FDMSSettle Component

Properties   Methods   Events   Config Settings   Errors  

The FDMSSettle component is used to do a Batch Settlement on all transactions that were successfully authorized with the or components. This component may also send Level 2 and Level 3 Corporate Purchasing Card data for better interchange rates.

Syntax

DPayments.DPaymentsSDK.Fdmssettle

Remarks

This component connects to the First Data Merchant Services (FDMS) processor, by way of the Datawire VXN transaction transport network. Transactions originating with these components go through Datawire, to the FDMS processor where the transaction is authorized. The result is then returned back through Datawire and received by the component. This component can be integrated into web pages or stand-alone Point Of Sale applications. Because all SSL communications are handled inside the component, any application or web page can be deployed without the need for expensive dedicated SSL servers.

The FDMSSettle component is used to settle all transactions previously authorized by the FDMSECommerce or FDMSRetail component. When a transaction is authorized, money in the customer's account is blocked and tagged for the merchant. However, funds do not actually change hands at this point. When transactions are settled with the FDMSSettle component the funds are deducted from the customer's account and added to the merchant's. It is essential that the authorized transactions are properly recorded and resent later in a Batch Settlement.

Sending a Batch Settlement with this component is easy. First, you must register and activate your account with Datawire. Datawire will provide you with a MerchantNumber and MerchantTerminalNumber, but you'll need to use the FDMSRegister component to activate the merchant and receive a DatawireId. Once you acquire the DatawireId and receive your transaction URLs through Service Discovery, you may begin to authorize transactions.

To authorize a credit card, set the MerchantNumber and MerchantTerminalNumber with the values supplied by FDMS and Datawire, and the DatawireId with the value retrieved by the FDMSRegister component after activating your merchant account. Set the URL property with one of the URLs you retrieved during Service Discovery.

FDMSSettle.MerchantNumber = "000000999990"; 'Supplied by FDMS/Datawire FDMSSettle.MerchantTerminalNumber = "555555"; 'Supplied by FDMS/Datawire FDMSSettle.DatawireId = "0000B47FFFFFFFFFFFFF"; 'Retrieved with the FDMSRegister component. FDMSSettle.URL = "https://staging1.datawire.net/sd/"; 'Retrieved with the FDMSRegister component.

Additionally, set the IndustryType and the BatchSequenceNumber.

FDMSSettle.IndustryType = fitDirectMarketing FDMSSettle.BatchSequenceNumber = "4127"

At this point, you are ready to add transactions to the batch settlement. Each transaction to be settled must be added to the DetailRecords collection;. The XML aggregates for transactions are returned from the FDMSRetail, FDMSECommerce, or FDMSDetailRecord component's GetDetailAggregate method.

FDMSSettle.DetailRecords.Add(new FDMSRecordType(FDMSEcommerce.GetDetailAggregate()));

Finally, call the SendSettlement method.

FDMSSettle.SendSettlement()

If the settlement is successful, the BatchStatus will contain "OK" and the BatchNumber will contain a number which can be used to identify the batch in the future. If the batch was not successful the component throws an exception that indicates the problem. If any individual record in the batch fails, information concerning that record will appear in the Error event when the response to that particular record is received.

Up to 1000 detail records may be settled in the above manner, just by adding transactions to the DetailRecords property. However, it is recommended that Batch Settlements be kept relatively small - around 100 transactions or so - to decrease the number of records that must be resent in the event of an error.

To void a transaction that has been authorized but has not yet been settled, simply do not include it in the batch settlement. The block on the cardholder's account will clear automatically. If you wish to explicitly void the transaction, use the FDMSDetailRecord component to modify the transaction aggregate and set the TransactionType property to fttVoid. Credits and forced transactions may also be created using the FDMSDetailRecord component and settled in the same manner as regular transactions.

To add Level 2 and Level 3 data to the settled transactions, use the FDMSLevel2 and FDMSLevel3 components to create addendum aggregates, and then add them to the AddendumAggregate for the corresponding transaction stored in DetailAggregate.

Note that the IndustryType from the FDMSSettle component MUST match the detail record aggregate of EACH transaction that is added to the settlement. You cannot mix industry types in a batch - you must settle a separate batch for each industry type.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

ApiVersionIdentifies the application version number.
ApplicationIdIdentifies the merchant application to the Datawire System.
BatchSequenceNumberStarting sequence number for the transactions in this batch.
DatawireIdIdentifies the merchant to the Datawire System.
DetailRecordsCollection of detail records to send in the settlement.
FDMSPlatformSpecifies the FDMS platform that the transactions will be processed on.
IndustryTypeCode which indicates the industry the merchant is engaged in.
MerchantNumberA unique number used to identify the merchant within the FDMS and Datawire systems.
MerchantServiceNumberMerchant's customer service phone number.
MerchantTerminalNumberUsed to identify a unique terminal within a merchant location.
ProxyA set of properties related to proxy access.
ResponseContains the response to the settlement.
SSLAcceptServerCertInstructs the component to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThe certificate to be used during SSL negotiation.
SSLProviderThis specifies the SSL/TLS implementation to use.
SSLServerCertThe server certificate for the last established connection.
TimeoutA timeout for the component.
URLLocation of the Datawire server to which transactions are sent.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
InterruptInterrupts the current action.
ResetClears all properties to their default values.
SendSettlementBegins a Batch Settlement transaction with the transaction server.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

ConnectedThis event is fired immediately after a connection completes (or fails).
DataPacketInFired when receiving a data packet from the transaction server.
DataPacketOutFired when sending a data packet to the transaction server.
DisconnectedThis event is fired when a connection is closed.
ErrorFired when information is available about errors during data delivery.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
StatusShows the progress of the FDMS/Datawire connection.

