4D E-Banking SDK 2022 C++ Edition
Version 22.0 [Build 8593]

InvStatement Class

Properties   Methods   Events   Config Settings   Errors  

The InvStatement class is a single class that supports the SignOn and Investment Statement Download functions of Open Financial eXchange, as described by the OFX Specification version 1.0.2.

Syntax

InvStatement

Remarks

This class adds detailed investment account statement download functionality to your desktop application, or allows your web application to fetch a user's investment statement without having to redirect to another website. All downloads are done using a secure HTTPS Post to send account sign on information to a financial institution. The InvStatement class receives the secure response and parses the response into its properties.

To use the InvStatement class first identify the financial institution by setting the FIId, FIOrganization and FIUrl, properties. Next identify the OFX user and application by setting the OFXUser, OFXPassword, OFXAppId and OFXAppVersion properties. Next set the BrokerId and AccountId properties to the appropriate values to identify the account for which you wish to download a statement.

The following properties provide additional control over the request:

IncludeTransactionsWhether you want the investment transactions to be included in the statement download.
StartDateTo constrain the investment transaction list.
EndDateTo constrain the investment transaction list.
IncludePositionsWhether you want the positions to be included in the statement download.
AsOfDateTo constrain the positions list.
IncludeOpenOrdersWhether you want the open orders to be included in the statement download.
IncludeBalancesWhether you want the account balances to be included in the statement download.

Once you have finished setting the properties that describe the statement you wish to download, use the GetStatement method to build and transmit the request automatically. When the response returns, the transaction(s) properties will be populated automatically, together with StartDate, EndDate and any other data the investment statement includes.

The server's response consists of five blocks of information:

  • Transactions: a combination of bank transaction detail records and investment transaction detail records. Transactions only within the specified start and stop dates are sent.
  • Positions: positions a user has at a brokerage. Each statement response contains a complete set of position records, even if no transactions occurred in the requested statement period for a particular holding.
  • Balances: current balances typically reported on an FI statement, such as cash balance or buying power. They can also convey other items of interest, such as current interest rates.
  • Open Orders: current open trading orders that a user has at a brokerage.
  • Securities: any security referenced in either transactions, positions, or open orders.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

AccountIdThe account number used for the next statement download.
AsOfDateDate for returned list of positions.
AvailableCashCash balance across all sub-accounts.
BalCountThe number of records in the Bal arrays.
BalAggregateWrapper for an investment balance.
BalAmountThe value of the current balance.
BalTypeThe type of balance.
BalDescriptionA description of the current balance.
BalNameThe name for the current balance.
BalTypeDescriptionA description of the balance type.
BrokerIdUnique identifier for the FI.
BuyingPowerBuying power.
ClosingDetailCountThe number of records in the ClosingDetail arrays.
ClosingDetailAggregateAggregates are pieces of XML taken from the financial institution's original response.
ClosingDetailFITIDUnique identifier assigned by financial institution to identify this particular statement closing information.
ClosingDetailImageRefServer specified unique identifier for the statement closing image.
ClosingDetailImageRefTypeType of retrieval method for actual statement closing image.
CurrencyCodeDefault currency code for this statement.
EndDateEnd date of requested transaction list.
FIIdFinancial institution identifier.
FIOrganizationFinancial institution organization name.
FirewallAutoDetectThis property tells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallTypeThis property determines the type of firewall to connect through.
FirewallHostThis property contains the name or IP address of firewall (optional).
FirewallPasswordThis property contains a password if authentication is to be used when connecting through the firewall.
FirewallPortThis property contains the transmission control protocol (TCP) port for the firewall Host .
FirewallUserThis property contains a user name if authentication is to be used connecting through a firewall.
FIUrlFinancial institution URL.
ImageFileNameFilename and location to save the image content of a transaction or statement.
IncludeBalancesSpecifies whether or not to include balances in the statement download.
IncludeImagesWhether the server has to return data for bank transactions or closing statements images.
IncludeOpenOrdersSpecifies whether or not to include open orders in the response.
IncludePositionsSpecifies whether or not to include positions in the statement download.
IncludeTransactionsWhether to include transactions in the statement download.
MarginBalanceMargin balance.
MarketingInfoMarketing information (at most one).
OFXAccessKeyAccess key value received after a MFA authentication in a previous signon.
OFXAppIdOFX application identifier.
OFXAppVersionOFX application version.
OFXPasswordUser's password.
OFXRequestThe current OFX request aggregate.
OFXResponseThe current OFX response aggregate.
OFXUserUser's id.
OFXVersionOFX API version.
OOCountThe number of records in the OO arrays.
OOAggregateWrapper for a general open order, each pertaining to a different aggregate type.
OOBuyTypeType of purchase for this open order.
OODatePlacedDate-time the order was placed.
OODurationIndicates how long the open order is good for.
OOFITIDTransaction Id assigned by the financial institution.
OOMemoOther information about an open order (at most one).
OOTypeType for general open order aggregate.
OORestrictionSpecial restriction on the open order.
OOSecurityIdSecurity ID for this open order.
OOSellTypeType of sale.
OOSubAccountTypeThis identifies the type of a sub-account.
OOTypeDescriptionA description of the open order type.
OOUnitsQuantity of the security the open order is for.
OOUnitTypeWhat the units represent.
PosCountThe number of records in the Pos arrays.
PosAccountIndicates the type of sub-account where the position is held in.
PosAggregateWrapper for a position information.
PosDatePriceAsOfDate and time of unit price and market value.
PosMarketValueCurrent market value of this position.
PosMemoMemo regarding this position.
PosOptionIndicates position type for the given sub-account where this position takes place.
PosTypeType for general position aggregate.
PosSecurityIdThe security ID for this position.
PosTypeDescriptionA description of the position type.
PosUnitPriceUnit price.
PosUnitsQuantity of positions.
SecCountThe number of records in the Sec arrays.
SecAggregateWrapper for security information.
SecAssetClassAsset Class for the security (at most one).
SecFITIDTransaction Id assigned by the financial institution.
SecMemoMemo regarding this security.
SecNameFull name of the security.
SecTypeThe type of security.
SecSecurityIdSecurity identifier.
SecTickerTicker symbol of the security.
SecTypeDescriptionA description of the security type.
SecUnitPriceThis is the current unit price of the security as provided by the server.
SecYieldCurrent yield reported as portion of the fund's assets (at most one).
ShortBalanceMarket value of all short positions.
SSLAcceptServerCertEncodedThis is the certificate (PEM/base64 encoded).
SSLCertEncodedThis is the certificate (PEM/base64 encoded).
SSLCertStoreThis is the name of the certificate store for the client certificate.
SSLCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLCertStoreTypeThis is the type of certificate store for this certificate.
SSLCertSubjectThis is the subject of the certificate used for client authentication.
SSLProviderThis specifies the SSL/TLS implementation to use.
SSLServerCertEncodedThis is the certificate (PEM/base64 encoded).
StartDateStart date of requested transaction list.
StatementDateDate and time for the statement download.
TimeoutA timeout for the class.
TxCountThe number of records in the Tx arrays.
TxAggregateWrapper for an investment statement transaction.
TxDateFor other than banking transactions, this is the date when the transaction trade occurred, and for stock splits, this is the day of record stored as a string.
TxDateSettleFor other than banking transactions, this is the date when settlement occurred, and for stock splits, this is the execution date.
TxFITIDTransaction Id assigned by the financial institution.
TxMemoOther information (memo) regarding this transaction.
TxNameName for this bank transaction.
TxSecurityIdSecurity ID for this investment transaction.
TxSubAccountFundThe sub-account associated with the funds for the transaction.
TxSubAccountSecSub-account type for the security.
TxTotalTransaction amount.
TxTypeThis is the type of transaction that was made on the account.
TxTypeDescriptionA description of the transaction type.
TxUnitPricePrice per commonly-quoted unit, excluding markup/markdown.
TxUnitsThe quantity for security-based actions other than stock splits.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
GetClosingInfoDownload a statement closing information for an investment account.
GetImageRequest and retrieve a check or statement image (if available).
GetStatementDownloads statement for an investment account.
ReadOFXDataFileReads an OFX response from a file.
ResetReset the internal state of the class and all properties to their default values.
WriteOFXDataFileWrites the OFX response sent by the server to a file.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ConnectionStatusThis event is fired to indicate changes in the connection state.
ErrorInformation about errors during data delivery.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusShows the progress of the secure connection.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AuthTokenAuthentication token required for this signon session only.
ClientUIdUnique ID identifying OFX Client.
CorrectAction[i]The action taken to a previously sent transaction corrected by the current one.
CorrectFITID[i]The FITID of a previously sent transaction corrected by the current one.
CurrencyFormatThe format to be used for returning currency values.
DateFormatThe format to be used for input and output dates.
GetResponseVarParses additional information out of the response.
NewPasswordNew password for the current OFX user.
OFXDateFormatThe date format as required by OFX FI server.
OFXLogLog file for the OFX transaction.
ServerMessageServer message if a warning or other information returned.
UserCred1AAdditional user credential required by server.
UserCred2AAdditional user credential required by server.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the class.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the class will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the class.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the class.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UsePlatformHTTPClientWhether or not to use the platform HTTP client.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveRetryCountThe number of keep-alive packets to be sent before the remotehost is considered disconnected.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated ciphersuite.
SSLNegotiatedCipherStrengthReturns the negotiated ciphersuite strength.
SSLNegotiatedCipherSuiteReturns the negotiated ciphersuite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseInternalSecurityAPITells the class whether or not to use the system security libraries or an internal implementation.

AccountId Property (InvStatement Class)

The account number used for the next statement download.

Syntax

ANSI (Cross Platform)
char* GetAccountId();
int SetAccountId(const char* lpszAccountId); Unicode (Windows) LPWSTR GetAccountId();
INT SetAccountId(LPCWSTR lpszAccountId);
char* inebank_invstatement_getaccountid(void* lpObj);
int inebank_invstatement_setaccountid(void* lpObj, const char* lpszAccountId);
QString GetAccountId();
int SetAccountId(QString qsAccountId);

Default Value

""

Remarks

This is the account number for which the user wishes to download a statement. This is used during signon. This property is required to be specified when the GetStatement method is called and is also included in the server response.

Data Type

String

AsOfDate Property (InvStatement Class)

Date for returned list of positions.

Syntax

ANSI (Cross Platform)
char* GetAsOfDate();
int SetAsOfDate(const char* lpszAsOfDate); Unicode (Windows) LPWSTR GetAsOfDate();
INT SetAsOfDate(LPCWSTR lpszAsOfDate);
char* inebank_invstatement_getasofdate(void* lpObj);
int inebank_invstatement_setasofdate(void* lpObj, const char* lpszAsOfDate);
QString GetAsOfDate();
int SetAsOfDate(QString qsAsOfDate);

Default Value

""

Remarks

This property is optional. It must be specified when IncludePositions property is set to True. If it is not included with the request, the server should return the most current position information available.

All input dates should be entered in the format specified by DateFormat. For example, if the DateFormat is set to "MM/dd/yyyy hh:mm:ss" (default value), an input date should look like: 09/30/2009 12:00:00 AM.

This format specifies also how the returned dates are going to get parsed.

Data Type

String

AvailableCash Property (InvStatement Class)

Cash balance across all sub-accounts.

Syntax

ANSI (Cross Platform)
char* GetAvailableCash();

Unicode (Windows)
LPWSTR GetAvailableCash();
char* inebank_invstatement_getavailablecash(void* lpObj);
QString GetAvailableCash();

Default Value

""

Remarks

This should include sweep funds as well.

This property is always returned with the balance information if such information is requested to be included (IncludeBalances was set to True) in the investment statement download request (when calling the GetStatement method).

This property is read-only.

Data Type

String

BalCount Property (InvStatement Class)

The number of records in the Bal arrays.

Syntax

ANSI (Cross Platform)
int GetBalCount();

Unicode (Windows)
INT GetBalCount();
int inebank_invstatement_getbalcount(void* lpObj);
int GetBalCount();

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at BalCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

BalAggregate Property (InvStatement Class)

Wrapper for an investment balance.

Syntax

ANSI (Cross Platform)
char* GetBalAggregate(int iBalIndex);

Unicode (Windows)
LPWSTR GetBalAggregate(INT iBalIndex);
char* inebank_invstatement_getbalaggregate(void* lpObj, int balindex);
QString GetBalAggregate(int iBalIndex);

Default Value

""

Remarks

Wrapper for an investment balance.

This allows an FI to send any number of balances to the user, complete with description and Help text. The intent is to capture the same type of balance information present on the first page of many FI brokerage statements. This aggregate can also be used to send margin call information.

This property is an optional field. When calling the GetStatement method, if the server's response does not contain this value, querying the property will return an empty string.

Aggregates are pieces of XML taken from the financial institution's original response. They contain elements that correspond to many of the class's properties. However, some of these elements, and/or their potential values, may not be supported by the class. Any user who wishes to use unsupported fields may use this aggregate property to parse out the desired data either via our OFXAggregate class or any other means.

Note: The original data from the server is returned as SGML or XML (depending on the value of OFXVersion that FI supports. If the original data is returned in SGML format, the class internally manipulates these responses into the equivalent XML format by inserting close element tags (e.g., "</ACCTID>") into the data as it comes from the server.

The BalIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BalCount property.

