a transaction is Online Refund Authorization.
LocalTransactionDateThe local date of the transaction.
MerchantCategoryCodeThe 4 digit Merchant Category Code (MCC).
POSConditionCodeThe POS condition code.
POSIdIdentifies the specific point of sale device.
SupportPINLessDebitIndicates whether the terminal can support swiped PINLess Debit transactions.
TerminalCardCapabilityThe terminal's card capture capability.
TerminalEntryCapabilityThe terminal's entry mode capability.
TerminalLocationIndicatorThe terminal's location.
TerminalPinCapabilityThe terminal's PIN capability.
TerminalTaxCapabilityThe terminal's ability to prompt for tax.
TotalAuthorizedAmountTotal Authorized Amount.
TransArmorKeySpecifies the TransArmor key used to perform the encryption.
TransArmorKeyIdSpecifies the Id of the TransArmor key used to perform the encryption.
TransArmorModeSpecifies the TransArmor Security Level to use.
TransArmorProviderIdThe Id of the Provider that issued a TransArmorToken.
TransArmorTokenA TransArmor Token used in place of a card number or magnetic stripe data.
TransArmorTokenTypeThe FDMS assigned token type.
TransArmorTokenTypeSpecifies the type of TransArmor token that will be used.
TransArmorUpdateIndicatorIndicates whether your TransArmorKey needs to be updated.
UpdateTransArmorKeyAllows you to update your TransArmor Key.
UTCTransactionDateThe UTC date of the transaction.
VoiceApprovalCodeThe voice approval.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the control.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the control will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the control.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the control.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
ConnectionTimeoutSets a separate timeout value for establishing a connection.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the control whether or not to automatically detect and use firewall system settings, if available.
FirewallAutoDetectTells the control whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the control binds.
LocalPortThe port in the local host where the control binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
CodePageThe system code page used for Unicode to Multibyte translations.
MaskSensitiveWhether sensitive data is masked in log messages.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

ApplicationId Property (FDMSRcBenefit Control)

Identifies the merchant application to the Datawire System.

Syntax

fdmsrcbenefitcontrol.ApplicationId[=string]

Default Value

"NSOFTDIRECTPXML"

Remarks

The Application Id identifies the application that has generated and is sending the transaction. This is a 15 character alphanumeric code that identifies each application and is provided by the Datawire Secure Transport Vendor Integration Team

This property may be validated along with the DatawireId as connection credentials.

The default value of this property is a value used for testing with Rapid Connect. You may be required to have a new ApplicationId assigned for the software you create with this control.

Data Type

String

BenefitType Property (FDMSRcBenefit Control)

Identifies the EBT transaction type.

Syntax

fdmsrcbenefitcontrol.BenefitType[=integer]

Possible Values

ebtCash(0), 
ebtSNAP(1), 
ebtEWIC(2)

Default Value

0

Remarks

Defines the EBT transaction type. Possible values are:

0 (ebtCash - default) EBT Cash Benefit
1 (ebtSNAP) EBT Food Benefit/Food Stamp
2 (ebtEWIC) Women Infants Children

Data Type

Integer

CardType Property (FDMSRcBenefit Control)

Type of credit card being used in this transaction.

Syntax

fdmsrcbenefitcontrol.CardType[=integer]

Possible Values

ctUnknown(0), 
ctVisa(1), 
ctMasterCard(2), 
ctAMEX(3), 
ctDiscover(4), 
ctDiners(5), 
ctJCB(6), 
ctVisaElectron(7), 
ctMaestro(8), 
ctLaser(10)

Default Value

0

Remarks

Type of credit card being used in this transaction. This property contains the customer's credit card type. This is automatically computed after the CardNumber is set, but it can also be changed manually. A list of valid card types is included below.

ctUnknown (0) Invalid or unknown prefix, card type not known.
ctVisa (1) Visa or Delta Card.
ctMasterCard (2) MasterCard.
ctAMEX (3) American Express Card.
ctDiscover (4) Discover Card.
ctDiners (5) Diners Club or Carte Blanche Card.
ctJCB (6) JCB Card.
ctVisaElectron (7) Visa Electron Card (runs as a Visa for most gateways)
ctMaestro (8) Maestro Card
ctLaser (10) Laser Card (Ireland)

This property is not available at design time.

Data Type

Integer

CardCVVData Property (FDMSRcBenefit Control)

Three digit security code on back of card (optional).

Syntax

fdmsrcbenefitcontrol.CardCVVData[=string]

Default Value

""

Remarks

Three digit security code on back of card (optional).

This alphanumeric property contains the three digit Visa "Card Verification Value" (CVV), MasterCard "Card Verification Code" (CVC), or four-digit American Express "Card Identification Number" (CID). This value appears as additional characters embossed on the card signature line following the credit card account number on the back of the credit card. This is an optional property which can be used to determine if the customer is actually in possession of the credit card.

Even if the CardCVVData is incorrect, the transaction may still be authorized. It is up to the merchant to examine the ResponseCVVResult property and decide whether to honor the transaction or not.

Note: When set to a non-empty value, CardCVVPresence will be automatically set to cvpProvided. If set to empty string (""), CardCVVPresence will be automatically set to cvpNotProvided.

This property is not available at design time.

Data Type

String

CardCVVPresence Property (FDMSRcBenefit Control)

Indicates the presence of the card verification value.

Syntax

fdmsrcbenefitcontrol.CardCVVPresence[=integer]

Possible Values

cvpNotProvided(0), 
cvpProvided(1), 
cvpIllegible(2), 
cvpNotOnCard(3)

Default Value

0

Remarks

Indicates the presence of the card verification value.

This property is used to indicate the presence of CardCVVData.

The control will automatically set this value to cvpProvided when a CardCVVData value is specified. You can explicitly specify the CardCVVPresence indicator by setting this property.

Available values are:

  • cvpNotProvided (0)
  • cvpProvided (1)
  • cvpIllegible (2)
  • cvpNotOnCard (3)

This property is not available at design time.

Data Type

Integer

CardEntryDataSource Property (FDMSRcBenefit Control)

This property contains a 1-character code identifying the source of the customer data.

Syntax

fdmsrcbenefitcontrol.CardEntryDataSource[=integer]

Possible Values

edsTrack1(0), 
edsTrack2(1), 
edsManualEntryTrack1Capable(2), 
edsManualEntryTrack2Capable(3), 
edsManualEntryNoCardReader(4), 
edsTrack1Contactless(5), 
edsTrack2Contactless(6), 
edsManualEntryContactlessCapable(7), 
edsIVR(8), 
edsKiosk(9)

Default Value

0

Remarks

This property contains a 1-character code identifying the source of the customer data. The table below shows all supported values for this property.

edsTrack1 (0) Full Magnetic stripe read and transmit, Track 1.
edsTrack2 (1) Full magnetic stripe read and transmit, Track 2.
edsManualEntryTrack1Capable (2) Manually keyed, Track 1 capable.
edsManualEntryTrack2Capable (3)Manually keyed, Track 2 capable.
edsManualEntryNoCardReader (4)Manually keyed, terminal has no card reading capability (use this for e-commerce and MOTO transactions).
edsTrack1Contactless (5)Full magnetic stripe read (Track 1 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only).
edsTrack2Contactless (6)Full magnetic stripe read (Track 2 only), Chip Card capable terminal (Visa, Mastercard, and JCB Transactions only).
edsManualEntryContactlessCapable (7)Manually keyed, Chip Card read capable terminal (Visa, MasterCard, and JCB transactions only).
edsIVR (8)Interactive Voice Response processing. This is applicable to Mail Order/Telephone Order (MOTO) transactions. (CardNumber, CardExpMonth, and CardExpYear are sent).
edsKiosk (9)Automated kiosk transaction. Track1 or Track2 data must be sent in CardMagneticStripe, the transaction cannot be manually entered.

Below is a list of processors and their support EntryDataSource values:

FDMS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable, edsIVR, edsKiosk

FDMSOmaha - All EntryDataSources applicable

FDMS Rapid Connect - All EntryDataSources applicable

Global - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsIVR, edsKiosk

PTech - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable

TSYS - edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsManualEntryNoCardReader, edsTrack2Contactless, edsManualEntryContactlessCapable

TSYSHC - Values are based on Industry type.

TSYSHCBenefit edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable
TSYSHCECommerce edsManualEntryNoCardReader
TSYSHCRetail edsTrack1, edsTrack2, edsManualEntryTrack1Capable, edsManualEntryTrack2Capable, edsTrack1Contactless, edsTrack2Contactless, edsManualEntryContactlessCapable

This property is not available at design time.

Data Type

Integer

CardExpMonth Property (FDMSRcBenefit Control)

Expiration month of the credit card specified in Number .

Syntax

fdmsrcbenefitcontrol.CardExpMonth[=integer]

Default Value

1

Remarks

Expiration month of the credit card specified in CardNumber.

This property contains the expiration date of the customer's credit card, and must be in the range 1 - 12.

This property is not available at design time.

Data Type

Integer

CardExpYear Property (FDMSRcBenefit Control)

Expiration year of the credit card specified in Number .

Syntax

fdmsrcbenefitcontrol.CardExpYear[=integer]

Default Value

2000

Remarks

Expiration year of the credit card specified in CardNumber.

This property contains the expiration date of the customer's credit card. This property must be in the range 0 - 99, or 2000 - 2099. Any date before the year 2000 or after 2099 cannot be specified.

This property is not available at design time.

Data Type

Integer

CardIsEncrypted Property (FDMSRcBenefit Control)

Determines whether data set to the Number or MagneticStripe properties is validated.

Syntax

fdmsrcbenefitcontrol.CardIsEncrypted[=boolean]

Default Value

False

Remarks

Determines whether data set to the CardNumber or CardMagneticStripe fields is validated.

By default, when the CardNumber or CardMagneticStripe fields are set, the value will be validated and normalized. For instance, "4444-33332222 1111" will be normalized as "4444333322221111" and CardMagneticStripe data will be parsed for the track specified by CardEntryDataSource. However, any other non-numerical data entered will cause an exception to be thrown. It may be useful in some gateways to send other data in the CardNumber or CardMagneticStripe fields, and this can be accomplished by setting IsEncrypted to true. However, please note that in doing so automatic calculation of the CardType may be affected, and the card number will not be verified.

This property is not available at design time.

Data Type

Boolean

CardMagneticStripe Property (FDMSRcBenefit Control)

Track data read off of the card's magnetic stripe.

Syntax

fdmsrcbenefitcontrol.CardMagneticStripe[=string]

Default Value

""

Remarks

Track data read off of the card's magnetic stripe.

If CardEntryDataSource is not one of the manually entered enumerations, then this property must be set with the track1 or track2 data from the magnetic stripe on the back of the customer's credit card. This includes everything after but not including the start sentinel (% or ;) and up to but not including the end sentinel (?) and LRC check character. You may only set this property with track 1 or track 2 data, and may not pass both. Use the CardEntryDataSource property to indicate which track you are sending.

The following example shows how to set the CardMagneticStripe and CardEntryDataSource properties if the data read off the card is "%B4788250000028291^TSYS^05121015432112345678?;4788250000028291=05121015432112345678?"

control.CardMagneticStripe = "B4788250000028291^TSYS^05121015432112345678" control.CardEntryDataSource = edsTrack1 or control.CardMagneticStripe = "4788250000028291=05121015432112345678" control.CardEntryDataSource = edsTrack2

Industry regulations do not allow merchants or processors to store track data in any form of persistent storage. Failure to abide by this regulation can result in significant fines and other penalties.

This property is not available at design time.

Data Type

String

CardNumber Property (FDMSRcBenefit Control)

Customer's credit card number for the transaction.

Syntax

fdmsrcbenefitcontrol.CardNumber[=string]

Default Value

""

Remarks

Customer's credit card number for the transaction.

If you're sending the transaction with CardMagneticStripe data, this property should be left empty.

This property is not available at design time.

Data Type

String

CashBack Property (FDMSRcBenefit Control)

Optional cash back amount to return to the customer.

Syntax

fdmsrcbenefitcontrol.CashBack[=string]

Default Value

""

Remarks

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The largest possible CashBack amount is "99999", yielding a maximum US dollar amount of $999.99. This field may not contain a negative number.

For cash back transactions, the TransactionAmount must contain the sum total of the purchase amount PLUS the CashBack amount. If the purchase is for $10 and the customer requests $20 cash back, CashBack should be set to "2000" and TransactionAmount must contain "3000".

Note that only US currency is supported for debit transactions.

Data Type

String

CustomerAddress Property (FDMSRcBenefit Control)

The customer's billing address.

Syntax

fdmsrcbenefitcontrol.CustomerAddress[=string]

Default Value

""

Remarks

This field is used as part of the Address Verification Service (AVS) and contains the customer's street address as it appears on their monthly statement. Only the street number, street name, and apartment number are required in this field. City and state are not included, and the zip code is set in the CustomerZip property.

The maximum length of this property is 30 characters.

If the customer's address is much greater than the length of this field, it is admissible to include only the street number in this field.

Data Type

String

CustomerZip Property (FDMSRcBenefit Control)

Customer's zip code (or postal code if outside of the USA).

Syntax

fdmsrcbenefitcontrol.CustomerZip[=string]

Default Value

""

Remarks

This field is used as part of the Address Verification Service (AVS). If the customer resides within the United States, this field should contain the five or nine digit zip code as it appears on the customer's monthly statement. If the customer's billing address is outside of the United States, this field should contain the customer's postal code.