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

ClientTimeoutIndicates timeout client application will wait for response.
DetailErrorIndexContains the detail record number that caused the error during settlement.
RawRequestReturns the request sent to the server for debugging purposes.
RawResponseReturns the response received from the server for debugging purposes.
UseEnhancedSettlementForces enhanced settlement mode.
CloseStreamAfterTransferIf true, the component will close the upload or download stream after the transfer.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the component whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallListenerIf true, the component binds to a SOCKS firewall as a server (TCPClient only).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the component binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseNTLMv2Whether to use NTLM V2.
CACertFilePathsThe paths to CA certificate files when using Mono on Unix/Linux.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
GUIAvailableWhether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

ApiVersion Property (FDMSSettle Component)

Identifies the application version number.

Syntax

public string ApiVersion { get; set; }
Public Property ApiVersion As String

Default Value

"016XX0"

Remarks

The ApiVersion includes the application's version number and revision number. This field should be 6 characters long and it cannot contain periods or spaces.

The default value of this property is "016XX0" indicating the current version number of 4D Payments SDK.

ApplicationId Property (FDMSSettle Component)

Identifies the merchant application to the Datawire System.

Syntax

public string ApplicationId { get; set; }
Public Property ApplicationId As String

Default Value

"NSOFTDIRECTPXML"

Remarks

The Application ID includes the Merchant's application name and version number. This property is used to identify the merchant application within the Datawire system, and may be validated along with the MerchantTerminalNumber and DatawireId as connection credentials.

The default value of this property is assigned to the 4D Payments FDMS Integrator, but you may be required to have a new ApplicationId assigned for the software you create with this component.

BatchSequenceNumber Property (FDMSSettle Component)

Starting sequence number for the transactions in this batch.

Syntax

public string BatchSequenceNumber { get; set; }
Public Property BatchSequenceNumber As String

Default Value

""

Remarks

A batch settlement is made up of many separate transaction packets. The component creates these packets and posts them one-by-one to the Datawire VXN, where they are then routed to the FDMS payment processor. Each of these packets sent to Datawire must contain a unique 7 digit transaction sequence identifier. This property should contain the beginning sequence number, which the component will increment for each individual data payload sent in the batch settlement. The component will pad the entered value with trailing zeros as needed and restart at 0 when the maximum transaction sequence identifier is reached.

To retrieve the last transaction sequence identifier used by the component in the batch settlement you need to read the value of BatchSequenceNumber after SendSettlement method is called. ... FDMSSettle.BatchSequenceNumber = "1234"; FDMSSettle.DetailRecords.Add(new FDMSRecordType(FDMSEcommerce.GetDetailAggregate())); FDMSSettle.SendSettlement(); // retrieve the last transaction sequence identifier used in batch settlement // increment it and use in the consecutive transaction to First Data String lastUsedTranNum = FDMSSettle.BatchSequenceNumber; 'this returns the last transaction sequence identifier used in batch settlement.

DatawireId Property (FDMSSettle Component)

Identifies the merchant to the Datawire System.

Syntax

public string DatawireId { get; set; }
Public Property DatawireId As String

Default Value

""

Remarks

The Datawire Id is a unique customer identifier generated by Datawire and returned to the client after successfully registering the merchant (using the FDMSRegister component). This Id (which is sent in all subsequent transactions) allows a transaction, to pass through the Datawire system and be correctly routed to the FDMS Payment processor.

The maximum length for this property is 32 characters.

DetailRecords Property (FDMSSettle Component)

Collection of detail records to send in the settlement.

Syntax

public FDMSRecordTypeList DetailRecords { get; }
Public Property DetailRecords As FDMSRecordTypeList

Remarks

Each FDMSRecordType object in the collection specifies an XML aggregate representing the transaction to be settled. The FDMSRecordType may also specify an addenda aggregate for sending Level 2 or Level 2 and Level 3 data. The XML aggregate to be settled is generated from the FDMSRetail, FDMSECommerce, or FDMSDetailRecord component.

The following example shows how to add a detail record to the collection. FDMSEcommerce1.Authorize(); FDMSSettle.DetailRecords.Add(new FDMSRecordType(FDMSEcommerce1.GetDetailAggregate()));

Xml aggregates are used instead of directly passing Objects because it is easy to store XML aggregates in a database after authorization, and then retrieve them for settlement at the end of the business day.

Up to 9900 detail records may be settled in the above manner, just by adding a transactions to the DetailRecords property. However, it is recommended that Batch Settlements be kept relatively small - around 350 transactions or so - to decrease the number of records that must be resent in the event of an error.

Please refer to the FDMSRecordType type for a complete list of fields.

FDMSPlatform Property (FDMSSettle Component)

Specifies the FDMS platform that the transactions will be processed on.

Syntax

public FdmssettleFDMSPlatforms FDMSPlatform { get; set; }

enum FdmssettleFDMSPlatforms { fpNorth, fpNashville }
Public Property FDMSPlatform As FdmssettleFDMSPlatforms

Enum FdmssettleFDMSPlatforms fpNorth fpNashville End Enum

Default Value

0

Remarks

This property is used to identify the FDMS platform that the transactions will be sent to and processed on. The following table lists the platforms supported by this component.

fpNorth (0) North/Cardnet platform.
fpNashville (1) Nashville platform.