This property is read-only and not available at design time.

Data Type

String

BalAmount Property (InvStatement Class)

The value of the current balance.

Syntax

ANSI (Cross Platform)
char* GetBalAmount(int iBalIndex);

Unicode (Windows)
LPWSTR GetBalAmount(INT iBalIndex);
char* inebank_invstatement_getbalamount(void* lpObj, int balindex);
QString GetBalAmount(int iBalIndex);

Default Value

""

Remarks

The value of the current balance. Interpretation of this depends on the value of BalType property:

Value of BalTypeFormat of BalAmount
DOLLARFormatted as DDDD.cc
PERCENTFormatted as XXXX.YYYY
NUMBERFormatted as is

If a balance list is present in the server response, the BalAmount is always present in the response for each balance listed.

The BalIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BalCount property.

This property is read-only and not available at design time.

Data Type

String

BalType Property (InvStatement Class)

The type of balance.

Syntax

ANSI (Cross Platform)
int GetBalType(int iBalIndex);

Unicode (Windows)
INT GetBalType(INT iBalIndex);

Possible Values

BT_DOLLAR(0), 
BT_PERCENT(1),
BT_NUMBER(2),
BT_OTHER(255)
int inebank_invstatement_getbaltype(void* lpObj, int balindex);
int GetBalType(int iBalIndex);

Default Value

0

Remarks

The type of balance. Possible values for balance types and their meanings are as follows:

btDOLLAR (0)Dollar (BalValue formatted as DDDD.cc)
btPERCENT (1)percentage (BalValue formatted as XXXX.YYYY)
btNUMBER (2)number (BalValue formatted as is)
ptOTHER (255)Other

If a balance list is present in the server response, the BalType is always present in the response for each balance listed.

The BalIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BalCount property.

This property is read-only and not available at design time.

Data Type

Integer

BalDescription Property (InvStatement Class)

A description of the current balance.

Syntax

ANSI (Cross Platform)
char* GetBalDescription(int iBalIndex);

Unicode (Windows)
LPWSTR GetBalDescription(INT iBalIndex);
char* inebank_invstatement_getbaldescription(void* lpObj, int balindex);
QString GetBalDescription(int iBalIndex);

Default Value

""

Remarks

A description of the current balance. If a balance list is present in the server response, the BalDescription is always present in the response for each balance listed.

The BalIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BalCount property.

This property is read-only and not available at design time.

Data Type

String

BalName Property (InvStatement Class)

The name for the current balance.

Syntax

ANSI (Cross Platform)
char* GetBalName(int iBalIndex);

Unicode (Windows)
LPWSTR GetBalName(INT iBalIndex);
char* inebank_invstatement_getbalname(void* lpObj, int balindex);
QString GetBalName(int iBalIndex);

Default Value

""

Remarks

The name for the current balance. If a balance list is present in the server response, the BalName is always present in the response for each balance listed.

The BalIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BalCount property.

This property is read-only and not available at design time.

Data Type

String

BalTypeDescription Property (InvStatement Class)

A description of the balance type.

Syntax

ANSI (Cross Platform)
char* GetBalTypeDescription(int iBalIndex);

Unicode (Windows)
LPWSTR GetBalTypeDescription(INT iBalIndex);
char* inebank_invstatement_getbaltypedescription(void* lpObj, int balindex);
QString GetBalTypeDescription(int iBalIndex);

Default Value

""

Remarks

A description of the balance type. This is a string representation of the value returned by the BalType property.

The corresponding description for each balance type are as follows:

btDOLLAR (0)Dollar
btPERCENT (1)Dollar
btNUMBER (2)Number
btOTHER (255)Other

The BalIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BalCount property.

This property is read-only and not available at design time.

Data Type

String

BrokerId Property (InvStatement Class)

Unique identifier for the FI.

Syntax

ANSI (Cross Platform)
char* GetBrokerId();
int SetBrokerId(const char* lpszBrokerId); Unicode (Windows) LPWSTR GetBrokerId();
INT SetBrokerId(LPCWSTR lpszBrokerId);
char* inebank_invstatement_getbrokerid(void* lpObj);
int inebank_invstatement_setbrokerid(void* lpObj, const char* lpszBrokerId);
QString GetBrokerId();
int SetBrokerId(QString qsBrokerId);

Default Value

""

Remarks

This property holds the identifier of the OFX Financial Institution and is used during signon. This value is unique for each organization name.

It is required to be specified when the GetStatement method is called and is also included in the server response.

Data Type

String

BuyingPower Property (InvStatement Class)

Buying power.

Syntax

ANSI (Cross Platform)
char* GetBuyingPower();

Unicode (Windows)
LPWSTR GetBuyingPower();
char* inebank_invstatement_getbuyingpower(void* lpObj);
QString GetBuyingPower();

Default Value

""

Remarks

The amount of money available to buy securities. In a margin account, the buying power is the total cash held in the brokerage account plus maximum margin available.

This property is an optional field. When calling the GetStatement method, if the server's response does not contain this value, querying the property will return an empty string.

This property is read-only.

Data Type

String

ClosingDetailCount Property (InvStatement Class)

The number of records in the ClosingDetail arrays.

Syntax

ANSI (Cross Platform)
int GetClosingDetailCount();

Unicode (Windows)
INT GetClosingDetailCount();
int inebank_invstatement_getclosingdetailcount(void* lpObj);
int GetClosingDetailCount();

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at ClosingDetailCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

ClosingDetailAggregate Property (InvStatement Class)

Aggregates are pieces of XML taken from the financial institution's original response.

Syntax

ANSI (Cross Platform)
char* GetClosingDetailAggregate(int iClosingDetailIndex);

Unicode (Windows)
LPWSTR GetClosingDetailAggregate(INT iClosingDetailIndex);
char* inebank_invstatement_getclosingdetailaggregate(void* lpObj, int closingdetailindex);
QString GetClosingDetailAggregate(int iClosingDetailIndex);

Default Value

""

Remarks

Aggregates are pieces of XML taken from the financial institution's original response. They contain elements that correspond to many of the class's properties. However, some of these elements, and/or their potential values, may not be supported by the class. Any user who wishes to use unsupported fields may use this aggregate property to parse out the desired data either via our OFXAggregate class or any other means.

Note: The original data from the server is returned as SGML or XML (depending on the value of OFXVersion that FI supports. If the original data is returned in SGML format, the class internally manipulates these responses into the equivalent XML format by inserting close element tags (e.g., "</ACCTID>") into the data as it comes from the server.

This aggregate describes a statement closing information. It contains data (elements and values) associated with the following properties:

For each aggregate returned, clients can retrieve corresponding transactions by using ClosingDetailDateStart and ClosingDetailDateEnd in a statement download request (when calling GetStatement method).

The ClosingDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ClosingDetailCount property.

This property is read-only and not available at design time.

Data Type

String

ClosingDetailFITID Property (InvStatement Class)

Unique identifier assigned by financial institution to identify this particular statement closing information.

Syntax

ANSI (Cross Platform)
char* GetClosingDetailFITID(int iClosingDetailIndex);

Unicode (Windows)
LPWSTR GetClosingDetailFITID(INT iClosingDetailIndex);
char* inebank_invstatement_getclosingdetailfitid(void* lpObj, int closingdetailindex);
QString GetClosingDetailFITID(int iClosingDetailIndex);

Default Value

""

Remarks

Unique identifier assigned by financial institution to identify this particular statement closing information. This id provides a way for the client to distinguish one closing statement from another.

This is always returned in the server response for each statement.

The ClosingDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ClosingDetailCount property.

This property is read-only and not available at design time.

Data Type

String

ClosingDetailImageRef Property (InvStatement Class)

Server specified unique identifier for the statement closing image.

Syntax

ANSI (Cross Platform)
char* GetClosingDetailImageRef(int iClosingDetailIndex);

Unicode (Windows)
LPWSTR GetClosingDetailImageRef(INT iClosingDetailIndex);
char* inebank_invstatement_getclosingdetailimageref(void* lpObj, int closingdetailindex);
QString GetClosingDetailImageRef(int iClosingDetailIndex);

Default Value

""

Remarks

Server specified unique identifier for the statement closing image.

This can be either image identifier (to be used during the request to retrieve the actual image when the GetImage method is called) or URL, depending on the value of ClosingDetailImageRefType.

The ClosingDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ClosingDetailCount property.

This property is read-only and not available at design time.

Data Type

String

ClosingDetailImageRefType Property (InvStatement Class)

Type of retrieval method for actual statement closing image.

Syntax

ANSI (Cross Platform)
char* GetClosingDetailImageRefType(int iClosingDetailIndex);

Unicode (Windows)
LPWSTR GetClosingDetailImageRefType(INT iClosingDetailIndex);
char* inebank_invstatement_getclosingdetailimagereftype(void* lpObj, int closingdetailindex);
QString GetClosingDetailImageRefType(int iClosingDetailIndex);

Default Value

""

Remarks

Type of retrieval method for actual statement closing image.

If ClosingDetailImageRef is returned in the response, this can be either image identifier (to be used during the request for the image when the GetImage method is called) or a URL.

Possible values for ClosingDetailImageRefType are:

Value Meaning
OPAQUE Requires the client to send a separate OFX request to access the image. The image can be retrieved by calling the GetImage method where ClosingDetailImageRef will be the parameter value for this method.
URL The image is accessed directly via the URL provided. The client will not provide authentication and will simply follow the URL provided.
FORMURL The image is accessed directly via an encoded URL. The client will send authentication to the server.

The ClosingDetailIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ClosingDetailCount property.

This property is read-only and not available at design time.

Data Type

String

CurrencyCode Property (InvStatement Class)

Default currency code for this statement.

Syntax

ANSI (Cross Platform)
char* GetCurrencyCode();

Unicode (Windows)
LPWSTR GetCurrencyCode();
char* inebank_invstatement_getcurrencycode(void* lpObj);
QString GetCurrencyCode();

Default Value

""

Remarks

Indicates how to interpret the monetary amounts in the current statement. This is a 3-character ISO-4217 currency code, such as USD and EUR.

This property is read-only.

Data Type

String

EndDate Property (InvStatement Class)

End date of requested transaction list.

Syntax

ANSI (Cross Platform)
char* GetEndDate();
int SetEndDate(const char* lpszEndDate); Unicode (Windows) LPWSTR GetEndDate();
INT SetEndDate(LPCWSTR lpszEndDate);
char* inebank_invstatement_getenddate(void* lpObj);
int inebank_invstatement_setenddate(void* lpObj, const char* lpszEndDate);
QString GetEndDate();
int SetEndDate(QString qsEndDate);

Default Value

""

Remarks

Date range if transactions should be downloaded. This is a string representing the date at which to stop listing transactions on the statement. Use this property and StartDate to constrain the list of transactions retrieved when calling GetStatement. This property is optional and can be specified when IncludeTransactions property is set to True. If this is empty, today's date will be passed in the request by default.

This is the value that should be sent in the next StartDate request to insure that no transactions are missed.

The EndDate will be returned in the server's response either with the value provided in the request, or as today's date if an end date was not included in the request.

All input dates should be entered in the format specified by DateFormat. For example, if the DateFormat is set to "MM/dd/yyyy hh:mm:ss" (default value), an input date should look like: 09/30/2009 12:00:00 AM.

This format specifies also how the returned dates are going to get parsed.

Data Type

String

FIId Property (InvStatement Class)

Financial institution identifier.

Syntax

ANSI (Cross Platform)
char* GetFIId();
int SetFIId(const char* lpszFIId); Unicode (Windows) LPWSTR GetFIId();
INT SetFIId(LPCWSTR lpszFIId);
char* inebank_invstatement_getfiid(void* lpObj);
int inebank_invstatement_setfiid(void* lpObj, const char* lpszFIId);
QString GetFIId();
int SetFIId(QString qsFIId);

Default Value

""

Remarks

FIId holds the identifier of the OFX Financial Institution and is used during signon. This value is unique for each organization name.

Data Type

String

FIOrganization Property (InvStatement Class)

Financial institution organization name.

Syntax

ANSI (Cross Platform)
char* GetFIOrganization();
int SetFIOrganization(const char* lpszFIOrganization); Unicode (Windows) LPWSTR GetFIOrganization();
INT SetFIOrganization(LPCWSTR lpszFIOrganization);
char* inebank_invstatement_getfiorganization(void* lpObj);
int inebank_invstatement_setfiorganization(void* lpObj, const char* lpszFIOrganization);
QString GetFIOrganization();
int SetFIOrganization(QString qsFIOrganization);

Default Value

""

Remarks

This is the name of the OFX Financial Institution and is used during signon. Each organization has a unique FIId that must also be used at signon.

Data Type

String

FirewallAutoDetect Property (InvStatement Class)

This property tells the class whether or not to automatically detect and use firewall system settings, if available.

Syntax

ANSI (Cross Platform)
int GetFirewallAutoDetect();
int SetFirewallAutoDetect(int bFirewallAutoDetect); Unicode (Windows) BOOL GetFirewallAutoDetect();
INT SetFirewallAutoDetect(BOOL bFirewallAutoDetect);
int inebank_invstatement_getfirewallautodetect(void* lpObj);
int inebank_invstatement_setfirewallautodetect(void* lpObj, int bFirewallAutoDetect);
bool GetFirewallAutoDetect();
int SetFirewallAutoDetect(bool bFirewallAutoDetect);

Default Value

FALSE

Remarks

This property tells the class whether or not to automatically detect and use firewall system settings, if available.