The maximum length of this property is 9 characters.

Data Type

String

DatawireId Property (FDMSRcBenefit Control)

Identifies the merchant to the Datawire System.

Syntax

fdmsrcbenefitcontrol.DatawireId[=string]

Default Value

""

Remarks

The Datawire Id is a unique customer identifier generated by Datawire and returned to the client after successfully registering the merchant (using the FDMSRegister control). This Id (which is sent in all subsequent transactions) allows a transaction, to pass through the Datawire system and be correctly routed to the FDMS Payment processor.

The maximum length for this property is 32 characters.

Data Type

String

EBTCardSequenceNumber Property (FDMSRcBenefit Control)

The EBT Card Sequence Number.

Syntax

fdmsrcbenefitcontrol.EBTCardSequenceNumber[=string]

Default Value

""

Remarks

The card sequence number is used when track data is not provided. This field is up to three characters long and it is valid for Manual (Key Entered) Food Stamp transactions only.

Data Type

String

EMVData Property (FDMSRcBenefit Control)

The EMV Data returned from a Pin Pad after reading an EMV card.

Syntax

fdmsrcbenefitcontrol.EMVData[=string]

Default Value

""

Remarks

This configuration setting takes the entire TLV (tag-length-value) response received from a Pin Pad after reading an EMV card. The control will send this data in an authorization request.

Retail EMV Example Fdmsrcretail fdmsrcretail = new Fdmsrcretail(); fdmsrcretail.IndustryType = FdmsrcretailIndustryTypes.fritRetail; fdmsrcretail.TPPID = "AAA000"; fdmsrcretail.MerchantTerminalNumber = "00000001"; fdmsrcretail.MerchantId = "1234"; fdmsrcretail.GroupId = "20001"; fdmsrcretail.DatawireId = "00011122233344455566"; fdmsrcretail.VisaIdentifier = "01000000000000"; fdmsrcretail.ApplicationId = "RAPIDCONNECTVXN"; fdmsrcretail.URL = "https://stg.dw.us.fdcnet.biz/rc"; fdmsrcretail.STAN = "112"; fdmsrcretail.TransactionNumber = "120013"; fdmsrcretail.ReferenceNumber = "123456"; fdmsrcretail.OrderNumber = "12000503"; fdmsrcretail.Card.MagneticStripe = "4761739001010010=15122011143804489"; fdmsrcretail.Card.EntryDataSource = EntryDataSources.edsTrack2; fdmsrcretail.TransactionAmount = "250"; fdmsrcretail.EMVData = "9F4005F000F0A0019F...F7906123456789012"; fdmsrcretail.Sale();

Data Type

String

EncryptedPIN Property (FDMSRcBenefit Control)

DUKPT DES encrypted pin block, retrieved from a PIN pad.

Syntax

fdmsrcbenefitcontrol.EncryptedPIN[=string]

Default Value

""

Remarks

A 16-byte encrypted PIN and associated KSN are required for all debit Sale and Credit transactions. These values must be retrieved from a certified DUKPT DES pin pad device.

The EncryptedPIN and KSN are not required for ReverseLastTransaction transactions.

The following code snippet shows how to send a simple debit sale transaction with all required properties. FDMSDebit1.MerchantNumber = "YOURNUMBER" FDMSDebit1.MerchantTerminalNumber = "YOURTERMID" FDMSDebit1.DatawireId = "YOURDID" FDMSDebit1.URL = "https://staging1.datawire.net/sd"; // test server FDMSDebit1.TransactionNumber = 4; FDMSDebit1.TransactionAmount = "100"; FDMSDebit1.Card.EntryDataSource = edsTrack2; FDMSDebit1.Card.MagneticStripe = "9876543210012341234=12041200000001"; // (pin 1234) FDMSDebit1.EncryptedPIN = "0082943935BA205D"; FDMSDebit1.KSN = "8765432109003000012"; FDMSDebit1.ReceiptNumber = "123456"; FDMSDebit1.Sale(); If the transaction is successful, the ResponseApprovalCode will start with "AP", and the ResponseCaptureFlag will be true. Even though debit transactions are on-line transactions, it is still necessary to settle them with First Data. The following example shows how to send a simple settlement. The first thing to do is to set up the FDMSSettle control's properties with the same information used for the debit sale: FDMSSettle1.MerchantNumber = FDMSDebit1.MerchantNumber; FDMSSettle1.MerchantTerminalNumber = FDMSDebit1.MerchantTerminalNumber; FDMSSettle1.DatawireId = FDMSDebit1.DatawireId; FDMSSettle1.URL = FDMSDebit1.URL; FDMSSettle1.MerchantServiceNumber = "8001234567"; FDMSSettle1.BatchSequenceNumber = "101"; FDMSSettle1.IndustryType = itRetail; Then all that needs to be done is add the detail record from the debit sale to the settlement component and call the SendSettlement method. FDMSSettle1.DetailRecords.Add(new FDMSRecordType(FDMSDebit1.GetDetailAggregate()); FDMSSettle1.SendSettlement(); Note that in a live system you would store detail records in a database and send multiple records in a single batch at the end of the business day.

Data Type

String

EWICDetailCount Property (FDMSRcBenefit Control)

The number of records in the EWICDetail arrays.

Syntax

fdmsrcbenefitcontrol.EWICDetailCount[=integer]

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at EWICDetailCount - 1.

This property is not available at design time.

Data Type

Integer

EWICDetailUpcItemPrice Property (FDMSRcBenefit Control)

Contains the store item price of this eWIC benefit/food item Detail.

Syntax

fdmsrcbenefitcontrol.EWICDetailUpcItemPrice(EWICDetailIndex)[=string]

Default Value

""

Remarks

Contains the store item price of this eWIC benefit/food item Detail.

This property contains the store price per unit of a single eWIC benefit/food item in an eWIC request. This amount is to be presented with two implied decimals. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The maximum length of this property is 6 digits.

Note: This is a required field in EBT eWIC Voucher Clear transactions.

The EWICDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the EWICDetailCount property.

This property is not available at design time.

Data Type

String

EWICDetailUpcPluData Property (FDMSRcBenefit Control)

Contains the UPC or PLU Data identifying this eWIC benefit/food item Detail.

Syntax

fdmsrcbenefitcontrol.EWICDetailUpcPluData(EWICDetailIndex)[=string]

Default Value

""

Remarks

Contains the UPC or PLU Data identifying this eWIC benefit/food item Detail.

This property contains the UPC or PLU data identifying a single eWIC benefit/food item in an eWIC request. The maximum length of this property is 16 characters.

Note: This is a required field in EBT eWIC Voucher Clear transactions.

The EWICDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the EWICDetailCount property.

This property is not available at design time.

Data Type

String

EWICDetailUpcPluIndicator Property (FDMSRcBenefit Control)

Contains an indicator identifying the data type of this eWIC benefit/food item Detail.

Syntax

fdmsrcbenefitcontrol.EWICDetailUpcPluIndicator(EWICDetailIndex)[=integer]

Possible Values

freitUPC(0), 
freitPLU(1)

Default Value

0

Remarks

Contains an indicator identifying the data type of this eWIC benefit/food item Detail.

This property identifies the data type of a single eWIC benefit/food item in an eWIC request. Possible values are:

0 (freitUPC - default) UPC (Universal Product Code)
1 (freitPLU) PLU (Price Look Up)

Note: This is a required field in EBT eWIC Voucher Clear transactions.

The EWICDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the EWICDetailCount property.

This property is not available at design time.

Data Type

Integer

EWICDetailUpcQuantity Property (FDMSRcBenefit Control)

Contains the requested quantity of this eWIC benefit/food item Detail.

Syntax

fdmsrcbenefitcontrol.EWICDetailUpcQuantity(EWICDetailIndex)[=string]

Default Value

""

Remarks

Contains the requested quantity of this eWIC benefit/food item Detail.

This property contains the number or the total weight of a single eWIC benefit/food item in an eWIC request. This amount is to be presented with two implied decimal positions. For example, if the number of the requested eWIC benefit/food items is 3, this property must be represented as 300. The maximum length of this property is 5 digits.

Note: This is a required field in EBT eWIC Voucher Clear transactions.

The EWICDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the EWICDetailCount property.

This property is not available at design time.

Data Type

String

GroupId Property (FDMSRcBenefit Control)

The Id assigned by FDMS to identify the merchant or group of merchants.

Syntax

fdmsrcbenefitcontrol.GroupId[=string]

Default Value

""

Remarks

This property specifies the FDMS assigned group Id. This Id identifies the merchant or group of merchants. This property is required.

Data Type

String

IndustryType Property (FDMSRcBenefit Control)

The merchant's industry type.

Syntax

fdmsrcbenefitcontrol.IndustryType[=integer]

Possible Values

fritRetail(0), 
fritRestaurant(1), 
fritHotel(2)

Default Value

0

Remarks

The merchant's industry type. Possible values are:

0 (fritRetail - default) Retail
1 (fritRestaurant) Restaurant
2 (fritHotel) Hotel

Data Type

Integer

KSN Property (FDMSRcBenefit Control)

Clear-text Key Sequence Number retrieved from a PIN pad.

Syntax

fdmsrcbenefitcontrol.KSN[=string]

Default Value

""

Remarks

A 19 or 20-byte Key Sequence Number (KSN) and associated EncryptedPIN are required for all debit Sale and Credit transactions. These values must be retrieved from a certified DUKPT DES pin pad device. A 20-byte Key Sequence Number consists of a 1-byte pad character ('F'), a 9-byte Base Derivation Key Id (BDK ID), a 5-byte device Id, and a 5-byte transaction counter. If this property is set with a Key Sequence Number less than 20 bytes in length, the control will pad it on the left with 'F' characters.

The EncryptedPIN and KSN are not required for ReverseLastTransaction transactions.

The following code snippet shows how to send a simple debit sale transaction with all required properties. FDMSDebit1.MerchantNumber = "YOURNUMBER" FDMSDebit1.MerchantTerminalNumber = "YOURTERMID" FDMSDebit1.DatawireId = "YOURDID" FDMSDebit1.URL = "https://staging1.datawire.net/sd"; // test server FDMSDebit1.TransactionNumber = 4; FDMSDebit1.TransactionAmount = "100"; FDMSDebit1.Card.EntryDataSource = edsTrack2; FDMSDebit1.Card.MagneticStripe = "9876543210012341234=12041200000001"; // (pin 1234) FDMSDebit1.EncryptedPIN = "0082943935BA205D"; FDMSDebit1.KSN = "8765432109003000012"; FDMSDebit1.ReceiptNumber = "123456"; FDMSDebit1.Sale(); If the transaction is successful, the ResponseApprovalCode will start with "AP", and the ResponseCaptureFlag will be true. Even though debit transactions are on-line transactions, it is still necessary to settle them with First Data. The following example shows how to send a simple settlement. The first thing to do is to set up the FDMSSettle control's properties with the same information used for the debit sale: FDMSSettle1.MerchantNumber = FDMSDebit1.MerchantNumber; FDMSSettle1.MerchantTerminalNumber = FDMSDebit1.MerchantTerminalNumber; FDMSSettle1.DatawireId = FDMSDebit1.DatawireId; FDMSSettle1.URL = FDMSDebit1.URL; FDMSSettle1.MerchantServiceNumber = "8001234567"; FDMSSettle1.BatchSequenceNumber = "101"; FDMSSettle1.IndustryType = itRetail; Then all that needs to be done is add the detail record from the debit sale to the settlement component and call the SendSettlement method. FDMSSettle1.DetailRecords.Add(new FDMSRecordType(FDMSDebit1.GetDetailAggregate()); FDMSSettle1.SendSettlement(); Note that in a live system you would store detail records in a database and send multiple records in a single batch at the end of the business day.

Data Type

String

MerchantFNSNumber Property (FDMSRcBenefit Control)

Government-issued number identifying a food-stamp-participating merchant location.

Syntax

fdmsrcbenefitcontrol.MerchantFNSNumber[=string]

Default Value

""

Remarks

The United States Department of Agriculture, Food and Nutrition Service (FNS) must authorize merchants who wish to accept food stamps. A merchant applies directly to this agency. If the necessary requirements are met, the merchant is issued a certificate with a seven-digit number for each participating merchant location. This number, referred to as the FNS number, uniquely identifies the merchant location to the state EBT processor system. For eWIC processing, this field contains the state assigned retailer ID of the merchant. In the FDMS system, this number must be set up in the Cross-Reference File (XREF) under usage indicator I. The number is pulled from the XREF file and inserted into each transaction request before the request is passed on from the front end. This number is used for Food Stamp and eWIC transactions.

If this number is not supplied, FDMS will attempt to obtain it from a Merchant Control File in their system.

Data Type

String

MerchantId Property (FDMSRcBenefit Control)

A unique Id used to identify the merchant within the FDMS and Datawire systems.

Syntax

fdmsrcbenefitcontrol.MerchantId[=string]

Default Value

""

Remarks

This property holds the Merchant Id assigned by FDMS. The value is an alphanumeric value up to 16 characters in length.

This property is required.

Data Type

String

MerchantTerminalNumber Property (FDMSRcBenefit Control)

Used to identify a unique terminal within a merchant location.

Syntax

fdmsrcbenefitcontrol.MerchantTerminalNumber[=string]

Default Value

""

Remarks

This property contains a number assigned by FDMS to uniquely identify a terminal within a merchant location. The value is numeric and may be up to 8 digits in length.