IndustryType Property (FDMSSettle Component)

Code which indicates the industry the merchant is engaged in.

Syntax

public FdmssettleIndustryTypes IndustryType { get; set; }

enum FdmssettleIndustryTypes { fitUnknown, fitRetail, fitRestaurant, fitGroceryStore, fitDirectMarketing, fitHotel }
Public Property IndustryType As FdmssettleIndustryTypes

Enum FdmssettleIndustryTypes fitUnknown fitRetail fitRestaurant fitGroceryStore fitDirectMarketing fitHotel End Enum

Default Value

1

Remarks

This property is used to identify the industry type of the merchant submitting the authorization request. The following table lists the industry types supported by this component.

fitUnknown (0)Unknown or unsure.
fitRetail (1)Retail store.
fitRestaurant (2)Food / Restaurant.
fitGroceryStore (3)Grocery store or supermarket.
fitDirectMarketing (4)eCommerce or Direct Marketing
fitHotel (5)Hotel / Lodging.

MerchantNumber Property (FDMSSettle Component)

A unique number used to identify the merchant within the FDMS and Datawire systems.

Syntax

public string MerchantNumber { get; set; }
Public Property MerchantNumber As String

Default Value

""

Remarks

This property contains a unique number (typically 12 digits) which is assigned by the signing merchant's bank or processor. This field is used to identify the merchant within the FDMS and Datawire systems, and is used along with the MerchantTerminalNumber and DatawireId as connection credentials.

MerchantServiceNumber Property (FDMSSettle Component)

Merchant's customer service phone number.

Syntax

public string MerchantServiceNumber { get; set; }
Public Property MerchantServiceNumber As String

Default Value

""

Remarks

This 10 character field contains the merchant customer service phone number without dashes or spaces. The initial "1" for long-distance or toll-free calls should be omitted. For instance, "8001234567" is acceptable, while "18001234567" or "1-800-123-4567" is not.

This property is only required when the IndustryType is set to fitDirectMarketing, and will otherwise not be sent.

MerchantTerminalNumber Property (FDMSSettle Component)

Used to identify a unique terminal within a merchant location.

Syntax

public string MerchantTerminalNumber { get; set; }
Public Property MerchantTerminalNumber As String

Default Value

""

Remarks

This property contains a number (typically 6 digits) assigned by FDMS to uniquely identify a terminal within a merchant location, and is used along with the MerchantNumber and DatawireId as connection credentials.

Proxy Property (FDMSSettle Component)

A set of properties related to proxy access.

Syntax

public Proxy Proxy { get; set; }
Public Property Proxy As Proxy

Remarks

This property contains fields describing the proxy through which the component will attempt to connect.

Please refer to the Proxy type for a complete list of fields.

Response Property (FDMSSettle Component)

Contains the response to the settlement.

Syntax

public FDMSSettleResponse Response { get; }
Public ReadOnly Property Response As FDMSSettleResponse

Remarks

This property will contain the response returned from the FDMS server. It should be inspected (and logged) after calling SendSettlement. The FDMSSettleResponse type contains the following fields:

BatchNumber FDMS-generated Id of the batch settlement.
BatchStatus Indicates success or failure of the entire settlement.
DatawireReturnCode Contains an error code providing more details about the DatawireStatus received.
DatawireStatus Status of the communication with Datawire.

This property is read-only.

Please refer to the FDMSSettleResponse type for a complete list of fields.

SSLAcceptServerCert Property (FDMSSettle Component)

Instructs the component to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

public Certificate SSLAcceptServerCert { get; set; }
Public Property SSLAcceptServerCert As Certificate

Remarks

If it finds any issues with the certificate presented by the server, the component will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Please note that this functionality is provided only for cases where you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

Please refer to the Certificate type for a complete list of fields.

SSLCert Property (FDMSSettle Component)

The certificate to be used during SSL negotiation.

Syntax

public Certificate SSLCert { get; set; }
Public Property SSLCert As Certificate

Remarks

The digital certificate that the component will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

Please refer to the Certificate type for a complete list of fields.

SSLProvider Property (FDMSSettle Component)

This specifies the SSL/TLS implementation to use.

Syntax

public FdmssettleSSLProviders SSLProvider { get; set; }

enum FdmssettleSSLProviders { sslpAutomatic, sslpPlatform, sslpInternal }
Public Property SSLProvider As FdmssettleSSLProviders

Enum FdmssettleSSLProviders sslpAutomatic sslpPlatform sslpInternal End Enum

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the component will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The component will select a provider depending on the current platform.

When Automatic is selected, on Windows the component will use the platform implementation. On Linux/macOS the component will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used on all platforms.

The .NET Standard library will always use the internal implementation on all platforms.

SSLServerCert Property (FDMSSettle Component)

The server certificate for the last established connection.

Syntax

public Certificate SSLServerCert { get; }
Public ReadOnly Property SSLServerCert As Certificate

Remarks

SSLServerCert contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

Please refer to the Certificate type for a complete list of fields.

Timeout Property (FDMSSettle Component)

A timeout for the component.

Syntax

public int Timeout { get; set; }
Public Property Timeout As Integer

Default Value

30

Remarks

If Timeout is set to a positive value, and an operation cannot be completed immediately, the component will return with an error after Timeout seconds.

The default value for Timeout is 30 (seconds).