Data Type

Boolean

FirewallType Property (InvStatement Class)

This property determines the type of firewall to connect through.

Syntax

ANSI (Cross Platform)
int GetFirewallType();
int SetFirewallType(int iFirewallType); Unicode (Windows) INT GetFirewallType();
INT SetFirewallType(INT iFirewallType);

Possible Values

FW_NONE(0), 
FW_TUNNEL(1),
FW_SOCKS4(2),
FW_SOCKS5(3),
FW_SOCKS4A(10)
int inebank_invstatement_getfirewalltype(void* lpObj);
int inebank_invstatement_setfirewalltype(void* lpObj, int iFirewallType);
int GetFirewallType();
int SetFirewallType(int iFirewallType);

Default Value

0

Remarks

This property determines the type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. FirewallPort is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Data Type

Integer

FirewallHost Property (InvStatement Class)

This property contains the name or IP address of firewall (optional).

Syntax

ANSI (Cross Platform)
char* GetFirewallHost();
int SetFirewallHost(const char* lpszFirewallHost); Unicode (Windows) LPWSTR GetFirewallHost();
INT SetFirewallHost(LPCWSTR lpszFirewallHost);
char* inebank_invstatement_getfirewallhost(void* lpObj);
int inebank_invstatement_setfirewallhost(void* lpObj, const char* lpszFirewallHost);
QString GetFirewallHost();
int SetFirewallHost(QString qsFirewallHost);

Default Value

""

Remarks

This property contains the name or IP address of firewall (optional). If a FirewallHost is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.

Data Type

String

FirewallPassword Property (InvStatement Class)

This property contains a password if authentication is to be used when connecting through the firewall.

Syntax

ANSI (Cross Platform)
char* GetFirewallPassword();
int SetFirewallPassword(const char* lpszFirewallPassword); Unicode (Windows) LPWSTR GetFirewallPassword();
INT SetFirewallPassword(LPCWSTR lpszFirewallPassword);
char* inebank_invstatement_getfirewallpassword(void* lpObj);
int inebank_invstatement_setfirewallpassword(void* lpObj, const char* lpszFirewallPassword);
QString GetFirewallPassword();
int SetFirewallPassword(QString qsFirewallPassword);

Default Value

""

Remarks

This property contains a password if authentication is to be used when connecting through the firewall. If FirewallHost is specified, the FirewallUser and FirewallPassword properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Data Type

String

FirewallPort Property (InvStatement Class)

This property contains the transmission control protocol (TCP) port for the firewall Host .

Syntax

ANSI (Cross Platform)
int GetFirewallPort();
int SetFirewallPort(int iFirewallPort); Unicode (Windows) INT GetFirewallPort();
INT SetFirewallPort(INT iFirewallPort);
int inebank_invstatement_getfirewallport(void* lpObj);
int inebank_invstatement_setfirewallport(void* lpObj, int iFirewallPort);
int GetFirewallPort();
int SetFirewallPort(int iFirewallPort);

Default Value

0

Remarks

This property contains the transmission control protocol (TCP) port for the firewall FirewallHost. See the description of the FirewallHost property for details.

Note: This property is set automatically when FirewallType is set to a valid value. See the description of the FirewallType property for details.

Data Type

Integer

FirewallUser Property (InvStatement Class)

This property contains a user name if authentication is to be used connecting through a firewall.

Syntax

ANSI (Cross Platform)
char* GetFirewallUser();
int SetFirewallUser(const char* lpszFirewallUser); Unicode (Windows) LPWSTR GetFirewallUser();
INT SetFirewallUser(LPCWSTR lpszFirewallUser);
char* inebank_invstatement_getfirewalluser(void* lpObj);
int inebank_invstatement_setfirewalluser(void* lpObj, const char* lpszFirewallUser);
QString GetFirewallUser();
int SetFirewallUser(QString qsFirewallUser);

Default Value

""

Remarks

This property contains a user name if authentication is to be used connecting through a firewall. If the FirewallHost is specified, this property and FirewallPassword properties are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.

Data Type

String

FIUrl Property (InvStatement Class)

Financial institution URL.

Syntax

ANSI (Cross Platform)
char* GetFIUrl();
int SetFIUrl(const char* lpszFIUrl); Unicode (Windows) LPWSTR GetFIUrl();
INT SetFIUrl(LPCWSTR lpszFIUrl);
char* inebank_invstatement_getfiurl(void* lpObj);
int inebank_invstatement_setfiurl(void* lpObj, const char* lpszFIUrl);
QString GetFIUrl();
int SetFIUrl(QString qsFIUrl);

Default Value

""

Remarks

This is the URL of the OFX Financial Institution to which the class will signon and fetch data.

Data Type

String

ImageFileName Property (InvStatement Class)

Filename and location to save the image content of a transaction or statement.

Syntax

ANSI (Cross Platform)
char* GetImageFileName();
int SetImageFileName(const char* lpszImageFileName); Unicode (Windows) LPWSTR GetImageFileName();
INT SetImageFileName(LPCWSTR lpszImageFileName);
char* inebank_invstatement_getimagefilename(void* lpObj);
int inebank_invstatement_setimagefilename(void* lpObj, const char* lpszImageFileName);
QString GetImageFileName();
int SetImageFileName(QString qsImageFileName);

Default Value

""

Remarks

When calling the GetImage method, the image content is returned by that method. If you want the image content to be written to disk, you can set the ImageFileName to a desired file name without specifying the type. The file type will be set automatically depending on the image type supported by the server. Possible image types are: jpeg, tiff, png, pdf.

If the filename exists, you can choose to overwrite it or not by setting the Overwrite config setting (which defaults to True).

Note: Image download is available only for OFX version 2.1.1. When this method is called, the OFXVersion is automatically set to '211'.

Data Type

String

IncludeBalances Property (InvStatement Class)

Specifies whether or not to include balances in the statement download.

Syntax

ANSI (Cross Platform)
int GetIncludeBalances();
int SetIncludeBalances(int bIncludeBalances); Unicode (Windows) BOOL GetIncludeBalances();
INT SetIncludeBalances(BOOL bIncludeBalances);
int inebank_invstatement_getincludebalances(void* lpObj);
int inebank_invstatement_setincludebalances(void* lpObj, int bIncludeBalances);
bool GetIncludeBalances();
int SetIncludeBalances(bool bIncludeBalances);

Default Value

TRUE

Remarks

This property is required when the GetStatement method is called.

Data Type

Boolean

IncludeImages Property (InvStatement Class)

Whether the server has to return data for bank transactions or closing statements images.

Syntax

ANSI (Cross Platform)
int GetIncludeImages();
int SetIncludeImages(int bIncludeImages); Unicode (Windows) BOOL GetIncludeImages();
INT SetIncludeImages(BOOL bIncludeImages);
int inebank_invstatement_getincludeimages(void* lpObj);
int inebank_invstatement_setincludeimages(void* lpObj, int bIncludeImages);
bool GetIncludeImages();
int SetIncludeImages(bool bIncludeImages);

Default Value

FALSE

Remarks

If False (default value), the server will not return any image references in the response.

Otherwise, if the FI supports image download service :

  • when the GetStatement method is called, the server will return the image references for each transaction (e.g., check image).
  • when the GetClosingInfo method is called, the server will return a reference to the statement closing information image.

These references can then be used as parameters when the GetImage method is called.

This is optional and supported in OFX 2.1.1 version only (i.e., if this is requested, the OFXVersion should be set to '211').

Note: Clients may request images in statement download and/or closing requests in various message sets. But not all FIs support image download. Prior to requesting these images, clients must verify that support exists on the server for image download. This is indicated by the presence of the IMAGEMSGSET aggregate in the profile response, as well as the IMAGEPROF aggregate in the profile response for the specific message set in question.

For instance, if a client wishes to request transaction images in the banking statement download request, the client must verify the presence of IMAGEMSGSET in the profile as well as transaction image support in the IMAGEPROF aggregate in the BANKMSGSET in the profile. Image download requests are allowed only in OFX 2.1.1 in the Banking, Credit Card, Loan and Investments message sets.

To verify whether your FI supports this service, you should check its profile (by calling the GetProfile method in FIProfile class) and check the values of FIMessageSetTxImage and FIMessageSetClosingInfoImage for each message set (bank, credit card, loan and investment).

Data Type

Boolean

IncludeOpenOrders Property (InvStatement Class)

Specifies whether or not to include open orders in the response.

Syntax

ANSI (Cross Platform)
int GetIncludeOpenOrders();
int SetIncludeOpenOrders(int bIncludeOpenOrders); Unicode (Windows) BOOL GetIncludeOpenOrders();
INT SetIncludeOpenOrders(BOOL bIncludeOpenOrders);
int inebank_invstatement_getincludeopenorders(void* lpObj);
int inebank_invstatement_setincludeopenorders(void* lpObj, int bIncludeOpenOrders);
bool GetIncludeOpenOrders();
int SetIncludeOpenOrders(bool bIncludeOpenOrders);

Default Value

TRUE

Remarks

This property is required when the GetStatement method is called.

Data Type

Boolean

IncludePositions Property (InvStatement Class)

Specifies whether or not to include positions in the statement download.

Syntax

ANSI (Cross Platform)
int GetIncludePositions();
int SetIncludePositions(int bIncludePositions); Unicode (Windows) BOOL GetIncludePositions();
INT SetIncludePositions(BOOL bIncludePositions);
int inebank_invstatement_getincludepositions(void* lpObj);
int inebank_invstatement_setincludepositions(void* lpObj, int bIncludePositions);
bool GetIncludePositions();
int SetIncludePositions(bool bIncludePositions);

Default Value

TRUE

Remarks

This property is required when the GetStatement method is called.

Data Type

Boolean

IncludeTransactions Property (InvStatement Class)

Whether to include transactions in the statement download.

Syntax

ANSI (Cross Platform)
int GetIncludeTransactions();
int SetIncludeTransactions(int bIncludeTransactions); Unicode (Windows) BOOL GetIncludeTransactions();
INT SetIncludeTransactions(BOOL bIncludeTransactions);
int inebank_invstatement_getincludetransactions(void* lpObj);
int inebank_invstatement_setincludetransactions(void* lpObj, int bIncludeTransactions);
bool GetIncludeTransactions();
int SetIncludeTransactions(bool bIncludeTransactions);

Default Value

TRUE

Remarks

This property is required when the GetStatement method is called.

Data Type

Boolean

MarginBalance Property (InvStatement Class)

Margin balance.

Syntax

ANSI (Cross Platform)
char* GetMarginBalance();

Unicode (Windows)
LPWSTR GetMarginBalance();
char* inebank_invstatement_getmarginbalance(void* lpObj);
QString GetMarginBalance();

Default Value

""

Remarks

A positive balance indicates a positive cash balance, while a negative balance indicates the customer has borrowed funds.

This property is always returned with the balance information if such information is requested to be included (IncludeBalances was set to True) in the investment statement download request (when calling the GetStatement method).

This property is read-only.

Data Type

String

MarketingInfo Property (InvStatement Class)

Marketing information (at most one).

Syntax

ANSI (Cross Platform)
char* GetMarketingInfo();

Unicode (Windows)
LPWSTR GetMarketingInfo();
char* inebank_invstatement_getmarketinginfo(void* lpObj);
QString GetMarketingInfo();

Default Value

""

Remarks

Optional. This information might be returned when the GetStatement method is called.

This property is read-only.

Data Type

String

OFXAccessKey Property (InvStatement Class)

Access key value received after a MFA authentication in a previous signon.

Syntax

ANSI (Cross Platform)
char* GetOFXAccessKey();
int SetOFXAccessKey(const char* lpszOFXAccessKey); Unicode (Windows) LPWSTR GetOFXAccessKey();
INT SetOFXAccessKey(LPCWSTR lpszOFXAccessKey);
char* inebank_invstatement_getofxaccesskey(void* lpObj);
int inebank_invstatement_setofxaccesskey(void* lpObj, const char* lpszOFXAccessKey);
QString GetOFXAccessKey();
int SetOFXAccessKey(QString qsOFXAccessKey);

Default Value

""

Remarks

This might be returned in the server response after a MFA authentication (i.e. MFA challenge question/answer pairs were validated by the server when the SendChallengeAnswers method in FIProfile class was called).

To prevent servers from needing to authenticate the user in each OFX request, the server may respond to a correct set of challenge answers with a OFXAccessKey on the signon response (when the SendChallengeAnswers method in FIProfile class was called).

The server determines the contents of this optional element. On each subsequent signon request, the client will send the last value of the OFXAccessKey it has received, even after the end of the current session. The server has the option to respond to any subsequent request with a 3000 error code, requiring the client to send the MFA challenge questions request again (by calling the RequestChallengeQuestions method in FIProfile class). This allows the server to determine the lifetime of the OFXAccessKey.

Data Type

String

OFXAppId Property (InvStatement Class)

OFX application identifier.