This property is required.

Data Type

String

OrderNumber Property (FDMSRcBenefit Control)

A merchant assigned order number to uniquely reference the transaction.

Syntax

fdmsrcbenefitcontrol.OrderNumber[=string]

Default Value

""

Remarks

This property holds a merchant assigned order number that uniquely identifies the transaction. This must hold a numeric value up to 8 digits in length. This value cannot be all zeros.

This value is required for ECommerce and MOTO transactions. This value is optional for Retail transactions.

Data Type

String

ProxyAuthScheme Property (FDMSRcBenefit Control)

This property is used to tell the control which type of authorization to perform when connecting to the proxy.

Syntax

fdmsrcbenefitcontrol.ProxyAuthScheme[=integer]

Possible Values

authBasic(0), 
authDigest(1), 
authProprietary(2), 
authNone(3), 
authNtlm(4), 
authNegotiate(5)

Default Value

0

Remarks

This property is used to tell the control which type of authorization to perform when connecting to the proxy. This is used only when the ProxyUser and ProxyPassword properties are set.

ProxyAuthScheme should be set to authNone (3) when no authentication is expected.

By default, ProxyAuthScheme is authBasic (0), and if the ProxyUser and ProxyPassword properties are set, the component will attempt basic authentication.

If ProxyAuthScheme is set to authDigest (1), digest authentication will be attempted instead.

If ProxyAuthScheme is set to authProprietary (2), then the authorization token will not be generated by the control. Look at the configuration file for the control being used to find more information about manually setting this token.

If ProxyAuthScheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this property will clear the values of ProxyUser and ProxyPassword.

Data Type

Integer

ProxyAutoDetect Property (FDMSRcBenefit Control)

This property tells the control whether or not to automatically detect and use proxy system settings, if available.

Syntax

fdmsrcbenefitcontrol.ProxyAutoDetect[=boolean]

Default Value

False

Remarks

This property tells the control whether or not to automatically detect and use proxy system settings, if available. The default value is .

Data Type

Boolean

ProxyPassword Property (FDMSRcBenefit Control)

This property contains a password if authentication is to be used for the proxy.

Syntax

fdmsrcbenefitcontrol.ProxyPassword[=string]

Default Value

""

Remarks

This property contains a password if authentication is to be used for the proxy.

If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.

If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.

Data Type

String

ProxyPort Property (FDMSRcBenefit Control)

This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).

Syntax

fdmsrcbenefitcontrol.ProxyPort[=integer]

Default Value

80

Remarks

This property contains the Transmission Control Protocol (TCP) port for the proxy ProxyServer (default 80). See the description of the ProxyServer property for details.

Data Type

Integer

ProxyServer Property (FDMSRcBenefit Control)

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

Syntax

fdmsrcbenefitcontrol.ProxyServer[=string]

Default Value

""

Remarks

If a proxy ProxyServer is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the ProxyServer property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the ProxyServer property is set to the corresponding address. If the search is not successful, an error is returned.

Data Type

String

ProxySSL Property (FDMSRcBenefit Control)

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.

Syntax

fdmsrcbenefitcontrol.ProxySSL[=integer]

Possible Values

psAutomatic(0), 
psAlways(1), 
psNever(2), 
psTunnel(3)

Default Value

0

Remarks

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the control will use the psTunnel option. If the URL is an http URL, the control will use the psNever option.
psAlways (1)The connection is always SSL enabled.
psNever (2)The connection is not SSL enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

Data Type

Integer

ProxyUser Property (FDMSRcBenefit Control)

This property contains a username if authentication is to be used for the proxy.

Syntax

fdmsrcbenefitcontrol.ProxyUser[=string]

Default Value

""

Remarks

This property contains a username if authentication is to be used for the proxy.

If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.

If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.

Data Type

String

ReferenceNumber Property (FDMSRcBenefit Control)

A value assigned by the merchant to uniquely reference a transaction and any subsequent related transactions.

Syntax

fdmsrcbenefitcontrol.ReferenceNumber[=string]

Default Value

""

Remarks

This value is a merchant assigned 12 digit value. The value must be unique within a day for a given merchant id and terminal id. When performing a Capture or Reverse transaction this must be the same as the original transaction.

Data Type

String

ResponseApprovalCode Property (FDMSRcBenefit Control)

The Approval Code returned from the server after a successful authorization.

Syntax

fdmsrcbenefitcontrol.ResponseApprovalCode

Default Value

""

Remarks

The Approval Code returned from the server after a successful authorization.

This value holds the approval code returned by the authorizer. This value will contain up to 8 characters. Only alphanumeric characters and spaces will be returned.

This property is read-only and not available at design time.

Data Type

String

ResponseAuthorizedAmount Property (FDMSRcBenefit Control)

The amount actually charged to the card.

Syntax

fdmsrcbenefitcontrol.ResponseAuthorizedAmount

Default Value

""

Remarks

The amount actually charged to the card.

This value holds the amount charged to the card. In the case of a partial authorization this will be different than the amount specified in TransactionAmount.

You must collect the remainder via another form of payment, or Reverse the authorization if the customer does not have an additional form of payment.

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.

The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.

This property is read-only.

Data Type

String

ResponseAuthorizingNetworkId Property (FDMSRcBenefit Control)

This property indicates the network Id as returned by the host, if available.

Syntax

fdmsrcbenefitcontrol.ResponseAuthorizingNetworkId

Default Value

""

Remarks

This field indicates the network Id as returned by the host, if available.

This value is up to 3 alphanumeric characters.

This property is read-only.

Data Type

String

ResponseAvailableBalance Property (FDMSRcBenefit Control)

Current card balance, including all pending transactions.

Syntax

fdmsrcbenefitcontrol.ResponseAvailableBalance

Default Value

""

Remarks

Current card balance, including all pending transactions. The available balance is the current Ledger balance, less any holds (due to authorizations), plus any credits or deposits and minus withdrawals, that are all part of the day's activity. If present, this value must be printed on the customer's receipt. If not present, the ResponseEndingBalance should be printed instead (print "Balance Unavailable" if neither are returned in the response).

This property is read-only.

Data Type

String

ResponseBeginningBalance Property (FDMSRcBenefit Control)

Beginning balance of the EBT account.

Syntax

fdmsrcbenefitcontrol.ResponseBeginningBalance

Default Value

""

Remarks

Beginning balance of the EBT account. This field indicates what the beginning balance that was deposited into the EBT account for the current period.

This property is read-only.

Data Type

String

ResponseCashAvailableBalance Property (FDMSRcBenefit Control)

Available cash balance on the EBT card.

Syntax

fdmsrcbenefitcontrol.ResponseCashAvailableBalance

Default Value

""

Remarks

Available cash balance on the EBT card. EBT cards may be linked to both a Food Stamp account and a Cash Benefit account. In this case, the ResponseAvailableBalance indicates the available balance in the Food Stamp account, and this field indicates the available balance in the Cash Benefit account.

This property is read-only.

Data Type

String

ResponseCashBeginningBalance Property (FDMSRcBenefit Control)

Beginning cash balance on the EBT card.

Syntax

fdmsrcbenefitcontrol.ResponseCashBeginningBalance

Default Value

""

Remarks

Beginning cash balance on the EBT card. EBT cards may be linked to both a Food Stamp account and a Cash Benefit account. In this case, the ResponseBeginningBalance indicates the beginning balance in the Food Stamp account, and this field indicates the beginning balance in the Cash Benefit account.

This property is read-only.

Data Type

String

ResponseCashEndingBalance Property (FDMSRcBenefit Control)

Ending (Current/Ledger) cash balance on the EBT card.

Syntax

fdmsrcbenefitcontrol.ResponseCashEndingBalance

Default Value

""

Remarks

Ending (Current/Ledger) cash balance on the EBT card. EBT cards may be linked to both a Food Stamp account and a Cash Benefit account. In this case, the ResponseEndingBalance indicates the current balance in the Food Stamp account, and this field indicates the available balance in the Cash Benefit account.

This property is read-only.

Data Type

String

ResponseCode Property (FDMSRcBenefit Control)

Contains the 3 digit response code indicating success or reason of failure.

Syntax

fdmsrcbenefitcontrol.ResponseCode

Default Value

""

Remarks

Contains the 3 digit response code indicating success or reason of failure.

This property contains a 3 digit code indicating success or the reason of failure. A value of 000 indicates approval. For all other values please see the Response Codes section.

This property is read-only.

Data Type

String

ResponseDatawireReturnCode Property (FDMSRcBenefit Control)

Contains an error code providing more details about the DatawireStatus received.

Syntax

fdmsrcbenefitcontrol.ResponseDatawireReturnCode

Default Value

""

Remarks

Contains an error code providing more details about the ResponseDatawireStatus received.

When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.

The ResponseApprovalCode contains the actual transaction result that was returned by FDMS.

The following is a list of possible Datawire return codes:

000 Transaction successfully passed through the Datawire system to the FDMS Payment Processor and back.
200 Host Busy - The processor's Host is busy and is currently unable to service this request.
201 Host Unavailable - The processor's Host is currently unavailable. For example, the server is sending NAK.
202 Host Connect Error - Could not connect to the processor's Host.
203 Host Drop - The processor's Host disconnected during the transaction before sending a response.
204 Host Comm Error - An error was encountered while communicating with the processor's Host.
205 No Response - No response from the processor's Host
206 Host Send Error - An error has encountered when sending the request to the processor, and the Host daemon cannot continue sending packets to the processor because the connection is broken.
405 Vxn Timeout - The request could not be processed.
505 Network Error - The request could not be processed.

This property is read-only.

Data Type

String

ResponseDatawireStatus Property (FDMSRcBenefit Control)

Status of the communication with Datawire.

Syntax

fdmsrcbenefitcontrol.ResponseDatawireStatus

Default Value

""

Remarks

Status of the communication with Datawire.

When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the ResponseDatawireStatus will be "OK" and the ResponseDatawireReturnCode will be "000". These two properties have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This property only indicates that the request reached FDMS, and that FDMS responded with some data.

The ResponseApprovalCode contains the actual FDMS Transaction Result that was returned.

The following is a list of possible Datawire response status codes:

OKTransaction has successfully passed through the Datawire system to the FDMS Payment processor and back.
AuthenticationErrorDatawireId in the request was not successfully authenticated.
UnknownServiceIDServiceId part of the URL (in the Service Discovery or Ping request) is unknown.
WrongSessionContextThe SessionContext element of the Session Transaction request does not match the SessionContext returned by the InitiateSession response (applicable to the FDMSSettle control).
AccessDeniedGenerally, occurs when you try to register a merchant after a merchant has already been activated to use the Datawire VXN.
FailedYour Merchant Registration has failed. Contact tech.support@datawire.net for more information.
RetryRegistration is not yet complete. You must send the Registration request again.
TimeoutNo response from the Service Provider was received during the expected period of time.
XMLErrorRequest contains some XML error, such as malformed XML, violation of this DTD, etc.
OtherErrorUnspecified error occurred.
008Network Error

This property is read-only.

Data Type

String

ResponseEarliestBenefitExpDate Property (FDMSRcBenefit Control)

The expiration date for the earliest expiring eWIC benefit/food item returned in yyyyMMdd format.

Syntax

fdmsrcbenefitcontrol.ResponseEarliestBenefitExpDate

Default Value

""

Remarks

The expiration date for the earliest expiring eWIC benefit/food item returned in yyyyMMdd format.

This 8 digit field contains the expiration date for the earliest expiring eWIC benefit/food item among all the eWIC prescription benefit/food items returned by the Rapid Connect system.

This property is read-only.

Data Type

String

ResponseEndingBalance Property (FDMSRcBenefit Control)

Current balance of the EBT card, not including pending authorizations.

Syntax

fdmsrcbenefitcontrol.ResponseEndingBalance

Default Value

""

Remarks

Current balance of the EBT card, not including pending authorizations. This is also known as the Ledger, or Current balance, and it indicates the actual balance of the EBT card at this moment; it does not reflect any holds or pending transactions that have not yet been settled. If no ResponseAvailableBalance was returned in the response, this ResponseEndingBalance should be printed on the receipt instead (if neither are returned, print "Balance Unavailable").

This property is read-only.

Data Type

String

ResponseText Property (FDMSRcBenefit Control)

This property may hold additional text which describes the reason for a decline, the property in error, etc.

Syntax

fdmsrcbenefitcontrol.ResponseText

Default Value

""

Remarks

This property may hold additional text which describes the reason for a decline, the field in error, etc. Applications should not be coded to the text in this property as it is subject to change.

This property is read-only.

Data Type

String

ResponseTransactionDate Property (FDMSRcBenefit Control)

The transaction date returned from the server in yyyyMMddHHmmss format.

Syntax

fdmsrcbenefitcontrol.ResponseTransactionDate

Default Value

""

Remarks

The transaction date returned from the server in yyyyMMddHHmmss format.

This 15 digit field contains the transaction date and time returned by the Rapid Connect system. This is not a local datetime, it is the time according the Rapid Connect system.

This property is read-only.

Data Type

String

EWICBalanceInfoCount Property (FDMSRcBenefit Control)

The number of records in the EWICBalanceInfo arrays.

Syntax

fdmsrcbenefitcontrol.EWICBalanceInfoCount

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at EWICBalanceInfoCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

EWICBalanceInfoCategoryCode Property (FDMSRcBenefit Control)

Contains a 2 digit code identifying this eWIC benefit/food item category.