URL Property (FDMSSettle Component)

Location of the Datawire server to which transactions are sent.

Syntax

public string URL { get; set; }
Public Property URL As String

Default Value

"https://staging1.datawire.net/sd/"

Remarks

This is the URL to which all authorization and settlement transactions are sent. This URL is acquired by using the FDMSRegister component. Once you Register and Activate the merchant using the FDMSRegister component, you may then do a Service Discovery. After sending a Service Discovery transaction, the Datawire system will return a list of transaction URLs. The URL from this list with the shortest round-trip transit time from a ping is the URL you should use here.

Note: By default, this property is populated with the Datawire Staging (test) server, and is not the correct URL to use in a production environment. In a production environment, this URL is supplied by the FDMSRegister component.

Config Method (FDMSSettle Component)

Sets or retrieves a configuration setting.

Syntax

public string Config(string configurationString);
Public Function Config(ByVal ConfigurationString As String) As String

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Interrupt Method (FDMSSettle Component)

Interrupts the current action.

Syntax

public void Interrupt();
Public Sub Interrupt()

Remarks

This method interrupts any processing that the component is currently executing.

Reset Method (FDMSSettle Component)

Clears all properties to their default values.

Syntax

public void Reset();
Public Sub Reset()

Remarks

This method clears all properties to their default values.

SendSettlement Method (FDMSSettle Component)

Begins a Batch Settlement transaction with the transaction server.

Syntax

public void SendSettlement();
Public Sub SendSettlement()

Remarks

This begins a Batch Settlement transaction. The component begins a session with the Datawire system, and then posts a header record, all the detail records, all the Level 2 and Level 3 addendum records (if any), and a trailer record in sequence. The session is then automatically terminated, and the BatchStatus property will indicate the result of the settlement as returned by the FDMS processor.

Connected Event (FDMSSettle Component)

This event is fired immediately after a connection completes (or fails).

Syntax

public event OnConnectedHandler OnConnected;

public delegate void OnConnectedHandler(object sender, FdmssettleConnectedEventArgs e);

public class FdmssettleConnectedEventArgs : EventArgs {
  public int StatusCode { get; }
  public string Description { get; }
}
Public Event OnConnected As OnConnectedHandler

Public Delegate Sub OnConnectedHandler(sender As Object, e As FdmssettleConnectedEventArgs)

Public Class FdmssettleConnectedEventArgs Inherits EventArgs
  Public ReadOnly Property StatusCode As Integer
  Public ReadOnly Property Description As String
End Class

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

DataPacketIn Event (FDMSSettle Component)

Fired when receiving a data packet from the transaction server.

Syntax

public event OnDataPacketInHandler OnDataPacketIn;

public delegate void OnDataPacketInHandler(object sender, FdmssettleDataPacketInEventArgs e);

public class FdmssettleDataPacketInEventArgs : EventArgs {
  public string DataPacket { get; }
public byte[] DataPacketB { get; } }
Public Event OnDataPacketIn As OnDataPacketInHandler

Public Delegate Sub OnDataPacketInHandler(sender As Object, e As FdmssettleDataPacketInEventArgs)

Public Class FdmssettleDataPacketInEventArgs Inherits EventArgs
  Public ReadOnly Property DataPacket As String
Public ReadOnly Property DataPacketB As Byte() End Class

Remarks

This event fires when a packet is received. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or to extract additional response properties beyond the scope of this component.

DataPacketOut Event (FDMSSettle Component)

Fired when sending a data packet to the transaction server.

Syntax

public event OnDataPacketOutHandler OnDataPacketOut;

public delegate void OnDataPacketOutHandler(object sender, FdmssettleDataPacketOutEventArgs e);

public class FdmssettleDataPacketOutEventArgs : EventArgs {
  public string DataPacket { get; }
public byte[] DataPacketB { get; } }
Public Event OnDataPacketOut As OnDataPacketOutHandler

Public Delegate Sub OnDataPacketOutHandler(sender As Object, e As FdmssettleDataPacketOutEventArgs)

Public Class FdmssettleDataPacketOutEventArgs Inherits EventArgs
  Public ReadOnly Property DataPacket As String
Public ReadOnly Property DataPacketB As Byte() End Class

Remarks

This event fires right before each data packet is sent. The entire data packet (including all framing and error detection characters) is contained in the parameter "DataPacket". This parameter may be inspected for advanced troubleshooting, or may be modified to support additional features beyond the scope of this component.

Disconnected Event (FDMSSettle Component)

This event is fired when a connection is closed.

Syntax

public event OnDisconnectedHandler OnDisconnected;

public delegate void OnDisconnectedHandler(object sender, FdmssettleDisconnectedEventArgs e);

public class FdmssettleDisconnectedEventArgs : EventArgs {
  public int StatusCode { get; }
  public string Description { get; }
}
Public Event OnDisconnected As OnDisconnectedHandler

Public Delegate Sub OnDisconnectedHandler(sender As Object, e As FdmssettleDisconnectedEventArgs)

Public Class FdmssettleDisconnectedEventArgs Inherits EventArgs
  Public ReadOnly Property StatusCode As Integer
  Public ReadOnly Property Description As String
End Class

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

Error Event (FDMSSettle Component)

Fired when information is available about errors during data delivery.