Syntax

ANSI (Cross Platform)
char* GetOFXAppId();
int SetOFXAppId(const char* lpszOFXAppId); Unicode (Windows) LPWSTR GetOFXAppId();
INT SetOFXAppId(LPCWSTR lpszOFXAppId);
char* inebank_invstatement_getofxappid(void* lpObj);
int inebank_invstatement_setofxappid(void* lpObj, const char* lpszOFXAppId);
QString GetOFXAppId();
int SetOFXAppId(QString qsOFXAppId);

Default Value

""

Remarks

This is the unique identifier of the user's OFX application.

Data Type

String

OFXAppVersion Property (InvStatement Class)

OFX application version.

Syntax

ANSI (Cross Platform)
char* GetOFXAppVersion();
int SetOFXAppVersion(const char* lpszOFXAppVersion); Unicode (Windows) LPWSTR GetOFXAppVersion();
INT SetOFXAppVersion(LPCWSTR lpszOFXAppVersion);
char* inebank_invstatement_getofxappversion(void* lpObj);
int inebank_invstatement_setofxappversion(void* lpObj, const char* lpszOFXAppVersion);
QString GetOFXAppVersion();
int SetOFXAppVersion(QString qsOFXAppVersion);

Default Value

""

Remarks

This is the version of the user's OFX application.

Data Type

String

OFXPassword Property (InvStatement Class)

User's password.

Syntax

ANSI (Cross Platform)
char* GetOFXPassword();
int SetOFXPassword(const char* lpszOFXPassword); Unicode (Windows) LPWSTR GetOFXPassword();
INT SetOFXPassword(LPCWSTR lpszOFXPassword);
char* inebank_invstatement_getofxpassword(void* lpObj);
int inebank_invstatement_setofxpassword(void* lpObj, const char* lpszOFXPassword);
QString GetOFXPassword();
int SetOFXPassword(QString qsOFXPassword);

Default Value

""

Remarks

This is the password used when signing on to the OFX Financial Institution's service.

Data Type

String

OFXRequest Property (InvStatement Class)

The current OFX request aggregate.

Syntax

ANSI (Cross Platform)
char* GetOFXRequest();

Unicode (Windows)
LPWSTR GetOFXRequest();
char* inebank_invstatement_getofxrequest(void* lpObj);
QString GetOFXRequest();

Default Value

""

Remarks

Polling OFXRequest will cause the class to generate and return an OFX request aggregate.

This property is read-only and not available at design time.

Data Type

String

OFXResponse Property (InvStatement Class)

The current OFX response aggregate.

Syntax

ANSI (Cross Platform)
char* GetOFXResponse();
int SetOFXResponse(const char* lpszOFXResponse); Unicode (Windows) LPWSTR GetOFXResponse();
INT SetOFXResponse(LPCWSTR lpszOFXResponse);
char* inebank_invstatement_getofxresponse(void* lpObj);
int inebank_invstatement_setofxresponse(void* lpObj, const char* lpszOFXResponse);
QString GetOFXResponse();
int SetOFXResponse(QString qsOFXResponse);

Default Value

""

Remarks

This can be used especially for debugging purposes. This can also be used to parse an OFX Response. To do so, you can set the OFX Response data (in string format) to OFXResponse. Once set, the supplied OFX data will be parsed and will populate the same read-only properties that ReadOFXDataFile does.

This property is not available at design time.

Data Type

String

OFXUser Property (InvStatement Class)

User's id.

Syntax

ANSI (Cross Platform)
char* GetOFXUser();
int SetOFXUser(const char* lpszOFXUser); Unicode (Windows) LPWSTR GetOFXUser();
INT SetOFXUser(LPCWSTR lpszOFXUser);
char* inebank_invstatement_getofxuser(void* lpObj);
int inebank_invstatement_setofxuser(void* lpObj, const char* lpszOFXUser);
QString GetOFXUser();
int SetOFXUser(QString qsOFXUser);

Default Value

""

Remarks

This is the UserID used when signing on to the OFX Financial Institution's service.

Data Type

String

OFXVersion Property (InvStatement Class)

OFX API version.

Syntax

ANSI (Cross Platform)
char* GetOFXVersion();
int SetOFXVersion(const char* lpszOFXVersion); Unicode (Windows) LPWSTR GetOFXVersion();
INT SetOFXVersion(LPCWSTR lpszOFXVersion);
char* inebank_invstatement_getofxversion(void* lpObj);
int inebank_invstatement_setofxversion(void* lpObj, const char* lpszOFXVersion);
QString GetOFXVersion();
int SetOFXVersion(QString qsOFXVersion);

Default Value

"102"

Remarks

This is the OFX API version used in all requests sent to your FI server (such as 1.0.2, 2.0.1, 2.1.1, etc.). Valid values: 102, 103, 200, 201, 203, 210, 211. Note that not all OFX Versions are supported by FIs.

Note: If the OFXVersion is set to 1x, the request and the response are going to be in SGML format. If set to 2x, the request will be in XML format (the response format depends on the FI's server capabilities). Note that if the OFX FI server does not support version 2x, the server will return an error (such as 'Bad Request').

Certain services are available only for a specific OFX version. For example, image download, is available only in OFX version 2.1.1.

Data Type

String

OOCount Property (InvStatement Class)

The number of records in the OO arrays.

Syntax

ANSI (Cross Platform)
int GetOOCount();

Unicode (Windows)
INT GetOOCount();
int inebank_invstatement_getoocount(void* lpObj);
int GetOOCount();

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at OOCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

OOAggregate Property (InvStatement Class)

Wrapper for a general open order, each pertaining to a different aggregate type.

Syntax

ANSI (Cross Platform)
char* GetOOAggregate(int iOOIndex);

Unicode (Windows)
LPWSTR GetOOAggregate(INT iOOIndex);
char* inebank_invstatement_getooaggregate(void* lpObj, int ooindex);
QString GetOOAggregate(int iOOIndex);

Default Value

""

Remarks

Wrapper for a general open order, each pertaining to a different aggregate type.

Aggregates are pieces of XML taken from the financial institution's original response. They contain elements that correspond to many of the class's properties. However, some of these elements, and/or their potential values, may not be supported by the class. Any user who wishes to use unsupported fields may use this aggregate property to parse out the desired data either via our OFXAggregate class or any other means.

Note: The original data from the server is returned as SGML or XML (depending on the value of OFXVersion that FI supports. If the original data is returned in SGML format, the class internally manipulates these responses into the equivalent XML format by inserting close element tags (e.g., "</ACCTID>") into the data as it comes from the server.

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OOBuyType Property (InvStatement Class)

Type of purchase for this open order.

Syntax

ANSI (Cross Platform)
char* GetOOBuyType(int iOOIndex);

Unicode (Windows)
LPWSTR GetOOBuyType(INT iOOIndex);
char* inebank_invstatement_getoobuytype(void* lpObj, int ooindex);
QString GetOOBuyType(int iOOIndex);

Default Value

""

Remarks

Type of purchase for this open order. Possible values are: BUY and BUYTOCOVER (used to close short sales).

This property is always returned with the open order information if such an information is requested to be included (IncludeOpenOrders was set to True) in the investment statement download request (when calling the GetStatement method).

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OODatePlaced Property (InvStatement Class)

Date-time the order was placed.

Syntax

ANSI (Cross Platform)
char* GetOODatePlaced(int iOOIndex);

Unicode (Windows)
LPWSTR GetOODatePlaced(INT iOOIndex);
char* inebank_invstatement_getoodateplaced(void* lpObj, int ooindex);
QString GetOODatePlaced(int iOOIndex);

Default Value

""

Remarks

Date-time the order was placed.

This property is always returned with the open order information if such an information is requested to be included (IncludeOpenOrders was set to True) in the investment statement download request (when calling the GetStatement method).

All input dates should be entered in the format specified by DateFormat. For example, if the DateFormat is set to "MM/dd/yyyy hh:mm:ss" (default value), an input date should look like: 09/30/2009 12:00:00 AM.

This format specifies also how the returned dates are going to get parsed.

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OODuration Property (InvStatement Class)

Indicates how long the open order is good for.

Syntax

ANSI (Cross Platform)
char* GetOODuration(int iOOIndex);

Unicode (Windows)
LPWSTR GetOODuration(INT iOOIndex);
char* inebank_invstatement_getooduration(void* lpObj, int ooindex);
QString GetOODuration(int iOOIndex);

Default Value

""

Remarks

Indicates how long the open order is good for. The possible values are: DAY, GOODTILCANCEL, IMMEDIATE.

This property is always returned with the open order information if such an information is requested to be included (IncludeOpenOrders was set to True) in the investment statement download request (when calling the GetStatement method).

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OOFITID Property (InvStatement Class)

Transaction Id assigned by the financial institution.

Syntax

ANSI (Cross Platform)
char* GetOOFITID(int iOOIndex);

Unicode (Windows)
LPWSTR GetOOFITID(INT iOOIndex);
char* inebank_invstatement_getoofitid(void* lpObj, int ooindex);
QString GetOOFITID(int iOOIndex);

Default Value

""

Remarks

Transaction Id assigned by the financial institution.

This is a unique id number that the financial institution uses to identify a particular transaction. Its primary purpose is to allow a client to detect duplicate responses, whether the server previously downloaded the transaction.

This property is always returned with the open order information if such an information is requested to be included (IncludeOpenOrders was set to True) in the investment statement download request (when calling the GetStatement method).

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OOMemo Property (InvStatement Class)

Other information about an open order (at most one).

Syntax

ANSI (Cross Platform)
char* GetOOMemo(int iOOIndex);

Unicode (Windows)
LPWSTR GetOOMemo(INT iOOIndex);
char* inebank_invstatement_getoomemo(void* lpObj, int ooindex);
QString GetOOMemo(int iOOIndex);

Default Value

""

Remarks

Other information about an open order (at most one).

This property is an optional field. When calling the GetStatement method, if the server's response does not contain this value, querying the property will return an empty string.

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OOType Property (InvStatement Class)

Type for general open order aggregate.

Syntax

ANSI (Cross Platform)
int GetOOType(int iOOIndex);

Unicode (Windows)
INT GetOOType(INT iOOIndex);

Possible Values

OOT_OOBUYDEBT(0), 
OOT_OOBUYMF(1),
OOT_OOBUYOPT(2),
OOT_OOBUYOTHER(3),
OOT_OOBUYSTOCK(4),
OOT_OOSELLDEBT(5),
OOT_OOSELLMF(6),
OOT_OOSELLOPT(7),
OOT_OOSELLOTHER(8),
OOT_OOSELLSTOCK(9),
OOT_SWITCHMF(10),
OOT_OTHER(255)
int inebank_invstatement_getootype(void* lpObj, int ooindex);
int GetOOType(int iOOIndex);

Default Value

0

Remarks

Type for general open order aggregate. The open order types and their meanings are as follows:

ootOOBUYDEBT (0)Buy Debt
ootOOBUYMF (1)Buy Mutual Fund
ootOOBUYOPT (2)Buy Option
ootOOBUYOTHER (3)Buy Other
ootOOBUYSTOCK (4)Buy Stock
ootOOSELLDEBT (5)Sell Debt
ootOOSELLMF (6)Sell Mutual Fund
ootOOSELLOPT (7)Sell Option
ootOOSELLOTHER (8)Sell Other
ootOOSELLSTOCK (9)Sell Stock
ootSWITCHMF (10)Switch to Mutual Fund
ootOTHER (255)Other

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

Integer

OORestriction Property (InvStatement Class)

Special restriction on the open order.

Syntax

ANSI (Cross Platform)
char* GetOORestriction(int iOOIndex);

Unicode (Windows)
LPWSTR GetOORestriction(INT iOOIndex);
char* inebank_invstatement_getoorestriction(void* lpObj, int ooindex);
QString GetOORestriction(int iOOIndex);

Default Value

""

Remarks

Special restriction on the open order. The possible values are: ALLORNONE, MINUNITS, NONE.

This property is always returned with the open order information if such an information is requested to be included (IncludeOpenOrders was set to True) in the investment statement download request (when calling the GetStatement method).

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OOSecurityId Property (InvStatement Class)

Security ID for this open order.

Syntax

ANSI (Cross Platform)
char* GetOOSecurityId(int iOOIndex);

Unicode (Windows)
LPWSTR GetOOSecurityId(INT iOOIndex);
char* inebank_invstatement_getoosecurityid(void* lpObj, int ooindex);
QString GetOOSecurityId(int iOOIndex);

Default Value

""

Remarks

Security ID for this open order.

This property consists of a naming standard followed by a semicolon and a 9-character identifier. The naming standard identifies the method used for assigning the identifier ("CUSIP" in the US) and is unique within the indicated naming standard. This property is always returned with the open order information if such an information is requested to be included (IncludeOpenOrders was set to True) in the investment statement download request (when calling the GetStatement method).

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OOSellType Property (InvStatement Class)

Type of sale.

Syntax

ANSI (Cross Platform)
char* GetOOSellType(int iOOIndex);

Unicode (Windows)
LPWSTR GetOOSellType(INT iOOIndex);
char* inebank_invstatement_getooselltype(void* lpObj, int ooindex);
QString GetOOSellType(int iOOIndex);

Default Value

""

Remarks

Type of sale. Possible values are: SELL, SELLSHORT.

This property is always returned with the open order information if such an information is requested to be included (IncludeOpenOrders was set to True) in the investment statement download request (when calling the GetStatement method).

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OOSubAccountType Property (InvStatement Class)

This identifies the type of a sub-account.