Syntax

fdmsrcbenefitcontrol.EWICBalanceInfoCategoryCode(EWICBalanceInfoIndex)

Default Value

""

Remarks

Contains a 2 digit code identifying this eWIC benefit/food item category.

This property contains the Prescription Balance Category Code of a single eWIC benefit/food item returned in an eWIC response.

The EWICBalanceInfoIndex parameter specifies the index of the item in the array. The size of the array is controlled by the EWICBalanceInfoCount property.

This property is read-only and not available at design time.

Data Type

String

EWICBalanceInfoQuantity Property (FDMSRcBenefit Control)

Contains the quantity of this eWIC benefit/food item balance.

Syntax

fdmsrcbenefitcontrol.EWICBalanceInfoQuantity(EWICBalanceInfoIndex)

Default Value

""

Remarks

Contains the quantity of this eWIC benefit/food item balance.

This property contains the quantity in the Prescription Balance information of a single eWIC benefit/food item returned in an eWIC response. The balance quantity includes 2 implied decimals, for example: "00100" is 1 unit.

The EWICBalanceInfoIndex parameter specifies the index of the item in the array. The size of the array is controlled by the EWICBalanceInfoCount property.

This property is read-only and not available at design time.

Data Type

String

EWICBalanceInfoSubCategoryCode Property (FDMSRcBenefit Control)

Contains a 3 digit code identifying this eWIC benefit/food item sub category.

Syntax

fdmsrcbenefitcontrol.EWICBalanceInfoSubCategoryCode(EWICBalanceInfoIndex)

Default Value

""

Remarks

Contains a 3 digit code identifying this eWIC benefit/food item sub category.

This property contains the Prescription Balance Sub Category Code of a single eWIC benefit/food item returned in an eWIC response.

The EWICBalanceInfoIndex parameter specifies the index of the item in the array. The size of the array is controlled by the EWICBalanceInfoCount property.

This property is read-only and not available at design time.

Data Type

String

ResponseEWICDetailCount Property (FDMSRcBenefit Control)

The number of records in the ResponseEWICDetail arrays.

Syntax

fdmsrcbenefitcontrol.ResponseEWICDetailCount

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at ResponseEWICDetailCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

ResponseEWICDetailActionCode Property (FDMSRcBenefit Control)

Indicates the action taken by the eWIC Authorizer.

Syntax

fdmsrcbenefitcontrol.ResponseEWICDetailActionCode(ResponseEWICDetailIndex)

Default Value

""

Remarks

Indicates the action taken by the eWIC Authorizer.

This property contains a two-digit code that indicates the action taken by the eWIC Authorizer. The values returned in an eWIC response are listed below:

Action CodeDescription
00Approved
01Category not prescribed
02Subcategory not prescribed
03Insufficient units
04UPC/PLU not prescribed
26Approved for lower price due to maximum price exceeded
27Approved for lower price due to maximum price exceeded and approved for less units than originally requested due to insufficient units.

The ResponseEWICDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ResponseEWICDetailCount property.

This property is read-only and not available at design time.

Data Type

String

ResponseEWICDetailOriginalItemPrice Property (FDMSRcBenefit Control)

Contains the store item price of this eWIC benefit/food item Detail in the eWIC response.

Syntax

fdmsrcbenefitcontrol.ResponseEWICDetailOriginalItemPrice(ResponseEWICDetailIndex)

Default Value

""

Remarks

Contains the store item price of this eWIC benefit/food item Detail in the eWIC response.

This property contains the store price per unit of a single eWIC benefit/food item in an eWIC response. It represents the original requested price per unit as sent in the eWIC request. The amount returned in this property contains two implied decimals. For example, "001000" indicates US $10.00.

The ResponseEWICDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ResponseEWICDetailCount property.

This property is read-only and not available at design time.

Data Type

String

ResponseEWICDetailOriginalQuantity Property (FDMSRcBenefit Control)

Contains the original quantity of this eWIC benefit/food item Detail in the eWIC response.

Syntax

fdmsrcbenefitcontrol.ResponseEWICDetailOriginalQuantity(ResponseEWICDetailIndex)

Default Value

""

Remarks

Contains the original quantity of this eWIC benefit/food item Detail in the eWIC response.

This property contains the original number or the total weight of a single eWIC benefit/food item in an eWIC response. It represents the original requested quantity as sent in the eWIC request. The amount returned in this property contains two implied decimals. For example, "00100" indicates 1 unit.

The ResponseEWICDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ResponseEWICDetailCount property.

This property is read-only and not available at design time.

Data Type

String

ResponseEWICDetailUpcItemPrice Property (FDMSRcBenefit Control)

Contains the approved item price of this eWIC benefit/food item Detail in the eWIC response.

Syntax

fdmsrcbenefitcontrol.ResponseEWICDetailUpcItemPrice(ResponseEWICDetailIndex)

Default Value

""

Remarks

Contains the approved item price of this eWIC benefit/food item Detail in the eWIC response.

This property may be returned in the eWIC response if the EBT eWIC transaction is declined. When the ResponseEWICDetailActionCode in the eWIC respose is "00", "26" or "27" this property contains the maximum price per unit approved for a single eWIC benefit/food item which is less than the ResponseEWICDetailOriginalItemPrice sent in the eWIC request. The amount returned in this property contains two implied decimals. For example, "001000" indicates US $10.00.

The ResponseEWICDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ResponseEWICDetailCount property.

This property is read-only and not available at design time.

Data Type

String

ResponseEWICDetailUpcPluData Property (FDMSRcBenefit Control)

UPC or PLU Data determining this eWIC benefit/food item Detail in the eWIC response.

Syntax

fdmsrcbenefitcontrol.ResponseEWICDetailUpcPluData(ResponseEWICDetailIndex)

Default Value

""

Remarks

UPC or PLU Data determining this eWIC benefit/food item Detail in the eWIC response.

This property may be returned in the eWIC response if the EBT eWIC transaction is declined. It contains the UPC or PLU data identifying a single eWIC benefit/food item in the eWIC response.

The ResponseEWICDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ResponseEWICDetailCount property.

This property is read-only and not available at design time.

Data Type

String

ResponseEWICDetailUpcPluIndicator Property (FDMSRcBenefit Control)

Indicator identifying the data type of this eWIC benefit/food item Detail in the eWIC response.

Syntax

fdmsrcbenefitcontrol.ResponseEWICDetailUpcPluIndicator(ResponseEWICDetailIndex)

Default Value

""

Remarks

Indicator identifying the data type of this eWIC benefit/food item Detail in the eWIC response.

This property may be returned in the eWIC response if the EBT eWIC transaction is declined. It contains a one digit indicator identifying the data type of a single eWIC benefit/food item. Possible values are:

0 (freitUPC - default) UPC (Universal Product Code)
1 (freitPLU) PLU (Price Look Up)

The ResponseEWICDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ResponseEWICDetailCount property.

This property is read-only and not available at design time.

Data Type

String

ResponseEWICDetailUpcQuantity Property (FDMSRcBenefit Control)

Contains the approved quantity of this eWIC benefit/food item Detail in the eWIC response.

Syntax

fdmsrcbenefitcontrol.ResponseEWICDetailUpcQuantity(ResponseEWICDetailIndex)

Default Value

""

Remarks

Contains the approved quantity of this eWIC benefit/food item Detail in the eWIC response.

This property may be returned in the eWIC response if the EBT eWIC transaction is declined. When the ResponseEWICDetailActionCode in the eWIC respose is "26" or "27" this property contains the maximum quantity approved (represented as the number of items or total weight) for a single eWIC benefit/food item which is less than the ResponseEWICDetailOriginalQuantity sent in the eWIC request. The amount returned in this property contains two implied decimals. For example, "00100" indicates 1 unit.

The ResponseEWICDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ResponseEWICDetailCount property.

This property is read-only and not available at design time.

Data Type

String

ReversalTransactionType Property (FDMSRcBenefit Control)

The type of transaction to reverse.

Syntax

fdmsrcbenefitcontrol.ReversalTransactionType[=integer]

Possible Values

frttAuthOnly(0), 
frttCapture(1), 
frttCredit(2), 
frttSale(3)

Default Value

0

Remarks

This property specifies the type of transaction to reverse. Possible values are:

0 (frttAuthOnly - default AuthOnly.
1 (frttCapture) Capture. Only applicable when ReversalType is set to frtTimeoutReversal.
2 (frttCredit) Credit. Only applicable when ReversalType is set to frtTimeoutReversal.
3 (frttSale) Sale.

Data Type

Integer

ReversalType Property (FDMSRcBenefit Control)

The type of reversal.

Syntax

fdmsrcbenefitcontrol.ReversalType[=integer]

Possible Values

frtFullReversal(0), 
frtTimeoutReversal(1), 
frtVoidForSuspectedFraud(2)

Default Value

0

Remarks

This property specifies the type of reversal. Possible values are:

0 (frtFullReversal - default) Full Reversal
1 (frtTimeoutReversal) Timeout Reversal
1 (frtVoidForSuspectedFraud) Full Reversal with suspected fraud as the reason. This is only applicable to MasterCard.

Timeout Reversals are applicable to the following transaction types:

Full Reversals are applicable to the following transaction types:

Data Type

Integer

SettlementMode Property (FDMSRcBenefit Control)

Indicates whether the control uses Host Capture (0) or Terminal Capture (1) system.

Syntax

fdmsrcbenefitcontrol.SettlementMode[=integer]

Possible Values

smiHostCapture(0), 
smiTerminalCapture(1)

Default Value

0

Remarks

Possible values are:

0 (smiHostCapture - default) Host Capture
1 (smiTerminalCapture) Terminal Capture

Host-Capture means that you authorize your transactions using the AuthOnly or Sale methods, and you process refunds and capture outstanding authorizations with the Credit and Capture methods. FDMS Rapid Connect handles all batch management.

Terminal-Capture means that you handle all of the batch management yourself. This is necessary for the Hotel/Lodging IndustryType, because the final settlement amount may be more than (or less than) the amount that was originally authorized. For instance, a customer may stay longer or shorter than originally planned, or incur additional charges (mini bar, telephone call, room service, etc), and the settlement amount must be adjusted accordingly.

All industry types may be processed in Terminal Capture mode. However, Hotel/Lodging transactions MUST be authorized and settled in Terminal Capture mode. Attempting to authorize a Hotel/Lodging transaction with the Host Capture mode will cause the control fails with an error.

Data Type

Integer

SSLAcceptServerCertEncoded Property (FDMSRcBenefit Control)

This is the certificate (PEM/Base64 encoded).

Syntax

fdmsrcbenefitcontrol.SSLAcceptServerCertEncoded[=string]

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.

When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLAcceptServerCertEncodedB.

This property is not available at design time.

Data Type

Binary String

SSLCertEncoded Property (FDMSRcBenefit Control)

This is the certificate (PEM/Base64 encoded).

Syntax

fdmsrcbenefitcontrol.SSLCertEncoded[=string]

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.

When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLCertEncodedB.

This property is not available at design time.

Data Type

Binary String

SSLCertStore Property (FDMSRcBenefit Control)

This is the name of the certificate store for the client certificate.

Syntax

fdmsrcbenefitcontrol.SSLCertStore[=string]

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password protected, specify the password in SSLCertStorePassword.

SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLCertStoreB.

Data Type

Binary String

SSLCertStorePassword Property (FDMSRcBenefit Control)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

fdmsrcbenefitcontrol.SSLCertStorePassword[=string]

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Data Type

String

SSLCertStoreType Property (FDMSRcBenefit Control)

This is the type of certificate store for this certificate.

Syntax

fdmsrcbenefitcontrol.SSLCertStoreType[=integer]

Possible Values

cstUser(0), 
cstMachine(1), 
cstPFXFile(2), 
cstPFXBlob(3), 
cstJKSFile(4), 
cstJKSBlob(5), 
cstPEMKeyFile(6), 
cstPEMKeyBlob(7), 
cstPublicKeyFile(8), 
cstPublicKeyBlob(9), 
cstSSHPublicKeyBlob(10), 
cstP7BFile(11), 
cstP7BBlob(12), 
cstSSHPublicKeyFile(13), 
cstPPKFile(14), 
cstPPKBlob(15), 
cstXMLFile(16), 
cstXMLBlob(17), 
cstJWKFile(18), 
cstJWKBlob(19), 
cstSecurityKey(20), 
cstBCFKSFile(21), 
cstBCFKSBlob(22), 
cstPKCS11(23), 
cstAuto(99)

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The control supports both public and private keys in a variety of formats. When the cstAuto value is used, the control will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr control. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

SSLCertSubject Property (FDMSRcBenefit Control)

This is the subject of the certificate used for client authentication.

Syntax

fdmsrcbenefitcontrol.SSLCertSubject[=string]

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Data Type

String

SSLProvider Property (FDMSRcBenefit Control)

This specifies the SSL/TLS implementation to use.

Syntax

fdmsrcbenefitcontrol.SSLProvider[=integer]

Possible Values

sslpAutomatic(0), 
sslpPlatform(1), 
sslpInternal(2)

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the control will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The control will select a provider depending on the current platform.

When Automatic is selected the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used.

Data Type

Integer

SSLServerCertEncoded Property (FDMSRcBenefit Control)

This is the certificate (PEM/Base64 encoded).

Syntax

fdmsrcbenefitcontrol.SSLServerCertEncoded

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.