Syntax

public event OnErrorHandler OnError;

public delegate void OnErrorHandler(object sender, FdmssettleErrorEventArgs e);

public class FdmssettleErrorEventArgs : EventArgs {
  public int ErrorCode { get; }
  public string Description { get; }
}
Public Event OnError As OnErrorHandler

Public Delegate Sub OnErrorHandler(sender As Object, e As FdmssettleErrorEventArgs)

Public Class FdmssettleErrorEventArgs Inherits EventArgs
  Public ReadOnly Property ErrorCode As Integer
  Public ReadOnly Property Description As String
End Class

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the component throws an exception.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

SSLServerAuthentication Event (FDMSSettle Component)

Fired after the server presents its certificate to the client.

Syntax

public event OnSSLServerAuthenticationHandler OnSSLServerAuthentication;

public delegate void OnSSLServerAuthenticationHandler(object sender, FdmssettleSSLServerAuthenticationEventArgs e);

public class FdmssettleSSLServerAuthenticationEventArgs : EventArgs {
  public string CertEncoded { get; }
public byte[] CertEncodedB { get; } public string CertSubject { get; } public string CertIssuer { get; } public string Status { get; } public bool Accept { get; set; } }
Public Event OnSSLServerAuthentication As OnSSLServerAuthenticationHandler

Public Delegate Sub OnSSLServerAuthenticationHandler(sender As Object, e As FdmssettleSSLServerAuthenticationEventArgs)

Public Class FdmssettleSSLServerAuthenticationEventArgs Inherits EventArgs
  Public ReadOnly Property CertEncoded As String
Public ReadOnly Property CertEncodedB As Byte() Public ReadOnly Property CertSubject As String Public ReadOnly Property CertIssuer As String Public ReadOnly Property Status As String Public Property Accept As Boolean End Class

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (FDMSSettle Component)

Fired when secure connection progress messages are available.

Syntax

public event OnSSLStatusHandler OnSSLStatus;

public delegate void OnSSLStatusHandler(object sender, FdmssettleSSLStatusEventArgs e);

public class FdmssettleSSLStatusEventArgs : EventArgs {
  public string Message { get; }
}
Public Event OnSSLStatus As OnSSLStatusHandler

Public Delegate Sub OnSSLStatusHandler(sender As Object, e As FdmssettleSSLStatusEventArgs)

Public Class FdmssettleSSLStatusEventArgs Inherits EventArgs
  Public ReadOnly Property Message As String
End Class

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

Status Event (FDMSSettle Component)

Shows the progress of the FDMS/Datawire connection.

Syntax

public event OnStatusHandler OnStatus;

public delegate void OnStatusHandler(object sender, FdmssettleStatusEventArgs e);

public class FdmssettleStatusEventArgs : EventArgs {
  public string Message { get; }
}
Public Event OnStatus As OnStatusHandler

Public Delegate Sub OnStatusHandler(sender As Object, e As FdmssettleStatusEventArgs)

Public Class FdmssettleStatusEventArgs Inherits EventArgs
  Public ReadOnly Property Message As String
End Class

Remarks

The event is fired for informational and logging purposes only. Used to track the progress of the connection.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

Fields

EffectiveDate
string (read-only)

Default Value: ""

This is the date on which this certificate becomes valid. Before this date, it is not valid. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

Encoded
string

Default Value: ""

This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
byte []

Default Value: ""

This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

ExpirationDate
string (read-only)

Default Value: ""

This is the date the certificate expires. After this date, the certificate will no longer be valid. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
string

Default Value: ""

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
string (read-only)

Default Value: ""

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
string (read-only)

Default Value: ""

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
string (read-only)

Default Value: ""

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
string (read-only)

Default Value: ""

This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

PrivateKey
string (read-only)

Default Value: ""

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
bool (read-only)

Default Value: False

This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
string (read-only)

Default Value: ""

This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
string (read-only)

Default Value: ""

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
string

Default Value: ""

This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
string (read-only)

Default Value: ""

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
string (read-only)

Default Value: ""

The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
string

Default Value: "MY"

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StoreB
byte []

Default Value: "MY"

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
string

Default Value: ""

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

StoreType
CertStoreTypes

Default Value: 0

This is the type of certificate store for this certificate.

The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Subject
string

Default Value: ""

This is the subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

SubjectAltNames
string (read-only)

Default Value: ""

This field contains comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
string (read-only)

Default Value: ""

This field contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
string (read-only)

Default Value: ""

This field contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
string (read-only)

Default Value: ""

This field contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
string

Default Value: ""

This field contains the text description of UsageFlags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signatures
  • Key Authentication
  • Key Encryption
  • Data Encryption
  • Key Agreement
  • Certificate Signing
  • Key Signing

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int

Default Value: 0

This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signatures
0x40Key Authentication (Non-Repudiation)
0x20Key Encryption
0x10Data Encryption
0x08Key Agreement
0x04Certificate Signing
0x02Key Signing

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
string (read-only)

Default Value: ""

This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Constructors

public Certificate();
Public Certificate()

Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.

public Certificate(string certificateFile);
Public Certificate(ByVal CertificateFile As String)

Opens CertificateFile and reads out the contents as an X.509 public key.

public Certificate(byte[] certificateData);
Public Certificate(ByVal CertificateData As Byte())

Parses CertificateData as an X.509 public key.

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to cstUser, cstMachine, cstPublicKeyFile, and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Encoded As Byte())

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Encoded As Byte())

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or Base64-encoded) containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

FDMSRecordType Type

Detail record storage type.

Remarks

This type contains the XML aggregate for a single transaction, as well as an XML aggregate of any additional addenda to be added to the record at settlement. The fields contained by this type are listed below.