Syntax

ANSI (Cross Platform)
char* GetOOSubAccountType(int iOOIndex);

Unicode (Windows)
LPWSTR GetOOSubAccountType(INT iOOIndex);
char* inebank_invstatement_getoosubaccounttype(void* lpObj, int ooindex);
QString GetOOSubAccountType(int iOOIndex);

Default Value

""

Remarks

This identifies the type of a sub-account.

Many Financial Institutions (FIs) distinguish between activity and positions in cash, margin, and short accounts, with some FIs having many other types of 'sub-accounts'. Open Financial Exchange (OFX) defines four standard sub-account types: CASH, MARGIN, SHORT, and OTHER.

This property is always returned with the open order information if such an information is requested to be included (IncludeOpenOrders was set to True) in the investment statement download request (when calling the GetStatement method).

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OOTypeDescription Property (InvStatement Class)

A description of the open order type.

Syntax

ANSI (Cross Platform)
char* GetOOTypeDescription(int iOOIndex);

Unicode (Windows)
LPWSTR GetOOTypeDescription(INT iOOIndex);
char* inebank_invstatement_getootypedescription(void* lpObj, int ooindex);
QString GetOOTypeDescription(int iOOIndex);

Default Value

""

Remarks

A description of the open order type. This is a string representation of the value returned by the OOType property.

The types and their meanings are as follows:

ootOOBUYDEBT (0)Buy Debt
ootOOBUYMF (1)Buy Mutual Fund
ootOOBUYOPT (2)Buy Option
ootOOBUYOTHER (3)Buy Other
ootOOBUYSTOCK (4)Buy Stock
ootOOSELLDEBT (5)Sell Debt
ootOOSELLMF (6)Sell Mutual Fund
ootOOSELLOPT (7)Sell Option
ootOOSELLOTHER (8)Sell Other
ootOOSELLSTOCK (9)Sell Stock
ootSWITCHMF (10)Switch to Mutual Fund
ootOTHER (255)Other

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OOUnits Property (InvStatement Class)

Quantity of the security the open order is for.

Syntax

ANSI (Cross Platform)
char* GetOOUnits(int iOOIndex);

Unicode (Windows)
LPWSTR GetOOUnits(INT iOOIndex);
char* inebank_invstatement_getoounits(void* lpObj, int ooindex);
QString GetOOUnits(int iOOIndex);

Default Value

""

Remarks

Quantity of the security the open order is for.

This property is always returned with the open order information if such an information is requested to be included (IncludeOpenOrders was set to True) in the investment statement download request (when calling the GetStatement method).

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

OOUnitType Property (InvStatement Class)

What the units represent.

Syntax

ANSI (Cross Platform)
char* GetOOUnitType(int iOOIndex);

Unicode (Windows)
LPWSTR GetOOUnitType(INT iOOIndex);
char* inebank_invstatement_getoounittype(void* lpObj, int ooindex);
QString GetOOUnitType(int iOOIndex);

Default Value

""

Remarks

What the units represent. Possible values are: SHARES and CURRENCY.

This property is always returned with the open order information if such an information is requested to be included (IncludeOpenOrders was set to True) in the investment statement download request (when calling the GetStatement method).

The OOIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OOCount property.

This property is read-only and not available at design time.

Data Type

String

PosCount Property (InvStatement Class)

The number of records in the Pos arrays.

Syntax

ANSI (Cross Platform)
int GetPosCount();

Unicode (Windows)
INT GetPosCount();
int inebank_invstatement_getposcount(void* lpObj);
int GetPosCount();

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at PosCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

PosAccount Property (InvStatement Class)

Indicates the type of sub-account where the position is held in.

Syntax

ANSI (Cross Platform)
char* GetPosAccount(int iPosIndex);

Unicode (Windows)
LPWSTR GetPosAccount(INT iPosIndex);
char* inebank_invstatement_getposaccount(void* lpObj, int posindex);
QString GetPosAccount(int iPosIndex);

Default Value

""

Remarks

Indicates the type of sub-account where the position is held in. Possible values are: CASH, MARGIN, SHORT, OTHER.

This property is always returned with the positions information if such an information is requested to be included (IncludePositions was set to True) in the investment statement download request (when calling the GetStatement method).

The PosIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PosCount property.

This property is read-only and not available at design time.

Data Type

String

PosAggregate Property (InvStatement Class)

Wrapper for a position information.

Syntax

ANSI (Cross Platform)
char* GetPosAggregate(int iPosIndex);

Unicode (Windows)
LPWSTR GetPosAggregate(INT iPosIndex);
char* inebank_invstatement_getposaggregate(void* lpObj, int posindex);
QString GetPosAggregate(int iPosIndex);

Default Value

""

Remarks

Wrapper for a position information.

This aggregate contains properties relevant to all investment position types, as well as those specific to a given position type.

Aggregates are pieces of XML taken from the financial institution's original response. They contain elements that correspond to many of the class's properties. However, some of these elements, and/or their potential values, may not be supported by the class. Any user who wishes to use unsupported fields may use this aggregate property to parse out the desired data either via our OFXAggregate class or any other means.

Note: The original data from the server is returned as SGML or XML (depending on the value of OFXVersion that FI supports. If the original data is returned in SGML format, the class internally manipulates these responses into the equivalent XML format by inserting close element tags (e.g., "</ACCTID>") into the data as it comes from the server.

The PosIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PosCount property.

This property is read-only and not available at design time.

Data Type

String

PosDatePriceAsOf Property (InvStatement Class)

Date and time of unit price and market value.

Syntax

ANSI (Cross Platform)
char* GetPosDatePriceAsOf(int iPosIndex);

Unicode (Windows)
LPWSTR GetPosDatePriceAsOf(INT iPosIndex);
char* inebank_invstatement_getposdatepriceasof(void* lpObj, int posindex);
QString GetPosDatePriceAsOf(int iPosIndex);

Default Value

""

Remarks

Date and time of unit price and market value. Can be 0 if unit price and market value are unknown.

All input dates should be entered in the format specified by DateFormat. For example, if the DateFormat is set to "MM/dd/yyyy hh:mm:ss" (default value), an input date should look like: 09/30/2009 12:00:00 AM.

This format specifies also how the returned dates are going to get parsed.

This property is always returned with the positions information if such an information is requested to be included (IncludePositions was set to True) in the investment statement download request (when calling the GetStatement method).

The PosIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PosCount property.

This property is read-only and not available at design time.

Data Type

String

PosMarketValue Property (InvStatement Class)

Current market value of this position.

Syntax

ANSI (Cross Platform)
char* GetPosMarketValue(int iPosIndex);

Unicode (Windows)
LPWSTR GetPosMarketValue(INT iPosIndex);
char* inebank_invstatement_getposmarketvalue(void* lpObj, int posindex);
QString GetPosMarketValue(int iPosIndex);

Default Value

""

Remarks

Current market value of this position.

This property is always returned with the positions information if such an information is requested to be included (IncludePositions was set to True) in the investment statement download request (when calling the GetStatement method).

The PosIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PosCount property.

This property is read-only and not available at design time.

Data Type

String

PosMemo Property (InvStatement Class)

Memo regarding this position.

Syntax

ANSI (Cross Platform)
char* GetPosMemo(int iPosIndex);

Unicode (Windows)
LPWSTR GetPosMemo(INT iPosIndex);
char* inebank_invstatement_getposmemo(void* lpObj, int posindex);
QString GetPosMemo(int iPosIndex);

Default Value

""

Remarks

Memo regarding this position.

This property is an optional field. When calling the GetStatement method, if the server's response does not contain this value, querying the property will return an empty string.

The PosIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PosCount property.

This property is read-only and not available at design time.

Data Type

String

PosOption Property (InvStatement Class)

Indicates position type for the given sub-account where this position takes place.

Syntax

ANSI (Cross Platform)
char* GetPosOption(int iPosIndex);

Unicode (Windows)
LPWSTR GetPosOption(INT iPosIndex);
char* inebank_invstatement_getposoption(void* lpObj, int posindex);
QString GetPosOption(int iPosIndex);

Default Value

""

Remarks

Indicates position type for the given sub-account where this position takes place. Each statement response must contain a complete set of position records, even if no transactions occurred in the requested statement period for a particular holding.

Possible values are: SHORT (Writer for options, Short for all others) and LONG (Holder for options, Long for all others). For options, position type SHORT is equivalent to WRITING an option, and position type LONG is equivalent to HOLDING an option.

For security types where there is only one type (for example, bonds), LONG is used.

This property is always returned with the positions information if such an information is requested to be included (IncludePositions was set to True) in the investment statement download request (when calling the GetStatement method).

The PosIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PosCount property.

This property is read-only and not available at design time.

Data Type

String

PosType Property (InvStatement Class)

Type for general position aggregate.

Syntax

ANSI (Cross Platform)
int GetPosType(int iPosIndex);

Unicode (Windows)
INT GetPosType(INT iPosIndex);

Possible Values

PT_POSDEBT(0), 
PT_POSMF(1),
PT_POSOPT(2),
PT_POSOTHER(3),
PT_POSSTOCK(4),
PT_OTHER(255)
int inebank_invstatement_getpostype(void* lpObj, int posindex);
int GetPosType(int iPosIndex);

Default Value

0

Remarks

Type for general position aggregate. The positions types and their meanings are as follows:

ptPOSDEBT (0)Debt
ptPOSMF (1)Mutual Fund
ptPOSOPT (2)Option
ptPOSOTHER (3)Other Position
ptPOSSTOCK (4)Stock
ptOTHER (255)Other

The PosIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PosCount property.

This property is read-only and not available at design time.

Data Type

Integer

PosSecurityId Property (InvStatement Class)

The security ID for this position.

Syntax

ANSI (Cross Platform)
char* GetPosSecurityId(int iPosIndex);

Unicode (Windows)
LPWSTR GetPosSecurityId(INT iPosIndex);
char* inebank_invstatement_getpossecurityid(void* lpObj, int posindex);
QString GetPosSecurityId(int iPosIndex);

Default Value

""

Remarks

The security ID for this position.

This property consists of a naming standard followed by a semicolon and a 9-character identifier. The naming standard identifies the method used for assigning the identifier ("CUSIP" in the US) and is unique within the indicated naming standard. This property is always returned with the positions information if such an information is requested to be included (IncludePositions was set to True) in the investment statement download request (when calling the GetStatement method).

The PosIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PosCount property.

This property is read-only and not available at design time.

Data Type

String

PosTypeDescription Property (InvStatement Class)

A description of the position type.

Syntax

ANSI (Cross Platform)
char* GetPosTypeDescription(int iPosIndex);

Unicode (Windows)
LPWSTR GetPosTypeDescription(INT iPosIndex);
char* inebank_invstatement_getpostypedescription(void* lpObj, int posindex);
QString GetPosTypeDescription(int iPosIndex);

Default Value

""

Remarks

A description of the position type. This is a string representation of the value returned by the PosType.

The types and their meanings are as follows:

ptPOSDEBT (0)Debt
ptPOSMF (1)Mutual Fund
ptPOSOPT (2)Option
ptPOSOTHER (3)Other Position
ptPOSSTOCK (4)Stock
ptOTHER (255)Other

The PosIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PosCount property.

This property is read-only and not available at design time.

Data Type

String

PosUnitPrice Property (InvStatement Class)

Unit price.

Syntax

ANSI (Cross Platform)
char* GetPosUnitPrice(int iPosIndex);

Unicode (Windows)
LPWSTR GetPosUnitPrice(INT iPosIndex);
char* inebank_invstatement_getposunitprice(void* lpObj, int posindex);
QString GetPosUnitPrice(int iPosIndex);

Default Value

""

Remarks

Unit price. Depending on the type of sub-account where this position takes place, this indicates the following:

Stocks, Market Funds, OtherPrice per share
BondsPercentage of par
OptionsPremium per share of underlying security

This property is always returned with the positions information if such an information is requested to be included (IncludePositions was set to True) in the investment statement download request (when calling the GetStatement method).

The PosIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PosCount property.

This property is read-only and not available at design time.

Data Type

String

PosUnits Property (InvStatement Class)

Quantity of positions.

Syntax

ANSI (Cross Platform)
char* GetPosUnits(int iPosIndex);

Unicode (Windows)
LPWSTR GetPosUnits(INT iPosIndex);
char* inebank_invstatement_getposunits(void* lpObj, int posindex);
QString GetPosUnits(int iPosIndex);

Default Value

""

Remarks

Quantity of positions. Depending on the type of sub-account where this position takes place, this indicates the following:

Stocks, Market Funds, Other,Number of shares held
BondsThe face value
OptionsNumber of contracts

This property is always returned with the positions information if such an information is requested to be included (IncludePositions was set to True) in the investment statement download request (when calling the GetStatement method).

The PosIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PosCount property.

This property is read-only and not available at design time.

Data Type

String

SecCount Property (InvStatement Class)

The number of records in the Sec arrays.

Syntax

ANSI (Cross Platform)
int GetSecCount();

Unicode (Windows)
INT GetSecCount();
int inebank_invstatement_getseccount(void* lpObj);
int GetSecCount();

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at SecCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

SecAggregate Property (InvStatement Class)

Wrapper for security information.