When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLServerCertEncodedB.

This property is read-only and not available at design time.

Data Type

Binary String

STAN Property (FDMSRcBenefit Control)

The merchant assigned System Trace Audit Number(STAN).

Syntax

fdmsrcbenefitcontrol.STAN[=string]

Default Value

""

Remarks

This property represents a six digit number assigned by the merchant to uniquely reference the transaction. This number must be unique within a day per Merchant ID and Terminal ID.

Valid values are from 000001 to 999999 inclusive.

Data Type

String

Timeout Property (FDMSRcBenefit Control)

A timeout for the control.

Syntax

fdmsrcbenefitcontrol.Timeout[=integer]

Default Value

30

Remarks

If Timeout is set to a positive value, and an operation cannot be completed immediately, the control will return with an error after Timeout seconds.

The default value for Timeout is 30 (seconds).

Data Type

Integer

TPPID Property (FDMSRcBenefit Control)

Third Party Processor Identifier assigned by FDMS.

Syntax

fdmsrcbenefitcontrol.TPPID[=string]

Default Value

""

Remarks

The Third Party Processor Identifier (TPPID. Also sometimes referred to as a "Vendor Id") is assigned by FDMS to each third party who is processing transactions. Each merchant will receive a TPPID from FDMS.

The default value is "" (empty string). This should be set to the FDMS assigned TPPID.

A VisaIdentifier is also required for Visa transactions.

Data Type

String

TransactionAmount Property (FDMSRcBenefit Control)

The transaction amount to be authorized.

Syntax

fdmsrcbenefitcontrol.TransactionAmount[=string]

Default Value

""

Remarks

This property contains the transaction amount to be authorized.

This amount is to be presented with an implied decimal point. For example, US $10.00 must be represented as 1000, and $0.10 is likewise simply 10. The positioning of any implied decimal point is dictated by the CurrencyCode. The default currency code is for the United States.

The maximum number of digits allowed is 12 regardless of the position of the implied decimal point. This field may not contain a negative number.

Data Type

String

TransactionNumber Property (FDMSRcBenefit Control)

Uniquely identifies the transaction.

Syntax

fdmsrcbenefitcontrol.TransactionNumber[=string]

Default Value

""

Remarks

The TransactionNumber (otherwise known as the Client Reference Number, or ClientRef) uniquely identifies the packet sent by the application to the Datawire system. This parameter stores some unique token of information, and is used to match the response to the initial request sent. For example, the client application could use a static counter that is increased with the each executed request.

For all controls except FDMSGiftCard the maximum length of this property is 14 alphanumeric characters.

The FDMS recommended format is "tttttttVnnnnrrr" where ttttttt is a 7 digit transaction id, V is a constant, and nnn is a 3 digit version number and rrr is a 3 digit revision number. The 6 digit version number is typically static but unique for an application (Example: Version 2.5 = tttttttV002500).

For the Rapid Connect platform, the 6 character version number should be your Project/TPPID value. The entire TransactionNumber must be unique within a 24 hour time period.

The FDMSGiftCard also passes this value to the FDMS Closed Loop Gift Card system as a transaction id, and therefore the following restrictions are enforced: The maximum length is 7 characters. If the first character is an 'X', the remaining characters must be in the range '0' through 'F', indicating a hexadecimal number. Otherwise the FDMS Closed Loop Gift Card system only allows digits in this property.

Data Type

String

URL Property (FDMSRcBenefit Control)

Location of the Datawire server to which transactions are sent.

Syntax

fdmsrcbenefitcontrol.URL[=string]

Default Value

"https://staging1.datawire.net/sd/"

Remarks

This is the URL to which all authorization and settlement transactions are sent. This URL is acquired by using the FDMSRegister control. Once you Register and Activate the merchant using the FDMSRegister control, you may then do a Service Discovery. After sending a Service Discovery transaction, the Datawire system will return a list of transaction URLs. The URL from this list with the shortest round-trip transit time from a ping is the URL you should use here.

Note: By default, this property is populated with the Datawire Staging (test) server, and is not the correct URL to use in a production environment. In a production environment, this URL is supplied by the FDMSRegister control.

Data Type

String

VisaIdentifier Property (FDMSRcBenefit Control)

Additional merchant identification field used when authorizing Visa transactions.

Syntax

fdmsrcbenefitcontrol.VisaIdentifier[=string]

Default Value

""

Remarks

First Data will require the Agent Identification Service from all Third Party Servicers (TPS) or Merchant Servicers (MS). Each Visa Agent Identifier in the chain is composed of the following pieces:

First (up to) 10 bytes: The Business Identifier (BID) provided by Visa to Third Party Servicers (TPS). This value may be less than 10 bytes.
Final 12 bytes: Text representation of the hexadecimal Visa secret Agent Unique Account Result (AUAR). {0x01, 0x02, 0x03, 0x04, 0x05, 0xFF} will be represented as "0102030405FF".
If there are multiple visa identifiers they may be added by setting VisaIdentifier with a comma-delimited list. There can be a maximum of three entries in this list.

A VisaIdentifier (Agent Identification Service - AUAR) is required for Visa transactions. A VisaIdentifier value is assigned by Visa as part of their Trusted Agent Program (TAP). Therefore it is suggested that you contact your FDMS certification analyst as they should be able to provide you with further information and put you in contact with the required party at Visa. Unfortunately more specific information on this matter cannot be provided as we do not handle live customer data and thus are not required to register in this particular program. However below is some additional information in regards to the requirements of a Visa Identifier.

Any merchant that transmits, processes, or stores cardholder data on server(s) that you own, manage, or operate on behalf of your clients (who are other merchant account holders) must meet the PCI Data Security Standard and follow additional steps to register as a service provider. Applicable services commonly include webhosting, software as a service, or collecting payment on behalf of a client. Any company providing these services must register with Visa's Third Party Agent (TAP) program.

You can register for the Visa Third Party Agent Program at http://usa.visa.com/merchants/risk_management/third-party-registration.html

If you find that you are not required to register with this program you can send all spaces for the BID and all zeros for the AUAR for instance: " 000000000000"

Data Type

String

VoucherAuthCode Property (FDMSRcBenefit Control)

Used to clear (force) a Food Stamp or eWIC voucher that was previously voice-authorized.

Syntax

fdmsrcbenefitcontrol.VoucherAuthCode[=string]

Default Value

""

Remarks

If any aspect of the EBT system is down, the merchant may call the issuing state's processor for a voice authorization for Food Stamp and eWIC transactions only. The merchant must complete a Manual Voucher form (provided by FDMS or state EBT contractor) to obtain the authorization number, the voucher number and the client's signature. This puts a hold on the funds in the client's account for the amount of the voice authorization. To receive payment for the transaction, the merchant must process a VoucherClear transaction within ten days of the voice authorization.

Note that only Food Stamp and eWIC transactions may be voice-authorized; attempting to send a VoucherAuthCode or VoucherNumber in a VoucherClear transaction when the BenefitType is set to 0 - ebtCash will result in an error.

VoucherAuthCode is required in VoucherClear transactions.

Data Type

String

VoucherNumber Property (FDMSRcBenefit Control)

Used to clear (force) a Food Stamp or eWIC voucher that was previously voice-authorized.

Syntax

fdmsrcbenefitcontrol.VoucherNumber[=string]

Default Value

""

Remarks

If any aspect of the EBT system is down, the merchant may call the issuing state's processor for a voice authorization for Food Stamp and eWIC transactions only. The merchant must complete a Manual Voucher form (provided by FDMS or state EBT contractor) to obtain the authorization number, the voucher number and the client's signature. This puts a hold on the funds in the client's account for the amount of the voice authorization. To receive payment for the transaction, the merchant must process a VoucherClear transaction within ten days of the voice authorization.

Note that only Food Stamp and eWIC transactions may be voice-authorized, attempting to send a VoucherAuthCode or VoucherNumber in a VoucherClear transaction when the BenefitType is set to 0 - ebtCash will result in an error.

VoucherNumber is required in VoucherClear transactions.

Data Type

String

AuthOnly Method (FDMSRcBenefit Control)

Performs an authorization request.

Syntax

fdmsrcbenefitcontrol.AuthOnly 

Remarks

This method performs an authorization request. This transaction places a hold on the funds. To capture the funds the Capture method must be called.

After calling this method call GetDetailAggregate to generate a detail aggregate. The detail aggregate should be saved for use with Capture or Reverse later.

When ready to Capture or Reverse the transaction call SetDetailAggregate to the previously stored detail aggregate before calling the method.

After this method returns check the value of ResponseCode to determine if the transaction was successful.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister control. (You may update your list of service provider URLs with the FDMSRegister control's ServiceDiscovery method).

Note: AuthOnly and Capture are allowed only for EBT eWIC transactions.

EBT AuthOnly Example benefit.TPPID = "AAA000"; benefit.MerchantTerminalNumber = "00000001"; benefit.MerchantId = "RCTST0000012345"; benefit.GroupId = "20001"; benefit.DatawireId = "00011122233344455566"; benefit.URL = "https://stg.dw.us.fdcnet.biz/rc"; benefit.ApplicationId = "RAPIDCONNECTSRS"; benefit.IndustryType = FdmsrcbenefitIndustryTypes.fritretail; benefit.STAN = "112"; benefit.TransactionNumber = "1234"; benefit.OrderNumber = "123"; benefit.ReferenceNumber = "123"; benefit.TransactionAmount = "1200"; benefit.Card.MagneticStripe = "4788250000028291=21121015432112345678"; benefit.Card.EntryDataSource = EntryDataSources.edsTrack2; benefit.EncryptedPIN = "7BD8948B328B21E5"; benefit.KSN = "876543210F008400029"; benefit.BenefitType = FdmsrcbenefitBenefitTypes.ebtEWIC; benefit.AuthOnly();

BalanceInquiry Method (FDMSRcBenefit Control)

Performs a Balance Inquiry Request using the specified Card data.

Syntax

fdmsrcbenefitcontrol.BalanceInquiry 

Remarks

This methods allows you to perform a Balance Inquiry Request using the specified Card data. The balance amount will be returned via ResponseBalance. Note that Balance Inquiries do not place a hold on a cardholder's funds and are not captured.

Capture Method (FDMSRcBenefit Control)

Captures a previously authorized transaction.

Syntax

fdmsrcbenefitcontrol.Capture 

Remarks

This method captures a previously authorized transaction. Before calling this method call SetDetailAggregate to specify the detail aggregate from the original AuthOnly transaction.

After this method returns check the value of ResponseCode to determine if the transaction was successful.

FDMS Recommendations:

Vendors/Gateways, who systematically send all Capture transactions during their end of day processing or at a specific time for their entire chain, must configure/program their systems to send the Capture transactions for all locations or merchants varying times of day based on the MerchantId or MerchantTerminalNumber (whichever provides a more random value).

To assist with implementing this logic, FDMS Rapid Connect recommends sending the Capture transactions based on the MerchantTerminalNumber in each location. For example If the last digit of the MerchantTerminalNumber is 0, set the time for the Capture transactions to be sent as xx:00 (xx=hh:00=mm). The time for the MerchantTerminalNumber ending with 1 would be xx:05. The time for the MerchantTerminalNumber ending with 2 would be xx:10. All remaining MerchantTerminalNumbers would follow this same logic. This logic would be applied across the entire chain or merchant base, to ensure that all Captures for all merchants are not systematically sent to First Data at the same time. FDMS recommends that the software calculate the offset of time based on the MerchantId or MerchantTerminalNumber, and not rely on a user to specify the time as noted above.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister control. (You may update your list of service provider URLs with the FDMSRegister control's ServiceDiscovery method).

Note: AuthOnly and Capture are allowed only for EBT eWIC transactions.

EBT AuthOnly and Capture Example benefit.TPPID = "AAA000"; benefit.MerchantTerminalNumber = "00000001"; benefit.MerchantId = "RCTST0000012345"; benefit.GroupId = "20001"; benefit.DatawireId = "00011122233344455566"; benefit.URL = "https://stg.dw.us.fdcnet.biz/rc"; benefit.ApplicationId = "RAPIDCONNECTSRS"; benefit.IndustryType = FdmsrcbenefitIndustryTypes.fritretail; benefit.STAN = "112"; benefit.TransactionNumber = "1234"; benefit.OrderNumber = "123"; benefit.ReferenceNumber = "123"; benefit.TransactionAmount = "1200"; benefit.Card.MagneticStripe = "4788250000028291=21121015432112345678"; benefit.Card.EntryDataSource = EntryDataSources.edsTrack2; benefit.EncryptedPIN = "7BD8948B328B21E5"; benefit.KSN = "876543210F008400029"; benefit.BenefitType = FdmsrcbenefitBenefitTypes.ebtEWIC; benefit.AuthOnly(); string aggregate = benefit.GetDetailAggregate(); //Capture benefit = new Fdmsrcbenefit(); benefit.TPPID = "AAA000"; benefit.MerchantTerminalNumber = "00000001"; benefit.MerchantId = "RCTST0000012345"; benefit.GroupId = "20001"; benefit.DatawireId = "00011122233344455566"; benefit.URL = "https://stg.dw.us.fdcnet.biz/rc"; benefit.ApplicationId = "RAPIDCONNECTSRS"; benefit.STAN = "113"; benefit.TransactionNumber = "1235"; benefit.ReferenceNumber = "123457"; //The TransactionAmount is populated when SetDetailAggregate is called. benefit.SetDetailAggregate(aggregate); //Determine the eWIC benefit/food items authorized. benefit.EWICDetailCount = 1 benefit.EWICDetailUpcPluIndicator(0) = FDMSRcBenefitEWICIndicatorTypes.freitUPC benefit.EWICDetailUpcPluData(0) = "011110610485" benefit.EWICDetailUpcItemPrice(0) = "1200" benefit.EWICDetailUpcQuantity(0) = "100" //Indicates 1 unit benefit.Capture();

Config Method (FDMSRcBenefit Control)

Sets or retrieves a configuration setting.