Fields

AddendumAggregate
string

Default Value: ""

Optional Detail Record Addendum data (such as Level2 or Level3 data)

The DetailAggregate field contains an xml aggregate of the transaction retrieved from the FDMSECommerce, FDMSRetail, or FDMSDetailRecord component's GetDetailAggregate method. If you wish to accept corporate purchasing cards you will also need to send Level2, and possibly Level3 addendum data along with the DetailAggregate. The AddendumAggregate field takes an xml aggregate containing either Level2 or Level2 plus Level3 addendum data, which will be added to the DetailAggregate when sending the settlement. The AddendumAggregate may be created with either the FDMSLevel2 or FDMSLevel3 components, and then returned via those component's GetAddendum method.

For example:

//First, authorize the credit card FDMSECommerce.TransactionAmount = "2720"; // $27.20 FDMSECommerce.Authorize(); //Then, put the result into the settlement component FDMSSettle.DetailRecords.Add(New FDMSRecordType(FDMSECommerce.GetDetailAggregate())) //Then build the Level 2 portion FDMSLevel2.CardType = fctVisa; FDMSLevel2.CommercialCardType = FDMSECommerce.ResponseCommercialCard; FDMSLevel2.OrderDate = "230928"; // September 28th, 2023 FDMSLevel2.FreightTaxAmount = "0"; FDMSLevel2.FreightAmount = "600"; // $6.00 FDMSLevel2.PurchaseIdentifier = "123456PURCHID"; FDMSLevel2.ShippedToZip = "90210"; FDMSLevel2.ShippedFromZip = "90210"; FDMSLevel2.TaxAmount = "120"; // $1.20 //Now build the Level 3 portion FDMSLevel3.CardType = fctVisa FDMSLineItem item = new FDMSLineItem(); item.Quantity = 2; item.UnitCost = "500"; // $5.00 item.Units = "each"; item.TaxAmount = "60"; // $0.60 item.Total = "1060"; // $10.60 FDMSLevel3.LineItems.Add(item); item = new FDMSLineItem(); item.Quantity = 25; item.QuantityExponent = "1"; item.UnitCost = "400"; // $4.00 item.Units = "each"; item.TaxAmount = "60"; // $0.60 item.Total = "1060"; // $10.60 FDMSLevel3.LineItems.Add(item); //Finally, add the Level 2 and Level 3 addendum data to the settlement at the same index //as the associated transaction. FDMSSettle.DetailRecords[FDMSSettle.DetailRecords.Count()].AddendumAggregate = FDMSLevel2.GetAddendum() + FDMSLevel3.GetAddendum()

Note that you may mix corporate and non-corporate card transactions in the same settlement. It is not necessary that all DetailAggregates have a corresponding AddendumAggregate.

DetailAggregate
string

Default Value: ""

Set this field with xml aggregates of the transactions you wish to settle.

To settle previously authorized transactions, this field must be set with the xml aggregate returned from the FDMSECommerce, FDMSRetail, or FDMSDetailRecord component's GetDetailAggregate method. For instance:

FDMSSettle.DetailRecords.Add(new FDMSRecordtype(FDMSRetail1.GetDetailAggregate()));

On occasion, you may need to modify these aggregates before sending them to settlement. For instance, if you're running a restaurant you may need to add a gratuity to the charge. If you're accepting installment payments, you will need to add the installment info. To accomplish this, you may use the FDMSDetailRecord component.

For example, to add a gratuity to a charge:

FDMSDetailRecord.ParseAggregate(FDMSRetail.GetDetailAggregate()) FDMSDetailRecord.Gratuity = "500" FDMSDetailRecord.TransactionAmount = FDMSDetailRecord.TransactionAmount + FDMSDetailRecord.Gratuity FDMSSettle.DetailRecords.Add(New FDMSRecordType(FDMSDetailRecord.GetDetailAggregate()))

To settle a transaction authorized with the dmtInstallment TransactionType, you must use the FDMSDetailRecord component to add the number of this installment and the total count of all installments to be made. For instance, if the purchase was for "Three easy payments of $19.95", and this is the first payment, then the installment number will be 1, and the installment count 3. An example is included below:

FDMSECommerce.TransactionType = dmtInstallment FDMSECommerce.TransactionAmount = "1995" FDMSECommerce.Authorize() FDMSDetailRecord.ParseAggregate FDMSECommerce.GetDetailAggregate() FDMSDetailRecord.InstallmentCount = 3 FDMSDetailRecord.InstallmentNumber = 1 FDMSSettle.DetailRecords.Add(new FDMSRecordType(FDMSDetailRecord.GetDetailAggregate()))

Constructors

public FDMSRecordType();
Public FDMSRecordType()
public FDMSRecordType(string detailAggregate);
Public FDMSRecordType(ByVal DetailAggregate As String)
public FDMSRecordType(string detailAggregate, string addendumAggregate);
Public FDMSRecordType(ByVal DetailAggregate As String, ByVal AddendumAggregate As String)

FDMSSettleResponse Type

Contains the response to the batch settlement..

Remarks

This type contains the results of a transaction made with the FDMSSettle component. The fields contained by this type are listed below.

Fields

BatchNumber
string (read-only)

Default Value: "0"

FDMS-generated Id of the batch settlement.

This field is filled after a successful batch settlement, and contains a unique number which identifies the settlement with the FDMS processor. This number should be logged in case you have any questions about the settlement in the future.