Syntax

ANSI (Cross Platform)
char* GetSecAggregate(int iSecIndex);

Unicode (Windows)
LPWSTR GetSecAggregate(INT iSecIndex);
char* inebank_invstatement_getsecaggregate(void* lpObj, int secindex);
QString GetSecAggregate(int iSecIndex);

Default Value

""

Remarks

Wrapper for security information.

The value of this property is returned by the server when the investment statement download contains positions, transactions, or open orders.

The SecAggregate contains information about security referenced in the investment statement download. Clients are completely dependent on the security list to provide descriptive information for the securities referenced in positions, transactions, and open orders.

These aggregates define the type of security, and one or more sets of descriptive information.

Aggregates are pieces of XML taken from the financial institution's original response. They contain elements that correspond to many of the class's properties. However, some of these elements, and/or their potential values, may not be supported by the class. Any user who wishes to use unsupported fields may use this aggregate property to parse out the desired data either via our OFXAggregate class or any other means.

Note: The original data from the server is returned as SGML or XML (depending on the value of OFXVersion that FI supports. If the original data is returned in SGML format, the class internally manipulates these responses into the equivalent XML format by inserting close element tags (e.g., "</ACCTID>") into the data as it comes from the server.

The SecIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecCount property.

This property is read-only and not available at design time.

Data Type

String

SecAssetClass Property (InvStatement Class)

Asset Class for the security (at most one).

Syntax

ANSI (Cross Platform)
char* GetSecAssetClass(int iSecIndex);

Unicode (Windows)
LPWSTR GetSecAssetClass(INT iSecIndex);
char* inebank_invstatement_getsecassetclass(void* lpObj, int secindex);
QString GetSecAssetClass(int iSecIndex);

Default Value

""

Remarks

Asset Class for the security (at most one). The possible values and their meanings are as follows:

DOMESTICBOND The Domestic Bonds asset class consists of government or corporate bonds issued in the United States.
INTLBOND The International Bonds asset class consists of government or corporate bonds issued in foreign countries or the United States.
LARGESTOCK The Large Cap Stocks asset class consists of stocks for U.S. companies with market capitalizations of $2 billion or more.
SMALLSTOCK The Small Cap Stocks asset class consists of stocks for U.S. companies with market capitalizations of approximately $100 million to $2 billion.
INTLSTOCK The International Stocks asset class consists of publicly traded stocks for companies based in foreign countries.
MONEYMRKTThe Money Market asset class consists of stable, short-term investments, which provide income that rises and falls with short-term interest rates.
OTHERThe Other asset class consists of investments that do not fit in any of the other asset classes.

The SecIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecCount property.

This property is read-only and not available at design time.

Data Type

String

SecFITID Property (InvStatement Class)

Transaction Id assigned by the financial institution.

Syntax

ANSI (Cross Platform)
char* GetSecFITID(int iSecIndex);

Unicode (Windows)
LPWSTR GetSecFITID(INT iSecIndex);
char* inebank_invstatement_getsecfitid(void* lpObj, int secindex);
QString GetSecFITID(int iSecIndex);

Default Value

""

Remarks

Transaction Id assigned by the financial institution.

This is a unique id number that the financial institution uses to identify a particular transaction. Its primary purpose is to allow a client to detect duplicate responses, whether the server previously downloaded the transaction.

This is a character string up to 32 octets long.

The SecIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecCount property.

This property is read-only and not available at design time.

Data Type

String

SecMemo Property (InvStatement Class)

Memo regarding this security.

Syntax

ANSI (Cross Platform)
char* GetSecMemo(int iSecIndex);

Unicode (Windows)
LPWSTR GetSecMemo(INT iSecIndex);
char* inebank_invstatement_getsecmemo(void* lpObj, int secindex);
QString GetSecMemo(int iSecIndex);

Default Value

""

Remarks

Memo regarding this security. This value is optional.

The SecIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecCount property.

This property is read-only and not available at design time.

Data Type

String

SecName Property (InvStatement Class)

Full name of the security.

Syntax

ANSI (Cross Platform)
char* GetSecName(int iSecIndex);

Unicode (Windows)
LPWSTR GetSecName(INT iSecIndex);
char* inebank_invstatement_getsecname(void* lpObj, int secindex);
QString GetSecName(int iSecIndex);

Default Value

""

Remarks

Full name of the security. The name can be up to 120 characters long.

The SecIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecCount property.

This property is read-only and not available at design time.

Data Type

String

SecType Property (InvStatement Class)

The type of security.

Syntax

ANSI (Cross Platform)
int GetSecType(int iSecIndex);

Unicode (Windows)
INT GetSecType(INT iSecIndex);

Possible Values

ST_DEBTINFO(0), 
ST_MFINFO(1),
ST_OPTINFO(2),
ST_OTHERINFO(3),
ST_STOCKINFO(4),
ST_OTHER(255)
int inebank_invstatement_getsectype(void* lpObj, int secindex);
int GetSecType(int iSecIndex);

Default Value

0

Remarks

The type of security. This is a string representation of the value returned by the SecType property.

The security types and their meanings are as follows:

stDEBTINFO (0)Debt information
stMFINFO (1)Mutual fund information
stOPTINFO (2)Option information
stOTHERINFO (3)Other information
stSTOCKINFO (4)Stock information
stOTHER(255)Other

The SecIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecCount property.

This property is read-only and not available at design time.

Data Type

Integer

SecSecurityId Property (InvStatement Class)

Security identifier.

Syntax

ANSI (Cross Platform)
char* GetSecSecurityId(int iSecIndex);

Unicode (Windows)
LPWSTR GetSecSecurityId(INT iSecIndex);
char* inebank_invstatement_getsecsecurityid(void* lpObj, int secindex);
QString GetSecSecurityId(int iSecIndex);

Default Value

""

Remarks

Security identifier.

This property consists of a naming standard followed by a semicolon and a 9-character identifier. The naming standard identifies the method used for assigning the identifier ("CUSIP" in the US) and is unique within the indicated naming standard.

The SecIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecCount property.

This property is read-only and not available at design time.

Data Type

String

SecTicker Property (InvStatement Class)

Ticker symbol of the security.

Syntax

ANSI (Cross Platform)
char* GetSecTicker(int iSecIndex);

Unicode (Windows)
LPWSTR GetSecTicker(INT iSecIndex);
char* inebank_invstatement_getsecticker(void* lpObj, int secindex);
QString GetSecTicker(int iSecIndex);

Default Value

""

Remarks

Ticker symbol of the security. The value can be up to 32 characters long.

The SecIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecCount property.

This property is read-only and not available at design time.

Data Type

String

SecTypeDescription Property (InvStatement Class)

A description of the security type.

Syntax

ANSI (Cross Platform)
char* GetSecTypeDescription(int iSecIndex);

Unicode (Windows)
LPWSTR GetSecTypeDescription(INT iSecIndex);
char* inebank_invstatement_getsectypedescription(void* lpObj, int secindex);
QString GetSecTypeDescription(int iSecIndex);

Default Value

""

Remarks

A description of the security type. This is a string representation of the value returned by the SecType property.

The types and their meanings are as follows:

stDEBTINFO (0)Debt information
stMFINFO (1)Mutual fund information
stOPTINFO (2)Option information
stOTHERINFO (3)Other information
stSTOCKINFO (4)Stock information
stOTHER (255)Other information

The SecIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecCount property.

This property is read-only and not available at design time.

Data Type

String

SecUnitPrice Property (InvStatement Class)

This is the current unit price of the security as provided by the server.

Syntax

ANSI (Cross Platform)
char* GetSecUnitPrice(int iSecIndex);

Unicode (Windows)
LPWSTR GetSecUnitPrice(INT iSecIndex);
char* inebank_invstatement_getsecunitprice(void* lpObj, int secindex);
QString GetSecUnitPrice(int iSecIndex);

Default Value

""

Remarks

This is the current unit price of the security as provided by the server. It may be a real-time or delayed quote. The delay amount is determined by the data provider.

The SecIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecCount property.

This property is read-only and not available at design time.

Data Type

String

SecYield Property (InvStatement Class)

Current yield reported as portion of the fund's assets (at most one).

Syntax

ANSI (Cross Platform)
char* GetSecYield(int iSecIndex);

Unicode (Windows)
LPWSTR GetSecYield(INT iSecIndex);
char* inebank_invstatement_getsecyield(void* lpObj, int secindex);
QString GetSecYield(int iSecIndex);

Default Value

""

Remarks

Current yield reported as portion of the fund's assets (at most one). This can be returned in the server reply only when SecType is stMFINFO or stSTOCKINFO.

The SecIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecCount property.

This property is read-only and not available at design time.

Data Type

String

ShortBalance Property (InvStatement Class)

Market value of all short positions.

Syntax

ANSI (Cross Platform)
char* GetShortBalance();

Unicode (Windows)
LPWSTR GetShortBalance();
char* inebank_invstatement_getshortbalance(void* lpObj);
QString GetShortBalance();

Default Value

""

Remarks

This property is always returned with the balance information if such information is requested to be included (IncludeBalances was set to True) in the investment statement download request (when calling the GetStatement method).

This property is read-only.

Data Type

String

SSLAcceptServerCertEncoded Property (InvStatement Class)

This is the certificate (PEM/base64 encoded).

Syntax

ANSI (Cross Platform)
int GetSSLAcceptServerCertEncoded(char* &lpSSLAcceptServerCertEncoded, int &lenSSLAcceptServerCertEncoded);
int SetSSLAcceptServerCertEncoded(const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded); Unicode (Windows) INT GetSSLAcceptServerCertEncoded(LPSTR &lpSSLAcceptServerCertEncoded, INT &lenSSLAcceptServerCertEncoded);
INT SetSSLAcceptServerCertEncoded(LPCSTR lpSSLAcceptServerCertEncoded, INT lenSSLAcceptServerCertEncoded);
int inebank_invstatement_getsslacceptservercertencoded(void* lpObj, char** lpSSLAcceptServerCertEncoded, int* lenSSLAcceptServerCertEncoded);
int inebank_invstatement_setsslacceptservercertencoded(void* lpObj, const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded);
QByteArray GetSSLAcceptServerCertEncoded();
int SetSSLAcceptServerCertEncoded(QByteArray qbaSSLAcceptServerCertEncoded);

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.

When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.

This property is not available at design time.

Data Type

Binary String

SSLCertEncoded Property (InvStatement Class)

This is the certificate (PEM/base64 encoded).

Syntax

ANSI (Cross Platform)
int GetSSLCertEncoded(char* &lpSSLCertEncoded, int &lenSSLCertEncoded);
int SetSSLCertEncoded(const char* lpSSLCertEncoded, int lenSSLCertEncoded); Unicode (Windows) INT GetSSLCertEncoded(LPSTR &lpSSLCertEncoded, INT &lenSSLCertEncoded);
INT SetSSLCertEncoded(LPCSTR lpSSLCertEncoded, INT lenSSLCertEncoded);
int inebank_invstatement_getsslcertencoded(void* lpObj, char** lpSSLCertEncoded, int* lenSSLCertEncoded);
int inebank_invstatement_setsslcertencoded(void* lpObj, const char* lpSSLCertEncoded, int lenSSLCertEncoded);
QByteArray GetSSLCertEncoded();
int SetSSLCertEncoded(QByteArray qbaSSLCertEncoded);

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.

When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.

This property is not available at design time.

Data Type

Binary String

SSLCertStore Property (InvStatement Class)

This is the name of the certificate store for the client certificate.

Syntax

ANSI (Cross Platform)
int GetSSLCertStore(char* &lpSSLCertStore, int &lenSSLCertStore);
int SetSSLCertStore(const char* lpSSLCertStore, int lenSSLCertStore); Unicode (Windows) INT GetSSLCertStore(LPSTR &lpSSLCertStore, INT &lenSSLCertStore);
INT SetSSLCertStore(LPCSTR lpSSLCertStore, INT lenSSLCertStore);
int inebank_invstatement_getsslcertstore(void* lpObj, char** lpSSLCertStore, int* lenSSLCertStore);
int inebank_invstatement_setsslcertstore(void* lpObj, const char* lpSSLCertStore, int lenSSLCertStore);
QByteArray GetSSLCertStore();
int SetSSLCertStore(QByteArray qbaSSLCertStore);

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password protected, specify the password in SSLCertStorePassword.

SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

Data Type

Binary String

SSLCertStorePassword Property (InvStatement Class)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

ANSI (Cross Platform)
char* GetSSLCertStorePassword();
int SetSSLCertStorePassword(const char* lpszSSLCertStorePassword); Unicode (Windows) LPWSTR GetSSLCertStorePassword();
INT SetSSLCertStorePassword(LPCWSTR lpszSSLCertStorePassword);
char* inebank_invstatement_getsslcertstorepassword(void* lpObj);
int inebank_invstatement_setsslcertstorepassword(void* lpObj, const char* lpszSSLCertStorePassword);
QString GetSSLCertStorePassword();
int SetSSLCertStorePassword(QString qsSSLCertStorePassword);

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Data Type

String

SSLCertStoreType Property (InvStatement Class)

This is the type of certificate store for this certificate.