Syntax

fdmsrcbenefitcontrol.Config ConfigurationString

Remarks

Config is a generic method available in every control. It is used to set and retrieve configuration settings for the control.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Credit Method (FDMSRcBenefit Control)

Submits a credit transaction.

Syntax

fdmsrcbenefitcontrol.Credit 

Remarks

This method credits funds to the card. This is not based on a previous transaction. This may be used to return funds to a card if a previous transaction has already been settled. To void or cancel a transaction before it has been settled call Reverse instead.

After this method returns check the value of ResponseCode to determine if the transaction was successful.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister control. (You may update your list of service provider URLs with the FDMSRegister control's ServiceDiscovery method).

Note: Credits/Refunds are allowed only for EBT SNAP transactions.

EBT Credit Example benefit.TPPID = "AAA000"; benefit.MerchantTerminalNumber = "00000001"; benefit.MerchantId = "RCTST0000012345"; benefit.GroupId = "20001"; benefit.DatawireId = "00011122233344455566"; benefit.URL = "https://stg.dw.us.fdcnet.biz/rc"; benefit.ApplicationId = "RAPIDCONNECTSRS"; benefit.STAN = "112"; benefit.TransactionNumber = "1234"; benefit.ReferenceNumber = "1212"; benefit.OrderNumber = "123"; benefit.Card.MagneticStripe = "4003010001234572=17041011234567440"; benefit.Card.EntryDataSource = EntryDataSources.edsTrack2; benefit.EncryptedPIN = "7BD8948B328B21E5"; benefit.KSN = "876543210F008400029"; benefit.TransactionAmount = "1200"; benefit.BenefitType = FdmsrcbenefitBenefitTypes.ebtSNAP; benefit.MerchantFNSNum = "789654" benefit.Credit(); ;

GetDetailAggregate Method (FDMSRcBenefit Control)

Returns a detail aggregate containing details of this transaction, which is used for Capture or Reverse transactions or settlement when using Terminal Capture mode.

Syntax

fdmsrcbenefitcontrol.GetDetailAggregate 

Remarks

This method will return a detail aggregate representing the transaction. After calling AuthOnly or Sale call this method to obtain a detail aggregate. The aggregate will be required when calling Capture or Reverse.

When using Terminal Capture Settlement Mode this aggregate must be passed to the FDMSRcSettle control's DetailAggregate array property in order to settle the transaction. If you wish to view or change any part of the aggregate (such as adding a gratuity or additional info for an Installment payment), you may use the FDMSRcDetailrecord control to do so.

Note: This method may only be called after a successful authorization. If the authorization was not successful the method fails with an error.

To set the aggregate before calling Capture Reverse or SendSettlement call SetDetailAggregate. Save this aggregate in a secure location.

Interrupt Method (FDMSRcBenefit Control)

Interrupts the current action.

Syntax

fdmsrcbenefitcontrol.Interrupt 

Remarks

This method interrupts any processing that the control is currently executing.

Reset Method (FDMSRcBenefit Control)

Clears all properties to their default values.

Syntax

fdmsrcbenefitcontrol.Reset 

Remarks

This method clears all properties to their default values.

Reverse Method (FDMSRcBenefit Control)

Reverses a transaction.

Syntax

fdmsrcbenefitcontrol.Reverse 

Remarks

This method reverses a transaction that has not been settled.

To void/reverse a Sale or AuthOnly transaction first set ReversalTransactionType to specify the type of original transaction that is being reversed. Next set ReversalType to frtFullReversal and call this method.

If the previous transaction did not receive a response and the state of the transaction is uncertain you may perform a Timeout Reversal. To perform a timeout reversal set ReversalTransactionType to specify the type of original transaction that is being reversed. Next set ReversalType to frtTimeoutReversal and call this method.

Timeout Reversals are applicable to the following transaction types:

Full Reversals are applicable to the following transaction types:

After this method returns check the value of ResponseCode to determine if the transaction was successful.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister control. (You may update your list of service provider URLs with the FDMSRegister control's ServiceDiscovery method).

EBT Sale and Reverse Example benefit.TPPID = "AAA000"; benefit.MerchantTerminalNumber = "00000001"; benefit.MerchantId = "RCTST0000012345"; benefit.GroupId = "20001"; benefit.DatawireId = "00011122233344455566"; benefit.URL = "https://stg.dw.us.fdcnet.biz/rc"; benefit.ApplicationId = "RAPIDCONNECTSRS"; benefit.IndustryType = FdmsrcbenefitIndustryTypes.fritRetail; benefit.STAN = "112"; benefit.TransactionNumber = "1234"; benefit.ReferenceNumber = "1212"; benefit.OrderNumber = "123"; benefit.Card.MagneticStripe = "4003010001234572=21041011234567440"; benefit.Card.EntryDataSource = EntryDataSources.edsTrack2; benefit.EncryptedPIN = "7BD8948B328B21E5"; benefit.KSN = "876543210F008400029"; benefit.TransactionAmount = "1200"; benefit.BenefitType = FdmsrcbenefitBenefitTypes.ebtCash; benefit.Sale(); //Store the aggregate for use later string aggregate = benefit.GetDetailAggregate(); //Later, reverse the transaction Fdmsrcbenefit fdmsrcbenefit = new Fdmsrcbenefit(); fdmsrcbenefit.TPPID = benefit.TPPID; fdmsrcbenefit.MerchantTerminalNumber = benefit.MerchantTerminalNumber; fdmsrcbenefit.MerchantId = benefit.MerchantId; fdmsrcbenefit.GroupId = benefit.GroupId; fdmsrcbenefit.DatawireId = benefit.DatawireId; fdmsrcbenefit.URL = benefit.URL; fdmsrcbenefit.ApplicationId = benefit.ApplicationId; benefit.STAN = "113"; benefit.TransactionNumber = "1235"; benefit.ReferenceNumber = "1213"; benefit.SetDetailAggregate(aggregate); benefit.ReversalTransactionType = FdmsrcbenefitReversalTransactionTypes.frttSale; benefit.ReversalType = FdmsrcbenefitReversalTypes.frtFullReversal; benefit.Reverse();

Sale Method (FDMSRcBenefit Control)

Performs a sale transaction.

Syntax

fdmsrcbenefitcontrol.Sale 

Remarks

This method performs a sale transaction. Once a sale is performed no further action is needed, the funds will automatically be captured by FDMS.

After this method returns check the value of ResponseCode to determine if the transaction was successful.

Important Note: You must ping your list of service provider URLs and update the URL property to the service provider with the shortest response time every 100 transactions, as well as when your application initially starts. This is not a normal ICMP ping - to determine the fastest transaction URL you must use the special Ping method inside the FDMSRegister control. (You may update your list of service provider URLs with the FDMSRegister control's ServiceDiscovery method).

Note: Cashback is not allowed on EBT SNAP transactions.

Note: Manual entry of account number is allowed if Track 2 data cannot be read; PIN entry is required.

EBT Sale Example benefit.TPPID = "AAA000"; benefit.MerchantTerminalNumber = "00000001"; benefit.MerchantId = "RCTST0000012345"; benefit.GroupId = "20001"; benefit.DatawireId = "00011122233344455566"; benefit.URL = "https://stg.dw.us.fdcnet.biz/rc"; benefit.ApplicationId = "RAPIDCONNECTSRS"; benefit.STAN = "112"; benefit.TransactionNumber = "1234"; benefit.ReferenceNumber = "1212"; benefit.OrderNumber = "123"; benefit.Card.MagneticStripe = "4003010001234572=17041011234567440"; benefit.Card.EntryDataSource = EntryDataSources.edsTrack2; benefit.EncryptedPIN = "7BD8948B328B21E5"; benefit.KSN = "876543210F008400029"; benefit.TransactionAmount = "1200"; benefit.BenefitType = FdmsrcbenefitBenefitTypes.ebtCash; benefit.Sale();

SetDetailAggregate Method (FDMSRcBenefit Control)

Specifies the detail aggregate before calling Capture or Reverse.

Syntax

fdmsrcbenefitcontrol.SetDetailAggregate aggregate

Remarks

This method specifies the detail aggregate from the original AuthOnly or Sale transaction. This must be set before calling Capture or Reverse.

The aggregate specified here should have been obtained from the GetDetailAggregate method after the original AuthOnly or Sale transaction.

VoucherClear Method (FDMSRcBenefit Control)

Performs a voucher clear request.

Syntax

fdmsrcbenefitcontrol.VoucherClear 

Remarks

This method performs an online force-post entry of a previously voice-authorized Food Benefit or eWIC transaction. VoucherAuthCode and VoucherNumber are required when processing a VoucherClear transaction. The account number must be manually entered without setting the PIN and KSN data.

Note: To receive payment for the transaction, the merchant must process a Voucher Clear transaction within ten days of the voice authorization.

EBT VoucherClear Example benefit.TPPID = "AAA000"; benefit.MerchantTerminalNumber = "00000001"; benefit.MerchantId = "RCTST0000012345"; benefit.GroupId = "20001"; benefit.DatawireId = "00011122233344455566"; benefit.URL = "https://stg.dw.us.fdcnet.biz/rc"; benefit.ApplicationId = "RAPIDCONNECTSRS"; benefit.STAN = "112"; benefit.TransactionNumber = "1234"; benefit.ReferenceNumber = "1212"; benefit.OrderNumber = "123"; benefit.Card.Number = "6102960001112225"; benefit.Card.ExpMonth = 4; benefit.Card.ExpYear = 2020; benefit.Card.EntryDataSource = EntryDataSources.edsManualEntryNoCardReader; benefit.TransactionAmount = "1200"; benefit.BenefitType = FdmsrcbenefitBenefitTypes.ebtSNAP; benefit.MerchantFNSNumber = "789654"; benefit.VoucherNumber = "1234567"; benefit.VoucherAuthCode = "111111"; benefit.VoucherClear();

Connected Event (FDMSRcBenefit Control)

This event is fired immediately after a connection completes (or fails).

Syntax

Sub fdmsrcbenefitcontrol_Connected(StatusCode As Integer, Description As String)

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error. The corresponding Visual Basic error code can be obtained by adding 15001 to this value.

Please refer to the Error Codes section for more information.

DataPacketIn Event (FDMSRcBenefit Control)

Fired when receiving a data packet from the transaction server.

Syntax

Sub fdmsrcbenefitcontrol_DataPacketIn(DataPacket As String)

Remarks

This event fires when a packet is received. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or to extract additional response properties beyond the scope of this control.

DataPacketOut Event (FDMSRcBenefit Control)

Fired when sending a data packet to the transaction server.

Syntax

Sub fdmsrcbenefitcontrol_DataPacketOut(DataPacket As String)

Remarks

This event fires right before each data packet is sent. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or may be modified to support additional features beyond the scope of this control.

Disconnected Event (FDMSRcBenefit Control)

This event is fired when a connection is closed.

Syntax

Sub fdmsrcbenefitcontrol_Disconnected(StatusCode As Integer, Description As String)

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error. The corresponding Visual Basic error code can be obtained by adding 15001 to this value.

Please refer to the Error Codes section for more information.

Error Event (FDMSRcBenefit Control)

Fired when information is available about errors during data delivery.

Syntax

Sub fdmsrcbenefitcontrol_Error(ErrorCode As Integer, Description As String)

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the control fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

SSLServerAuthentication Event (FDMSRcBenefit Control)

Fired after the server presents its certificate to the client.

Syntax

Sub fdmsrcbenefitcontrol_SSLServerAuthentication(CertEncoded As String, CertSubject As String, CertIssuer As String, Status As String, Accept As Boolean)

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (FDMSRcBenefit Control)

Fired when secure connection progress messages are available.

Syntax

Sub fdmsrcbenefitcontrol_SSLStatus(Message As String)

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

Status Event (FDMSRcBenefit Control)

Shows the progress of the FDMS/Datawire connection.

Syntax

Sub fdmsrcbenefitcontrol_Status(Message As String)

Remarks

The event is fired for informational and logging purposes only. Used to track the progress of the connection.

Config Settings (FDMSRcBenefit Control)

The control accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.

FDMSRcBenefitl Config Settings

AllowPartialAuths:   Indicates whether partial authorizations are supported.

This setting specifies whether partial authorizations are supported. Partial authorization support is generally required for all merchants in card-present environments. The merchant may be subject to fees, interchange downgrades, or both if this is not supported in a retail environment. Support for partial authorizations is optional in ECommerce transactions but is highly recommended. The default value is True.

AltMerchantAddress:   The alternative merchant address.

This setting may be set to specify an alternative merchant address to be used in lieu of the one on file with FDMS. This value may be up to 25 characters in length.

AltMerchantCity:   The alternative merchant city.

This setting may be set to specify an alternative merchant city to be used in lieu of the one on file with FDMS. This value may be up to 20 characters in length.

AltMerchantCountryCode:   The alternative merchant country code.