BatchStatus
string (read-only)

Default Value: ""

Indicates success or failure of the entire settlement.

This field will be filled after calling the SendSettlement method. If it contains "OK", the batch settlement has succeeded. If it contains any other data, an error will be generated by the component. Possible responses include:

CodeDescription
OKBatch completed successfully.
DUP GEN RECORD Duplicate general record.
DUP RECORD Duplicate detail record.
INVLD ACCT 1 Merchant attempted to capture a transaction for which he is not entitled.
INVLD ACCT 2 Merchant entered an invalid account number (length or prefix error).
INVLD AMT 3 Merchant entered an invalid amount in the capture transaction.
INVLD FIELD DATA Invalid field data.
INVLD GENERAL TYPE Invalid or duplicate header record.
INVLD LENGTH Invalid length when extracting ISO field from data buffer.
INVLD RECORD TYPE Unknown record type.
INVLD SETTLE 4 The item count or dollar total does not agree. Correct and retransmit the entire batch.
INVLD SETTLE 5 System rejected batch for reasons unrelated to a specific record.
INVLD SUPPL DATA Invalid supplemental data.
INVLD TRANS CODE Invalid trans code.
NO HEADER RECORD No header record.
PLEASE RETRY Server has timed out. Please retry batch.
SUPPL OUT OF SEQ Supplemental batch sequence number does not match original.
TCH OUT OF SEQ Batch sequence number does not match count.
UNSUPPORTED TRAN Batch Review (Tran Code 97) not supported.
INV SETTL TR1 Batch rejected for invalid track 1 data
INV SETTL TR2 Batch rejected for invalid track 2 data
INVLD DATA! Data format does not correspond to fields identified in the bit map.
(any other data) Consider request not approved.

DatawireReturnCode
string (read-only)

Default Value: ""

Contains an error code providing more details about the DatawireStatus received.

When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the DatawireStatus will be "OK" and the DatawireReturnCode will be "000". These two fields have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This field only indicates that the request reached FDMS, and that FDMS responded with some data.

The CaptureFlag and ApprovalCode fields contain the actual transaction result that was returned by FDMS.

The following is a list of possible Datawire return codes:

000 Transaction successfully passed through the Datawire system to the FDMS Payment Processor and back.
200 Host Busy - The processor's Host is busy and is currently unable to service this request.
201 Host Unavailable - The processor's Host is currently unavailable. For example, the server is sending NAK.
202 Host Connect Error - Could not connect to the processor's Host.
203 Host Drop - The processor's Host disconnected during the transaction before sending a response.
204 Host Comm Error - An error was encountered while communicating with the processor's Host.
205 No Response - No response from the processor's Host
206 Host Send Error - An error has encountered when sending the request to the processor, and the Host daemon cannot continue sending packets to the processor because the connection is broken.
405 Vxn Timeout - The request could not be processed.
505 Network Error - The request could not be processed.

DatawireStatus
string (read-only)

Default Value: ""

Status of the communication with Datawire.

When a transaction is successfully passed from the application, through the Datawire system to the FDMS payment processor and back, the DatawireStatus will be "OK" and the DatawireReturnCode will be "000". These two fields have NO BEARING on the actual results of any transaction. Even though the transaction has successfully passed through the Datawire system, it can still fail to be processed successfully by FDMS. This field only indicates that the request reached FDMS, and that FDMS responded with some data.

The CaptureFlag and ApprovalCode fields contains the actual FDMS Transaction Result that was returned.

The following is a list of possible Datawire response status codes:

OKTransaction has successfully passed through the Datawire system to the FDMS Payment processor and back.
AuthenticationErrorDatawireId in the request was not successfully authenticated.
UnknownServiceIDServiceId part of the URL (in the Service Discovery or Ping request) is unknown.
WrongSessionContextThe SessionContext element of the Session Transaction request does not match the SessionContext returned by the InitiateSession response (applicable to the FDMSSettle component).
AccessDeniedGenerally, occurs when you try to register a merchant after a merchant has already been activated to use the Datawire VXN.
FailedYour Merchant Registration has failed. Contact tech.support@datawire.net for more information.
RetryRegistration is not yet complete. You must send the Registration request again.
TimeoutNo response from the Service Provider was received during the expected period of time.
XMLErrorRequest contains some XML error, such as malformed XML, violation of this DTD, etc.
OtherErrorUnspecified error occurred.
008Network Error

Constructors

Proxy Type

The proxy the component will connect to.

Remarks

When connecting through a proxy, this type is used to specify different properties of the proxy, such as the Server and the AuthScheme.

Fields

AuthScheme
ProxyAuthSchemes

Default Value: 0

This field is used to tell the component which type of authorization to perform when connecting to the proxy. This is used only when the User and Password fields are set.

AuthScheme should be set to authNone (3) when no authentication is expected.

By default, AuthScheme is authBasic (0), and if the User and Password fields are set, the component will attempt basic authentication.

If AuthScheme is set to authDigest (1), digest authentication will be attempted instead.

If AuthScheme is set to authProprietary (2), then the authorization token will not be generated by the component. Look at the configuration file for the component being used to find more information about manually setting this token.

If AuthScheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this field will clear the values of User and Password.

AutoDetect
bool

Default Value: False

This field tells the component whether or not to automatically detect and use proxy system settings, if available. The default value is false.

Password
string

Default Value: ""

This field contains a password if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Port
int

Default Value: 80

This field contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). See the description of the Server field for details.