Syntax

ANSI (Cross Platform)
int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType); Unicode (Windows) INT GetSSLCertStoreType();
INT SetSSLCertStoreType(INT iSSLCertStoreType);

Possible Values

CST_USER(0), 
CST_MACHINE(1),
CST_PFXFILE(2),
CST_PFXBLOB(3),
CST_JKSFILE(4),
CST_JKSBLOB(5),
CST_PEMKEY_FILE(6),
CST_PEMKEY_BLOB(7),
CST_PUBLIC_KEY_FILE(8),
CST_PUBLIC_KEY_BLOB(9),
CST_SSHPUBLIC_KEY_BLOB(10),
CST_P7BFILE(11),
CST_P7BBLOB(12),
CST_SSHPUBLIC_KEY_FILE(13),
CST_PPKFILE(14),
CST_PPKBLOB(15),
CST_XMLFILE(16),
CST_XMLBLOB(17),
CST_JWKFILE(18),
CST_JWKBLOB(19),
CST_SECURITY_KEY(20),
CST_BCFKSFILE(21),
CST_BCFKSBLOB(22),
CST_PKCS11(23),
CST_AUTO(99)
int inebank_invstatement_getsslcertstoretype(void* lpObj);
int inebank_invstatement_setsslcertstoretype(void* lpObj, int iSSLCertStoreType);
int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType);

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS11 dll. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

SSLCertSubject Property (InvStatement Class)

This is the subject of the certificate used for client authentication.

Syntax

ANSI (Cross Platform)
char* GetSSLCertSubject();
int SetSSLCertSubject(const char* lpszSSLCertSubject); Unicode (Windows) LPWSTR GetSSLCertSubject();
INT SetSSLCertSubject(LPCWSTR lpszSSLCertSubject);
char* inebank_invstatement_getsslcertsubject(void* lpObj);
int inebank_invstatement_setsslcertsubject(void* lpObj, const char* lpszSSLCertSubject);
QString GetSSLCertSubject();
int SetSSLCertSubject(QString qsSSLCertSubject);

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properites are set. When this property is set, a search is performed in the current certificate store certificate with matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

Data Type

String

SSLProvider Property (InvStatement Class)

This specifies the SSL/TLS implementation to use.

Syntax

ANSI (Cross Platform)
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider); Unicode (Windows) INT GetSSLProvider();
INT SetSSLProvider(INT iSSLProvider);

Possible Values

SSLP_AUTOMATIC(0), 
SSLP_PLATFORM(1),
SSLP_INTERNAL(2)
int inebank_invstatement_getsslprovider(void* lpObj);
int inebank_invstatement_setsslprovider(void* lpObj, int iSSLProvider);
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider);

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.

Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, on Windows the class will use the platform implementation. On Linux/macOS the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used on all platforms.

Data Type

Integer

SSLServerCertEncoded Property (InvStatement Class)

This is the certificate (PEM/base64 encoded).

Syntax

ANSI (Cross Platform)
int GetSSLServerCertEncoded(char* &lpSSLServerCertEncoded, int &lenSSLServerCertEncoded);

Unicode (Windows)
INT GetSSLServerCertEncoded(LPSTR &lpSSLServerCertEncoded, INT &lenSSLServerCertEncoded);
int inebank_invstatement_getsslservercertencoded(void* lpObj, char** lpSSLServerCertEncoded, int* lenSSLServerCertEncoded);
QByteArray GetSSLServerCertEncoded();

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.

When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.

This property is read-only and not available at design time.

Data Type

Binary String

StartDate Property (InvStatement Class)

Start date of requested transaction list.

Syntax

ANSI (Cross Platform)
char* GetStartDate();
int SetStartDate(const char* lpszStartDate); Unicode (Windows) LPWSTR GetStartDate();
INT SetStartDate(LPCWSTR lpszStartDate);
char* inebank_invstatement_getstartdate(void* lpObj);
int inebank_invstatement_setstartdate(void* lpObj, const char* lpszStartDate);
QString GetStartDate();
int SetStartDate(QString qsStartDate);

Default Value

""

Remarks

This is a string representing the date at which to start listing transactions on the statement. Use this property and EndDate to constrain the list of transactions retrieved when calling GetStatement. When provided in the request, StartDate value will be echoed in the server's response.

All input dates should be entered in the format specified by DateFormat. For example, if the DateFormat is set to "MM/dd/yyyy hh:mm:ss" (default value), an input date should look like: 09/30/2009 12:00:00 AM.

This format specifies also how the returned dates are going to get parsed.

Note: This property is optional and can be specified when IncludeTransactions property is set to True.

Data Type

String

StatementDate Property (InvStatement Class)

Date and time for the statement download.

Syntax

ANSI (Cross Platform)
char* GetStatementDate();

Unicode (Windows)
LPWSTR GetStatementDate();
char* inebank_invstatement_getstatementdate(void* lpObj);
QString GetStatementDate();

Default Value

""

Remarks

This property is always returned in the server's response when calling the GetStatement method.

All input dates should be entered in the format specified by DateFormat. For example, if the DateFormat is set to "MM/dd/yyyy hh:mm:ss" (default value), an input date should look like: 09/30/2009 12:00:00 AM.

This format specifies also how the returned dates are going to get parsed.

This property is read-only.

Data Type

String

Timeout Property (InvStatement Class)

A timeout for the class.

Syntax

ANSI (Cross Platform)
int GetTimeout();
int SetTimeout(int iTimeout); Unicode (Windows) INT GetTimeout();
INT SetTimeout(INT iTimeout);
int inebank_invstatement_gettimeout(void* lpObj);
int inebank_invstatement_settimeout(void* lpObj, int iTimeout);
int GetTimeout();
int SetTimeout(int iTimeout);

Default Value

60

Remarks

If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If Timeout is set to a positive value, the class will wait for the operation to complete before returning control.

The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.

If Timeout expires, and the operation is not yet complete, the class fails with an error.

Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

Data Type

Integer

TxCount Property (InvStatement Class)

The number of records in the Tx arrays.

Syntax

ANSI (Cross Platform)
int GetTxCount();

Unicode (Windows)
INT GetTxCount();
int inebank_invstatement_gettxcount(void* lpObj);
int GetTxCount();

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at TxCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

TxAggregate Property (InvStatement Class)

Wrapper for an investment statement transaction.

Syntax

ANSI (Cross Platform)
char* GetTxAggregate(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxAggregate(INT iTxIndex);
char* inebank_invstatement_gettxaggregate(void* lpObj, int txindex);
QString GetTxAggregate(int iTxIndex);

Default Value

""

Remarks

Wrapper for an investment statement transaction.

Aggregates are pieces of XML taken from the financial institution's original response. They contain elements that correspond to many of the class's properties. However, some of these elements, and/or their potential values, may not be supported by the class. Any user who wishes to use unsupported fields may use this aggregate property to parse out the desired data either via our OFXAggregate class or any other means.

Note: The original data from the server is returned as SGML or XML (depending on the value of OFXVersion that FI supports. If the original data is returned in SGML format, the class internally manipulates these responses into the equivalent XML format by inserting close element tags (e.g., "</ACCTID>") into the data as it comes from the server.

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxDate Property (InvStatement Class)

For other than banking transactions, this is the date when the transaction trade occurred, and for stock splits, this is the day of record stored as a string.

Syntax

ANSI (Cross Platform)
char* GetTxDate(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxDate(INT iTxIndex);
char* inebank_invstatement_gettxdate(void* lpObj, int txindex);
QString GetTxDate(int iTxIndex);

Default Value

""

Remarks

For other than banking transactions, this is the date when the transaction trade occurred, and for stock splits, this is the day of record stored as a string.

For banking transactions, this is the date the transaction was posted to the financial institution.

All input dates should be entered in the format specified by DateFormat. For example, if the DateFormat is set to "MM/dd/yyyy hh:mm:ss" (default value), an input date should look like: 09/30/2009 12:00:00 AM.

This format specifies also how the returned dates are going to get parsed.

This property is always returned with the transaction information if such an information is requested to be included (IncludeTransactions was set to True) in the investment statement download request (when calling the GetStatement method).

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxDateSettle Property (InvStatement Class)

For other than banking transactions, this is the date when settlement occurred, and for stock splits, this is the execution date.

Syntax

ANSI (Cross Platform)
char* GetTxDateSettle(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxDateSettle(INT iTxIndex);
char* inebank_invstatement_gettxdatesettle(void* lpObj, int txindex);
QString GetTxDateSettle(int iTxIndex);

Default Value

""

Remarks

For other than banking transactions, this is the date when settlement occurred, and for stock splits, this is the execution date.

All input dates should be entered in the format specified by DateFormat. For example, if the DateFormat is set to "MM/dd/yyyy hh:mm:ss" (default value), an input date should look like: 09/30/2009 12:00:00 AM.

This format specifies also how the returned dates are going to get parsed.

This property is always returned with the transaction information if such an information is requested to be included (IncludeTransactions was set to True) in the investment statement download request (when calling the GetStatement method).

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxFITID Property (InvStatement Class)

Transaction Id assigned by the financial institution.

Syntax

ANSI (Cross Platform)
char* GetTxFITID(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxFITID(INT iTxIndex);
char* inebank_invstatement_gettxfitid(void* lpObj, int txindex);
QString GetTxFITID(int iTxIndex);

Default Value

""

Remarks

Transaction Id assigned by the financial institution.

This is a unique id number that the financial institution uses to identify a particular transaction. Its primary purpose is to allow a client to detect duplicate responses, whether the server previously downloaded the transaction.

This property is always returned with the transaction information if such an information is requested to be included (IncludeTransactions was set to True) in the investment statement download request (when calling the GetStatement method).

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxMemo Property (InvStatement Class)

Other information (memo) regarding this transaction.

Syntax

ANSI (Cross Platform)
char* GetTxMemo(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxMemo(INT iTxIndex);
char* inebank_invstatement_gettxmemo(void* lpObj, int txindex);
QString GetTxMemo(int iTxIndex);

Default Value

""

Remarks

Other information (memo) regarding this transaction. The memo property stores a notice from the broker to the customer as a string.

This property is an optional field. When calling the GetStatement method, if the server's response does not contain this value, querying the property will return an empty string.

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxName Property (InvStatement Class)

Name for this bank transaction.

Syntax

ANSI (Cross Platform)
char* GetTxName(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxName(INT iTxIndex);
char* inebank_invstatement_gettxname(void* lpObj, int txindex);
QString GetTxName(int iTxIndex);

Default Value

""

Remarks

Name for this bank transaction. When there are bank transactions returned in the statement download (i.e. TxType returned is ttINVBANKTRAN), the TxName stores the name of the financial institution or a name assigned by the institution to this transaction, such as 'Customer deposit'.

This property is an optional field. When calling the GetStatement method, if the server's response does not contain this value, querying the property will return an empty string.

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxSecurityId Property (InvStatement Class)

Security ID for this investment transaction.

Syntax

ANSI (Cross Platform)
char* GetTxSecurityId(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxSecurityId(INT iTxIndex);
char* inebank_invstatement_gettxsecurityid(void* lpObj, int txindex);
QString GetTxSecurityId(int iTxIndex);

Default Value

""

Remarks

Security ID for this investment transaction.

This property consists of a naming standard followed by a semicolon and a 9-character identifier. The naming standard identifies the method used for assigning the identifier ("CUSIP" in the US) and is unique within the indicated naming standard. This property is always returned with the transaction information if such an information is requested to be included (IncludeTransactions was set to True) in the investment statement download request (when calling the GetStatement method).

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxSubAccountFund Property (InvStatement Class)

The sub-account associated with the funds for the transaction.

Syntax

ANSI (Cross Platform)
char* GetTxSubAccountFund(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxSubAccountFund(INT iTxIndex);
char* inebank_invstatement_gettxsubaccountfund(void* lpObj, int txindex);
QString GetTxSubAccountFund(int iTxIndex);

Default Value

""

Remarks

The sub-account associated with the funds for the transaction. Where did the money for the transaction come from or go to. The possible values are : CASH, MARGIN, SHORT, OTHER.

This property is always returned with the transaction information if such an information is requested to be included (IncludeTransactions was set to True) in the investment statement download request (when calling the GetStatement method).

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxSubAccountSec Property (InvStatement Class)

Sub-account type for the security.

Syntax

ANSI (Cross Platform)
char* GetTxSubAccountSec(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxSubAccountSec(INT iTxIndex);
char* inebank_invstatement_gettxsubaccountsec(void* lpObj, int txindex);
QString GetTxSubAccountSec(int iTxIndex);

Default Value

""

Remarks

Sub-account type for the security. The possible values are: CASH, MARGIN, SHORT, OTHER.

This property is always returned with the transaction information if such an information is requested to be included (IncludeTransactions was set to True) in the investment statement download request (when calling the GetStatement method).

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxTotal Property (InvStatement Class)

Transaction amount.

Syntax

ANSI (Cross Platform)
char* GetTxTotal(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxTotal(INT iTxIndex);
char* inebank_invstatement_gettxtotal(void* lpObj, int txindex);
QString GetTxTotal(int iTxIndex);

Default Value

""

Remarks

Transaction amount. For other than banking transactions (buys, sells, etc.) this is the transaction total: ((quantity * (price +/- markup/markdown)) +/- (commission + fees + load + taxes)).

Distributions, interest, margin interest, misc. expense, etc.: amount.

Return of cap: cost basis.

Banking transactions: this is the amount of money exchanged during a given transaction.

Note: the financial institution usually returns amounts as a string that includes the sign (+/-) of the amount. However, the server may sometimes leave out a particular field if it is not required by the OFX specification. To avoid confusion that can be caused by returning integers, the class will return all amount types as a string, with the empty string ("") for fields not returned by the server.