This setting may be set to specify an alternative merchant country code to be used in lieu of the one on file with FDMS. This value is the ISO 3166 three digit numeric identifier.

AltMerchantEmail:   The alternative merchant email.

This setting may be set to specify an alternative merchant email address be used in lieu of the one on file with FDMS. This value may be up to 40 characters in length.

AltMerchantName:   The alternative merchant name.

This setting may be set to specify an alternative merchant name to be used in lieu of the one on file with FDMS. This value may be up to 30 characters in length.

AltMerchantState:   The alternative merchant state.

This setting may be set to specify an alternative merchant state to be used in lieu of the one on file with FDMS. This value is the two characters state abbreviation.

AltMerchantZip:   The alternative merchant zip code.

This setting may be set to specify an alternative merchant zip code to be used in lieu of the one on file with FDMS. This value may be up to 9 characters in length.

AuthIndicator:   Indicate the type of authorization requested.

Possible values are:

1 Re-authorization (Visa and Discover only)
2 Resubmission (Visa and Discover only)
3 Estimated Authorization (Visa only)
4 Credential on File (Visa, Discover, Amex, and Mastercard only)
AuthorizationIndicator:   Indicates whether the authorization is a final authorization.

This setting indicates whether the authorized amount is equal to the final captured amount. This is a mandatory MasterCard only field. The list of valid values is:

0 Preauthorization - The Settlement amount may be different than the amount authorized.
1 Final Authorization -The settlement amount must equal the approved authorized amount.

Note: When this field is set to '1' in the original transaction, you cannot send a Partial Reversal subsequent transaction. Set the AuthorizationIndicator to '0' when the settlement amount may be different than the approved amount authorized.

Indicates whether the authorization is a final authorization.

This setting indicates whether the authorized amount is equal to the final captured amount. This is a mandatory MasterCard only field. The list of valid values is:

0 Preauthorization - The Settlement amount may be different than the amount authorized.
1 Final Authorization -The settlement amount must equal the approved authorized amount.

Note: When this field is set to '1' in the original transaction, you cannot send a Partial Reversal subsequent transaction.

Set the AuthorizationIndicator to '0' when the settlement amount may be different than the approved amount authorized.

AuthorizationIndicator:   Indicates whether the authorization is a final authorization.

This setting indicates whether the authorized amount is equal to the final captured amount. This is a mandatory MasterCard only field. The list of valid values is:

0 Preauthorization - The Settlement amount may be different than the amount authorized.
1 Final Authorization -The settlement amount must equal the approved authorized amount.

Note: When this field is set to '1' in the original transaction, you cannot send a Partial Reversal subsequent transaction. Set the AuthorizationIndicator to '0' when the settlement amount may be different than the approved amount authorized.

Indicates whether the authorization is a final authorization.

This setting indicates whether the authorized amount is equal to the final captured amount. This is a mandatory MasterCard only field. The list of valid values is:

0 Preauthorization - The Settlement amount may be different than the amount authorized.
1 Final Authorization -The settlement amount must equal the approved authorized amount.

Note: When this field is set to '1' in the original transaction, you cannot send a Partial Reversal subsequent transaction.

Set the AuthorizationIndicator to '0' when the settlement amount may be different than the approved amount authorized.

AuthSource:   Indicates the source of the decision for the Visa transaction.

This setting may be queried after a transaction to determine the source of the decision. This is only applicable to Visa transactions. Possible values are:

0 Timeout - Response Provided by STIP, Timed Out by Switch
1 Visa Stand-In Processing - Response Provided by STIP, Transaction Amount was Below Issuer Limit or Below Sliding Dollar Amount
2 Suppress Inquiry Mode - Response Provided by STIP, Issuer is in Suppress Inquiry (SI) Mode
3 Issuer Unavailable - Response Provided by STIP for One of the Following Reasons: Issuer was Not Available for Processing (for reasons other than being in SI Mode) or CCV or iCCV was Invalid and Visa has Acted on the Negative Results
4 Issuer - Response Provided by Issuer
CardInputMode:   The method used to input the card details.

This setting optionally specifies the method used to input the card number or track data. If not specified (default) the control will automatically determine the correct value based on CardEntryDataSource. This should only be set if there is a need to override the automatically determined value. Possible values are:

00 Unspecified
01 Manual (Key entered)
03 Barcode
04 OCR (Optical Character Reader)
05 Integrated Circuit Read (CVV data Reliable)
07 Contactless Integrated Circuit Read (Reliable)
08 AMEX Digital Wallet
09 MasterCard remote chip entry
10 Credential on File
79 EMV fallback to manual entry
80 EMV fallback to Magnetic Stripe entry
82 Contactless Mobile Commerce
86 EMV Transaction switched from Contactless to Contact entry
90 Magnetic Stripe - Track Read
91 Contactless Magnetic Stripe Read
95 Integrated Circuit Read (CVV data unreliable)
CardType:   Specifies the type of card.

By default the control will automatically determine the card type and submit the card type information in the transaction request. This setting may be set to override the automatically determined value and manually specify the type of card.

This should not be set unless there is a specific reason to do so.

Possible values are:

0 Invalid or unknown prefix, card type not known
1 Visa
2 MasterCard
3 American Express
4 Discover
5 Diners
6 JCB
7 Visa Electron
8 Maestro
9 China Union Pay

ClientTimeout:   Indicates timeout client application will wait for response.

This setting indicates the interval of time, in seconds, a client will wait for the response for any given request. Normally this value is set to a value 5 seconds less than the Timeout value to allow for a response to be received from Datawire. It may be changed independently by setting this configuration setting AFTER setting the Timeout property. Note that too small a value will cause Datawire to reject a transaction immediately.

CurrencyCode:   Currency Code for this transaction.

This field contains a three digit number assigned by the signing member or processor to identify the merchant's authorization currency. For US Dollars, use "840".

DebugTrace:   Whether to enable debug logging.

If set to True the Status event will fire with the raw request and response information. This is helpful for debugging.

DeviceTypeIndicator:   Defines the form factor used at the POS for MasterCard PayPass transactions.

This setting is required for contactless MasterCard transactions when CardInputMode is set to 07, 82, or 91. Possible values are:

0 Card
1 Mobile Network Operator (MNO) controlled removable secure element (SIM or UICC) personalized for use with a Mobile Phone or Smartphone
2 Key Fob
3 Watch
4 Mobile Tag
5 Wristband
6 Mobile Phone Case or Sleeve
7 Mobile Phone or Smartphone with a fixed (non-removable) secure element controlled by the MNO, for example, code division multiple accesses (CDMA).
8 Removable secure element not controlled by the MNO, for example, memory card personalized for use with a Mobile Phone or Smartphone.
9 Mobile Phone or Smartphone with a fixed (non- removable) secure element not controlled by the MNO.
10 MNO controlled removable secure element (SIM or UICC) personalized for use with a Tablet or E-Book reader.
11 Tablet or E-Book reader with a fixed (non- removable) secure element controlled by the MNO.
12 Removable secure element not controlled by the MNO, for example, (SD Card) personalized for use with a Tablet or E- Book reader.
13 Tablet or E-Book with fixed (non- removable) secure element not controlled by the MNO
EMVOnlineKSN:   Clear-text Key Sequence Number for EMV Online PIN transactions.

This field is used along with EMVOnlinePIN to perform EMV online PIN transactions. The value of this property must be retrieved from a certified PIN pad device. This property is only valid for Card Present transactions. The maximum length is 20 characters.

EMVOnlinePIN:   DUKPT DES encrypted PIN block for EMV Online PIN transactions.

This field is used along with EMVOnlineKSN to perform EMV online PIN transactions. The value of this property must be retrieved from a certified PIN pad device. This property is only valid for Card Present transactions. The maximum length is 16 characters.

GetTransArmorToken:   Allows you to retrieve a TransArmor Token for a specified card.

This setting allows you to retrieve a TransArmorToken for a specified card. Upon a successful call, both TransArmorToken and TransArmorProviderId will be populated with the values assigned to you by FDMS. In particular, this method is used when performing a Credit or Force using a TransArmorMode of '0' (Tokenization Only) or '1' (Encryption and Tokenization). So prior to adding the needed detail record to the FDMSSettle component, you will first retrieve a TransArmorToken by calling GetTransArmorToken for the card that you wish to use. The received TransArmorToken and TransArmorProviderId will then be set within the detail record (instead of the card data) and can be added to the FDMSSettle component.

HostTotalsPassword:   The merchant password required in Host Totals requests.

This setting specifies the merchant password required in Host Totals requests.

HostTotalsType:   Indicates the Host Totals Report type requested.

This setting specifies the type of Host Totals Report requested. Possible values are:

0 (default)Close Batch Report
1 Previous Day Report
IsDeferredAuth:   Indicates whether the transaction is a Deferred Authorization.

This setting indicates an authorization transaction which occurs when a merchant captures transaction information while the connectivity is interrupted or unavailable. This indicator is sent in the authorization transaction once the connection is back online.

Note: This field has limited platform availability. For more information, please contact your Account Representative.

The default value is False

IsOnlineRefund:   Indicates whether a transaction is Online Refund Authorization.

Set this config to True when sending an online purchase return authorization request.

LocalTransactionDate:   The local date of the transaction.

This setting may be set to specify the local datetime of the transaction. By default the control will automatically calculate this value from the local system time. If set, this setting overrides the value calculated by the control. The format is "yyyyMMddHHmmss";

MerchantCategoryCode:   The 4 digit Merchant Category Code (MCC).

This setting optionally specifies the industry standard 4 digit Merchant Category Code (MCC). This classifies the business based on the type of goods or services it provides.

POSConditionCode:   The POS condition code.

This setting may be set to specify a different POS condition code. The control will automatically set this to an appropriate value, however this may be set to provide a specific value. Possible values are:

00 Cardholder Present, Card Present
01 Cardholder Present, Unspecified
02 Cardholder Present, Unattended Device
03 Cardholder Present, Suspect Fraud
04 Cardholder Not Present - Recurring
05 Cardholder Present, Card Not Present
06 Cardholder Present, Identity Verified
08 Cardholder Not Present, Mail Order/Telephone Order
59 Cardholder Not Present, Ecommerce
71 Cardholder Present, Magnetic Stripe Could Not Be Read
POSId:   Identifies the specific point of sale device.

This may optionally be set to identify the specific point of sale device, for instance a lane number. This may be up to 4 digits in length. This setting is only applicable when IndustryType is set to Retail.

SupportPINLessDebit:   Indicates whether the terminal can support swiped PINLess Debit transactions.

This configuration setting, when set to 'True', will send the PINLess POS Debit Flag indicator in Authorizations, Sales and Refunds in a card-present environment. The field returned in the response message indicates whether the transaction was processed as a credit or debit. Default value is 'False'.

TerminalCardCapability:   The terminal's card capture capability.

This setting specifies the terminal's ability to capture card information. Possible values are:

0 Terminal has no capture capability or no terminal used
1 Terminal has card capture capability
The default value is 1.

Note: If set to 0 track data must not be specified.

TerminalEntryCapability:   The terminal's entry mode capability.

This settings defines what entry modes are supported by the terminal. Possible values are:

00 Unspecified
01 Terminal not used
02 Magnetic stripe only
03 Magnetic stripe and key entry
04 Magnetic stripe, key entry, and chip
05 Bar code
06 Proximity terminal - contactless chip / RFID
07 OCR
08 Chip only
09 Chip and magnetic stripe
10 Manual entry only
11 Proximity terminal - contactless magnetic stripe
12 Hybrid - Magnetic stripe, Integrated Circuit Card Reader, and contactless capabilities
13 Terminal does not read card data
The default value is 00 (unspecified).

Note: A value of 04, 06, 08, 09, or 12 cannot be specified unless the client is certified and the device is enabled for EMV.

TerminalLocationIndicator:   The terminal's location.

This setting specifies the terminal's location. The control will automatically set this to the appropriate value depending on the IndustryType, however this may be set according to your needs to one of the following possible values:

0 On Premises; Used in a Card Present environment
1 Off Premises; Used in a Card not Present environment

Note: For MOTO and eCommerce transactions the value is set to 1 by default.

TerminalPinCapability:   The terminal's PIN capability.

This setting specifies the terminal's ability to accept PIN entry. Possible values are:

0 Unspecified
1 PIN entry capability
2 No PIN entry capability
3 PIN Pad Inoperative
4 PIN verified by terminal device
The default value is 1.
TerminalTaxCapability:   The terminal's ability to prompt for tax.

This setting specifies the terminal's ability to prompt for tax when performing a transaction with Level 2 commercial cards. Possible values are:

0 Terminal is not tax prompt capable
1 Terminal is tax prompt capable
By default this is set to -1 and will not be sent in the request.
TotalAuthorizedAmount:   Total Authorized Amount.

This setting specifies the total transaction amount that was authorized including Incremental Authorizations and Partial Reversals.

TransArmorKey:   Specifies the TransArmor key used to perform the encryption.

This setting allows you to retrieve and specify the key used to perform the encryption of the Card data. When a successful call to UpdateTransArmorKey is made, this setting will be populated with your assigned key. Store this key for future use. This setting is required for any transactions that you perform using TransArmor encryption (TransArmorMode = 1).

TransArmorKeyId:   Specifies the Id of the TransArmor key used to perform the encryption.