Server
string

Default Value: ""

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the Server field is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the Server field is set to the corresponding address. If the search is not successful, an error is returned.

SSL
ProxySSLTypes

Default Value: 0

This field determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the component will use the psTunnel option. If the URL is an http URL, the component will use the psNever option.
psAlways (1)The connection is always SSL enabled.
psNever (2)The connection is not SSL enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

User
string

Default Value: ""

This field contains a username if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password fields are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Constructors

public Proxy();
Public Proxy()
public Proxy(string server, int port);
Public Proxy(ByVal Server As String, ByVal Port As Integer)
public Proxy(string server, int port, string user, string password);
Public Proxy(ByVal Server As String, ByVal Port As Integer, ByVal User As String, ByVal Password As String)

Config Settings (FDMSSettle Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

FDMSSettle Config Settings

ClientTimeout:   Indicates timeout client application will wait for response.

This setting indicates the interval of time, in seconds, a client will wait for the response for any given request. Normally this value is set to a value 5 seconds less than the Timeout value to allow for a response to be received from Datawire. It may be changed independently by setting this configuration setting AFTER setting the Timeout property. Note that too small a value will cause Datawire to reject a transaction immediately.

DetailErrorIndex:   Contains the detail record number that caused the error during settlement.

This field will be populated when an error, caused by a specific detail record, occurs during settlement. This allows you to obtain and review the specific detail record that caused the error. The returned value will need to be adjusted accordingly to obtain the actual index of DetailRecords. For example, if you are using zero-based indexes, a 1 will need to be subtracted from the returned value.

RawRequest:   Returns the request sent to the server for debugging purposes.

After an operation this setting may be queried to return the request as it was sent to the server. This is useful for debugging purposes.

RawResponse:   Returns the response received from the server for debugging purposes.

After an operation this setting may be queried to return the response as it was received from the server. This is useful for debugging purposes.

UseEnhancedSettlement:   Forces enhanced settlement mode.

By default, enhanced settlement is only used when passing Level 2 or Level 3 data in the settlement, or for the Restaurant industry type. Setting this to True will force enhanced settlement mode for all industry types which would normally use the Simple Settlement protocol.

TCPClient Config Settings

CloseStreamAfterTransfer:   If true, the component will close the upload or download stream after the transfer.

This setting determines whether the input or output stream is closed after the transfer completes. When set to True (default), all streams will be closed after a transfer is completed. In order to keep streams open after the transfer of data, set this to False. the default value is True.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the component will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the component whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallListener:   If true, the component binds to a SOCKS firewall as a server (TCPClient only).

This entry is for TCPClient only and does not work for other components that descend from TCPClient.

If this entry is set, the component acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.

RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.

The connection to the firewall is made by calling the Connect method.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the component throws an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the component throws an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the component binds.

This must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the component will use IPv4 exclusively. When set to 1, the component will use IPv6 exclusively. To instruct the component to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback
UseNTLMv2:   Whether to use NTLM V2.

When authenticating with NTLM, this setting specifies whether NTLM V2 is used. By default this value is False and NTLM V1 will be used. Set this to True to use NTLM V2.

SSL Config Settings

CACertFilePaths:   The paths to CA certificate files when using Mono on Unix/Linux.

This setting specifies the paths on disk to CA certificate files when using Mono on Unix/Linux. It is not applicable in any other circumstances.

The value is formatted as a list of paths separated by semicolons. The component will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the component will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the component is the same.

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the component will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component throws an exception.

When set to 0 (default) the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the component will use OCSP to check the validity of the server certificate. If set to 1 or 2, the component will first obtain the OCSP URL from the server certificate's OCSP extension. The component will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component throws an exception.

When set to 0 (default) the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30) [Platform Only]
SSL2 12 (Hex 0C) [Platform Only]

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the component will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available in Java or when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the component will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the component throws an exception.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The component will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the component does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the component will use the system security libraries by default to perform cryptographic functions where applicable. In this case, calls to unmanaged code will be made. In certain environments, this is not desirable. To use a completely managed security implementation, set this setting to true.

Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.

If using the .NET Standard Library, this setting will be true on all platforms. The .NET Standard library does not support using the system security libraries.

Note: This setting is static. The value set is applicable to all components used in the application.

When this value is set, the product's system dynamic link library (DLL) is no longer required as a reference, as all unmanaged code is stored in that file.

Trappable Errors (FDMSSettle Component)

FDMSSettle Errors

432   Invalid index.
501   Invalid length for this property.
502   Invalid data format for this property.
503   Value is out of range.
504   Credit card digit check failed.
505   Card date invalid.
506   Card expired.
519   Corrupt response.
520   Response payload empty.
521   Response truncated.
526   Invalid timeout value.
593   A property required for this transaction is missing.
529   Error in XML response.
530   Status code received in response indicates an error condition.
531   Return code received in response indicates an error condition.
532   Cannot generate detail aggregate - this transaction was not successfully authorized.
533   Internal error constructing payload.
550   Payload received from FDMS indicates settlement error.
551   The XML aggregate contained in DetailAggregate or AddendumAggregate is in error.
552   No session context.
553   Cannot send empty payload.
555   URL Cache is empty.

The component may also return one of the following error codes, which are inherited from other components.

HTTP Errors

118   Firewall Error. Error description contains detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in URL
153   Specified URLScheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Can't open AttachedFile.

The component may also return one of the following error codes, which are inherited from other components.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the component is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
303   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).