This setting allows you to retrieve and specify the Id of the TransArmorKey used to perform the encryption of the Card data. When a successful call to UpdateTransArmorKey is made, this setting will be populated with your assigned key ID. Store this key Id for future use. This setting is required for any transactions that you perform using TransArmor encryption (TransArmorMode = 1).

TransArmorMode:   Specifies the TransArmor Security Level to use.

This setting allows you to specify the type of TransArmor security to be used when authorizing and settling transactions. The available modes are:

0 (default) TransArmor security is not used.
1 TransArmor Encryption and Tokenization. The Card data will be encrypted using the specified TransArmorKey in the initial authorization. All subsequent requests (including settlement) will use the returned TransArmorToken. The type of encryption used is RSA and is currently the only supported encryption type.
2 TransArmor Tokenization only. The Card data will not be encrypted. A TransArmorToken will be returned for the transaction and will be used in all subsequent requests (including settlement).

Note: Your merchant account must be configured to use TransArmor. The configuration is 'Mode' specific and thus you must inform FDMS which type of TransArmor Security Level you wish to use.

TransArmorProviderId:   The Id of the Provider that issued a TransArmorToken.

This setting allows you to retrieve and specify the Provider Id returned in an authorization response when using TransArmor (TransArmorMode = 1 OR 2). When an authorization is performed using TransArmor, a Provider Id will be returned in the response along with a TransArmorToken. This Provider Id will be used in all subsequent requests (such as reversals and settlement) and must be specified along with TransArmorToken.

TransArmorToken:   A TransArmor Token used in place of a card number or magnetic stripe data.

This setting allows you to retrieve and specify the Token returned in an authorization response when using TransArmor (TransArmorMode = 1 OR 2). When an authorization is performed using TransArmor, a Token will be returned in the response. This Token will be used in all subsequent requests (such as reversals and settlement) in place of the CardNumber or CardMagneticStripe.

TransArmorTokenType:   The FDMS assigned token type.

This setting must be set to 4 digit the FDMS assigned token type. This is required when requesting a token. Specifies the type of TransArmor token that will be used.

This setting allows you to retrieve and specify the type of TransArmor token used.

TransArmorTokenType:   The FDMS assigned token type.

This setting must be set to 4 digit the FDMS assigned token type. This is required when requesting a token. Specifies the type of TransArmor token that will be used.

This setting allows you to retrieve and specify the type of TransArmor token used.

TransArmorUpdateIndicator:   Indicates whether your TransArmorKey needs to be updated.

This setting allows you to identify whether your TransArmorKey needs to be updated. When performing an authorization using TransArmor, it is possible that FDMS will request that you update your TransArmorKey. This setting should be queried after every authorization is performed. If the returned value is "False", no key update is required. If "True" is returned, you should update your key by calling UpdateTransArmorKey after the completion of the function in progress (i.e. authorization). If the key update request was successful, you should update your TransArmorKey and TransArmorKeyId values. If the key update request fails, you can continue using your same TransArmorKey and TransArmorKeyId values until another key update indicator is received.

UpdateTransArmorKey:   Allows you to update your TransArmor Key.

This setting allows you to retrieve a TransArmorKey that will be used to perform TransArmor encryption (TransArmorMode = 1). When this is set to "true" the control will perform the request immediately. Upon a successful call, both TransArmorKey and TransArmorKeyId will be populated with the values assigned to you by FDMS.

UTCTransactionDate:   The UTC date of the transaction.

This setting may be set to specify the UTC datetime of the transaction. By default the control will automatically calculate this value from the local system time. If set, this setting overrides the value calculated by the control. The format is "yyyyMMddHHmmss";

VoiceApprovalCode:   The voice approval.

This setting specifies the voice approval code obtained when authenticating the transaction over the phone with the issuer. Set this before calling Capture.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the control adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The control only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the control will accept compressed data. It then will uncompress the data it has received. The control will handle data compressed by both gzip and deflate compression algorithms.

When True, the control adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when HTTPVersion is set to "2.0".

If set to True (default), the control will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the control fails with an error if the server does not support HTTP/2.

The default value is True.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to LocalFile. When set to True, downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is applicable only when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP control can be extended with other security schemes in addition to the authorization schemes already implemented by the control.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the Transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the control.

If set to True, the URL passed to the control will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the control returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the control fails with an error.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the control fails with an error instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the control will perform a GET on the new location.

The default value is False. If set to True, the control will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the control.

This property specifies the HTTP version used by the control. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the control will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If , the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If , the connection will be closed immediately after the server response is received.

The default value for KeepAlive is .

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the Log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value other than frNever, the control will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When HTTPVersion is set to "2.0" (if the server does not support "2.0"), then the control will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF (Chr$(13) & Chr$(10)) .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the control beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If ProxyUser and ProxyPassword are specified, this value is calculated using the algorithm specified by ProxyAuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by controls that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by controls that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by controls that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by controls that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by controls that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the control.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the control.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the control will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the control will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001.

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the control will attempt to use the Proxy auto-config URL when establishing a connection and ProxyAutoDetect is set to True.

When True (default), the control will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the control will use Timeout for establishing a connection and transmitting/receiving data. Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the control will use Timeout for establishing a connection and transmitting/receiving data.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the control will use Timeout for establishing a connection and transmitting/receiving data. Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the control will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the control whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by controls that do not directly expose Firewall properties. Tells the control whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by controls that do not directly expose Firewall properties.

FirewallAutoDetect:   Tells the control whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by controls that do not directly expose Firewall properties. Tells the control whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by controls that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by controls that do not directly expose Firewall properties.

The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by controls that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by controls that do not directly expose Firewall properties.

The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by controls that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the control returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the control returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the control returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the control returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout. Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout. Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.

If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.

If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.

If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.

If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the control binds.

This must be set before a connection is attempted. It instructs the control to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

The port in the local host where the control binds.

This must be set before a connection is attempted. It instructs the control to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

LocalPort:   The port in the local host where the control binds.

This must be set before a connection is attempted. It instructs the control to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

The port in the local host where the control binds.

This must be set before a connection is attempted. It instructs the control to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit. The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit. The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the control will use IPv4 exclusively. When set to 1, the control will use IPv6 exclusively. To instruct the control to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback
Whether to use IPv6.

When set to 0 (default), the control will use IPv4 exclusively. When set to 1, the control will use IPv6 exclusively. To instruct the control to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback
UseIPv6:   Whether to use IPv6.

When set to 0 (default), the control will use IPv4 exclusively. When set to 1, the control will use IPv6 exclusively. To instruct the control to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback
Whether to use IPv6.

When set to 0 (default), the control will use IPv4 exclusively. When set to 1, the control will use IPv6 exclusively. To instruct the control to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the control will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the control is the same.

Determines if the SSL session is reused.

If set to true, the control will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the control is the same.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the control will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the control is the same.

Determines if the SSL session is reused.

If set to true, the control will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the control is the same.

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the control will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the control will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The control will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.

When set to 0 (default) the CRL check will not be performed by the control. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the control will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the control will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The control will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.

When set to 0 (default) the CRL check will not be performed by the control. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the control will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the control will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The control will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.

When set to 0 (default) the CRL check will not be performed by the control. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the control will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the control will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The control will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.

When set to 0 (default) the CRL check will not be performed by the control. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the control will use OCSP to check the validity of the server certificate. If set to 1 or 2, the control will first obtain the OCSP URL from the server certificate's OCSP extension. The control will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.

When set to 0 (default) the control will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the control will use OCSP to check the validity of the server certificate. If set to 1 or 2, the control will first obtain the OCSP URL from the server certificate's OCSP extension. The control will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.

When set to 0 (default) the control will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the control will use OCSP to check the validity of the server certificate. If set to 1 or 2, the control will first obtain the OCSP URL from the server certificate's OCSP extension. The control will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.

When set to 0 (default) the control will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the control will use OCSP to check the validity of the server certificate. If set to 1 or 2, the control will first obtain the OCSP URL from the server certificate's OCSP extension. The control will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.

When set to 0 (default) the control will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the control will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the control will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the control will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the control will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30) [Platform Only]
SSL2 12 (Hex 0C) [Platform Only]

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the control will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the control when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30) [Platform Only]
SSL2 12 (Hex 0C) [Platform Only]

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the control will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the control when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30) [Platform Only]
SSL2 12 (Hex 0C) [Platform Only]

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the control will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the control when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30) [Platform Only]
SSL2 12 (Hex 0C) [Platform Only]

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the control will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the control when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is by default, but can be set to to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is by default, but can be set to to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is by default, but can be set to to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is by default, but can be set to to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the control will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the control will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the control will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the control will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the control will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the control will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the control will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the control will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the control will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the control fails with an error.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the control will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the control fails with an error.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the control will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the control fails with an error.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the control will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the control fails with an error.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3. The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3. The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes). Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes). Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to to mask sensitive data. The default is .

This setting only works on these controls: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to , the control will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to tells the control to use the internal implementation instead of using the system security libraries.

This setting is set to by default on all platforms.

Trappable Errors (FDMSRcBenefit Control)

FDMSRcBenefit Errors

20433    Invalid index.
20502    Invalid length for this property.
20503    Invalid data format for this property.
20504    Value is out of range.
20505    Credit card digit check failed.
20506    Card date invalid.
20507    Card expired.
20520    Corrupt response.
20521    Response payload empty.
20522    Response truncated.
20527    Invalid timeout value.
20594    A property required for this transaction is missing.
20530    Error in XML response.
20531    Status code received in response indicates an error condition.
20532    Return code received in response indicates an error condition.
20533    Cannot generate detail aggregate - this transaction was not successfully authorized.
20534    Internal error constructing payload.

The control may also return one of the following error codes, which are inherited from other controls.

HTTP Errors

20119    Firewall Error. Error description contains detailed message.
20144    Busy executing current method.
20152    HTTP protocol error. The error message has the server response.
20153    No server specified in URL
20154    Specified URLScheme is invalid.
20156    Range operation is not supported by server.
20157    Invalid cookie index (out of range).
20302    Interrupted.
20303    Can't open AttachedFile.

The control may also return one of the following error codes, which are inherited from other controls.

TCPClient Errors

20101    You cannot change the RemotePort at this time. A connection is in progress.
20102    You cannot change the RemoteHost (Server) at this time. A connection is in progress.
20103    The RemoteHost address is invalid (0.0.0.0).
20105    Already connected. If you want to reconnect, close the current connection first.
20107    You cannot change the LocalPort at this time. A connection is in progress.
20108    You cannot change the LocalHost at this time. A connection is in progress.
20113    You cannot change MaxLineLength at this time. A connection is in progress.
20117    RemotePort cannot be zero. Please specify a valid service port number.
20118    You cannot change the UseConnection option while the control is active.
20136    Operation would block.
20202    Timeout.
20212    Action impossible in control's present state.
20213    Action impossible while not connected.
20214    Action impossible while listening.
20302    Timeout.
20303    Could not open file.
20435    Unable to convert string to selected CodePage.
21106    Already connecting. If you want to reconnect, close the current connection first.
21118    You need to connect first.
21120    You cannot change the LocalHost at this time. A connection is in progress.
21121    Connection dropped by remote host.

SSL Errors

20271    Cannot load specified security library.
20272    Cannot open certificate store.
20273    Cannot find specified certificate.
20274    Cannot acquire security credentials.
20275    Cannot find certificate chain.
20276    Cannot verify certificate chain.
20277    Error during handshake.
20281    Error verifying certificate.
20282    Could not find client certificate.
20283    Could not find server certificate.
20284    Error encrypting data.
20285    Error decrypting data.

TCP/IP Errors

25005    [10004] Interrupted system call.
25010    [10009] Bad file number.
25014    [10013] Access denied.
25015    [10014] Bad address.
25023    [10022] Invalid argument.
25025    [10024] Too many open files.
25036    [10035] Operation would block.
25037    [10036] Operation now in progress.
25038    [10037] Operation already in progress.
25039    [10038] Socket operation on non-socket.
25040    [10039] Destination address required.
25041    [10040] Message too long.
25042    [10041] Protocol wrong type for socket.
25043    [10042] Bad protocol option.
25044    [10043] Protocol not supported.
25045    [10044] Socket type not supported.
25046    [10045] Operation not supported on socket.
25047    [10046] Protocol family not supported.
25048    [10047] Address family not supported by protocol family.
25049    [10048] Address already in use.
25050    [10049] Can't assign requested address.
25051    [10050] Network is down.
25052    [10051] Network is unreachable.
25053    [10052] Net dropped connection or reset.
25054    [10053] Software caused connection abort.
25055    [10054] Connection reset by peer.
25056    [10055] No buffer space available.
25057    [10056] Socket is already connected.
25058    [10057] Socket is not connected.
25059    [10058] Can't send after socket shutdown.
25060    [10059] Too many references, can't splice.
25061    [10060] Connection timed out.
25062    [10061] Connection refused.
25063    [10062] Too many levels of symbolic links.
25064    [10063] File name too long.
25065    [10064] Host is down.
25066    [10065] No route to host.
25067    [10066] Directory not empty
25068    [10067] Too many processes.
25069    [10068] Too many users.
25070    [10069] Disc Quota Exceeded.
25071    [10070] Stale NFS file handle.
25072    [10071] Too many levels of remote in path.
25092    [10091] Network subsystem is unavailable.
25093    [10092] WINSOCK DLL Version out of range.
25094    [10093] Winsock not loaded yet.
26002    [11001] Host not found.
26003    [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
26004    [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
26005    [11004] Valid name, no data record (check DNS setup).