Where there is a value returned by the server, the class will attempt to convert the string into a format that can be easily parsed into an integer value. This behavior can be controlled by the CurrencyFormat config setting.

This property is always returned with the transaction information if such an information is requested to be included (IncludeTransactions was set to True) in the investment statement download request (when calling the GetStatement method).

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxType Property (InvStatement Class)

This is the type of transaction that was made on the account.

Syntax

ANSI (Cross Platform)
int GetTxType(int iTxIndex);

Unicode (Windows)
INT GetTxType(INT iTxIndex);

Possible Values

ITT_BUYDEBT(0), 
ITT_BUYMF(1),
ITT_BUYOPT(2),
ITT_BUYOTHER(3),
ITT_BUYSTOCK(4),
ITT_CLOSUREOPT(5),
ITT_INCOME(6),
ITT_INVEXPENSE(7),
ITT_JRNLFUND(8),
ITT_JRNLSEC(9),
ITT_MARGININTEREST(10),
ITT_REINVEST(11),
ITT_RETOFCAP(12),
ITT_SELLDEBT(13),
ITT_SELLMF(14),
ITT_SELLOPT(15),
ITT_SELLOTHER(16),
ITT_SELLSTOCK(17),
ITT_SPLIT(18),
ITT_TRANSFERS(19),
ITT_INVBANKTRAN(20),
ITT_OTHER(255)
int inebank_invstatement_gettxtype(void* lpObj, int txindex);
int GetTxType(int iTxIndex);

Default Value

0

Remarks

This is the type of transaction that was made on the account. Checks, electronic funds transfers, and ATM transactions associated with CMA or money market sweep accounts are always represented with a bank transaction record.

Investment actions that involve securities (buy, sell, stock split, reinvest, etc.) are always represented with an investment record. Actions that are cash-only but are directly associated with a security are also investment actions (for example, dividends).

Other cash-only actions require careful analysis by the FI. Those that affect investment performance analysis should be sent using the appropriate investment action (investment income - miscellaneous, investment expense). Those that are completely unrelated to investment should be sent as a bank record.

The types and their meanings are as follows:

ittBUYDEBT (0)Buy debt security
ittBUYMF (1)Buy mutual fund (being switched to).
ittBUYOPT (2)Buy option.
ittBUYOTHER (3)Buy other security type
ittBUYSTOCK (4)Buy stock.
ittCLOSUREOPT (5)Close a position for an option.
ittINCOME (6)Investment income is realized as cash into the investment account. A negative TOTAL is used to denote adjustments to income.
ittINVEXPENSE (7)Misc. investment expense that is associated with a specific security.
ittJRNLFUND (8)Journaling cash holdings between sub-accounts within the same investment account.
ittJRNLSEC (9)Journaling security holdings between sub-accounts within the same investment account.
ittMARGININTEREST (10)Margin interest expense
ittREINVEST (11)Reinvestment of income
ittRETOFCAP (12)Return of capital
ittSELLDEBT (13)Sell debt security. Used when debt is sold, called, or reached maturity.
ittSELLMF (14)Sell mutual fund (being switched from).
ittSELLOPT (15)Sell option.
ittSELLOTHER (16)Sell other type of security
ittSELLSTOCK (17)Sell stock
ittSPLIT (18)Stock or Mutual Fund Split. (Note: the trade date is interpreted as the 'day of record' for the split.)
ittTRANSFERS (19)Transfer holdings in and out of the investment account.
ittINVBANKTRAN (20)Banking related transactions for the investment account.
ittOTHER (255)Other

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

Integer

TxTypeDescription Property (InvStatement Class)

A description of the transaction type.

Syntax

ANSI (Cross Platform)
char* GetTxTypeDescription(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxTypeDescription(INT iTxIndex);
char* inebank_invstatement_gettxtypedescription(void* lpObj, int txindex);
QString GetTxTypeDescription(int iTxIndex);

Default Value

""

Remarks

A description of the transaction type. This is a string representation of the value returned by the TxType property.

The types and their meanings are as follows:

ttBUYDEBT (0)Buy debt security
ttBUYMF (1)Buy mutual fund (being switched to).
ttBUYOPT (2)Buy option
ttBUYOTHER (3)Buy other security type
ttBUYSTOCK (4)Buy stock
ttCLOSUREOPT (5)Close a position for an option
ttINCOME (6)Investment income is realized as cash into the investment account
ttINVEXPENSE (7)Misc. investment expense that is associated with a specific security
ttJRNLFUND (8)Journaling cash holdings between sub-accounts
ttJRNLSEC (9)Journaling security holdings between sub-accounts
ttMARGININTEREST (10)Margin interest expense
ttREINVEST (11)Reinvestment of income
ttRETOFCAP (12)Return of capital
ttSELLDEBT (13)Sell debt security
ttSELLMF (14)Sell mutual fund
ttSELLOPT (15)Sell option
ttSELLOTHER (16)Sell other type of security
ttSELLSTOCK (17)Sell stock
ttSPLIT (18)Stock or Mutual Fund Split
ttTRANSFER (19)Transfer holdings
ttINVBANKTRAN (20)Bank transactions
ttOTHER (255)Other

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxUnitPrice Property (InvStatement Class)

Price per commonly-quoted unit, excluding markup/markdown.

Syntax

ANSI (Cross Platform)
char* GetTxUnitPrice(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxUnitPrice(INT iTxIndex);
char* inebank_invstatement_gettxunitprice(void* lpObj, int txindex);
QString GetTxUnitPrice(int iTxIndex);

Default Value

""

Remarks

Price per commonly-quoted unit, excluding markup/markdown.

It indicates:

  • share price for stocks, mutual funds, and others.
  • percentage of par for bonds.
  • per share (not contract) for options.

This property is always returned with the transaction information if such an information is requested to be included (IncludeTransactions was set to True) in the investment statement download request (when calling the GetStatement method).

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

TxUnits Property (InvStatement Class)

The quantity for security-based actions other than stock splits.

Syntax

ANSI (Cross Platform)
char* GetTxUnits(int iTxIndex);

Unicode (Windows)
LPWSTR GetTxUnits(INT iTxIndex);
char* inebank_invstatement_gettxunits(void* lpObj, int txindex);
QString GetTxUnits(int iTxIndex);

Default Value

""

Remarks

The quantity for security-based actions other than stock splits. The TxUnits differ for each type of security.

Depending on the type of the security, the TxUnits indicates the following:

  • Stocks, Mutual Funds and Other : number of shares.
  • Bonds : face value. For example, a $25,000 bond trading at $88 would use 25000 as the units and 88 as the unit price.
  • Options : number of contracts (not shares).

This property is always returned with the transaction information if such an information is requested to be included (IncludeTransactions was set to True) in the investment statement download request (when calling the GetStatement method).

The TxIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TxCount property.

This property is read-only and not available at design time.

Data Type

String

Config Method (InvStatement Class)

Sets or retrieves a configuration setting.

Syntax

ANSI (Cross Platform)
char* Config(const char* lpszConfigurationString);

Unicode (Windows)
LPWSTR Config(LPCWSTR lpszConfigurationString);
char* inebank_invstatement_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

GetClosingInfo Method (InvStatement Class)

Download a statement closing information for an investment account.

Syntax

ANSI (Cross Platform)
int GetClosingInfo();

Unicode (Windows)
INT GetClosingInfo();
int inebank_invstatement_getclosinginfo(void* lpObj);
int GetClosingInfo();

Remarks

This is applicable and supported in OFX 2.1.1 version only (i.e., when this method is called, the OFXVersion should be set to '211').

This function generates the Signon and Investment Statement Closing Information request page, submits it to the financial institution via secure HTTPS Post, receives and parses the closing statement information.

The server response includes the FI transaction unique Id and image data information (when available).

The following properties should be set when this method is called:

The client can also specify a date range (by setting the StartDate and EndDate properties) to limit the number of closing information aggregates that the server returns. If the client does not specify a date range, the server returns as many closing information aggregates as it can (which will be stored in ClosingDetails).

If you want the server to return an image reference for each statement closing information, and if the server supports this service, you will have to set the IncludeImages to True.

The following read-only properties are populated as a result of parsing the statement response:

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

GetImage Method (InvStatement Class)

Request and retrieve a check or statement image (if available).

Syntax

ANSI (Cross Platform)
char* GetImage(const char* lpszImageRef, const char* lpszImageRefType, int *lpSize = NULL);

Unicode (Windows)
LPSTR GetImage(LPCWSTR lpszImageRef, LPCWSTR lpszImageRefType, LPINT lpSize = NULL);
char* inebank_invstatement_getimage(void* lpObj, const char* lpszImageRef, const char* lpszImageRefType, int *lpSize);
QByteArray GetImage(const QString& qsImageRef, const QString& qsImageRefType);

Remarks

This function generates the Signon and Download Image request page, submits it to the financial institution via secure HTTPS Post.

The requested image of a check or statement closing information is identified by ImageRef parameter. The type of this image reference should be specified by ImageRefType parameter.

Possible values and their meanings for the ImageRefType parameter are:

OPAQUE (default value) The class will send an OFX request to access this image. This request will be in the form of a normal OFX request (complete with Signon) and the login credentials are required to authenticate the client. However, whereas the request file contains typical OFX syntax, the successful response returned is in the form of raw bytes. If a failure condition occurs, the class will return an error with a specific message.
URL The URL identifies a service on an FI server that can accept an image request and produce a response. The class issues an HTTP request (over SSL) to the URL specified by the ImageRef parameter. The client will then authenticate. Once this authentication takes place, the image can be displayed
FORMURL The class issues an HTTP request (over SSL), with encoded data specified in the URL retrieved from the ImageRef parameter. The image can then be displayed.

If you want the server to return image references for each transaction or statement closing information, and if the server supports image download service via OFX, you will have to set the IncludeImages to True when either GetStatement or GetClosingInfo method is called.

If available, then you can access that particular image by calling the GetImage method, where ImageRef parameter value is set to the image reference stored in TxImageRef (or ClosingDetailImageRef) and the ImageRefType parameter is set to the respective TxImageRefType (or ClosingDetailImageRefType) corresponding to the requested check or statement.

Upon successful response, the image content will be returned by this method. If you want the image to be saved to a file, you can set the ImageFileName to a desired name without specifying the type. The file type will be set automatically depending on the image type supported by the server. Possible image types are: jpeg, tiff, png, pdf.

Otherwise, the class will throw an error.

Image download is available only for OFX version 2.1.1. When this method is called, the OFXVersion is automatically set to '211'.

Note: Clients may request images in statement download and/or closing requests in various message sets. But not all FIs support image download. Prior to requesting these images, clients must verify that support exists on the server for image download. This is indicated by the presence of the IMAGEMSGSET aggregate in the profile response, as well as the IMAGEPROF aggregate in the profile response for the specific message set in question.

For instance, if a client wishes to request transaction images in the banking statement download request, the client must verify the presence of IMAGEMSGSET in the profile as well as transaction image support in the IMAGEPROF aggregate in the BANKMSGSET in the profile. Image download requests are allowed only in OFX 2.1.1 in the Banking, Credit Card, Loan and Investments message sets.

To verify whether your FI supports this service, you should check its profile (by calling the GetProfile method in FIProfile class) and check the values of FIMessageSetTxImage and FIMessageSetClosingInfoImage for each message set (bank, credit card, loan and investment).

Error Handling (C++)

This method returns a Binary String value (with length lpSize); after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

GetStatement Method (InvStatement Class)

Downloads statement for an investment account.

Syntax

ANSI (Cross Platform)
int GetStatement();

Unicode (Windows)
INT GetStatement();
int inebank_invstatement_getstatement(void* lpObj);
int GetStatement();

Remarks

This function generates the Signon and Investment Statement request page, submits it to the financial institution via secure HTTPS Post, receives and parses the investment statement.

This allows a customer to receive investment transactions, positions, open orders, balances and list of securities that are typically part of a regular paper statement. By using the transaction IDs supplied by FIs, OFX makes it possible that each transaction is downloaded only once. Calling of this method requires to designate an account for the download and to indicate what type of data should be downloaded.

The following properties should be set when this method is called:

  • FIId (required)
  • FIOrganization (required)
  • FIUrl (required)
  • OFXAppId (required)
  • OFXAppVersion (required)
  • OFXVersion (required if 2.x OFX version is the one supported by your FI)
  • OFXUser (required)
  • OFXPassword (required)
  • BrokerId (required)
  • AccountId (required)
  • IncludeTransactions (required if the user does not want to include bank transactions in the current statement download - True by default)
  • IncludePositions (required if the user does not want to include positions as well in the current statement download - True by default)
  • IncludeOpenOrders (required if the user does not want to include open orders as well in the current statement download - True by default)
  • IncludeBalances (required if the user does not want to include balances as well in the current statement download - True by default)

If the user wants to download investment bank transactions (i.e., IncludeTransactions is set to True), a date range (that the transactions fall within) can be specified by setting the StartDate and EndDate. Otherwise, the server will use default values if no dates are supplied.

The following information is returned in server's response:

Date and time for statement (StatementDate).
Default currency for statement (CurrencyCode).
Account identifier (as entered in the request).
Investment transactions (only within the specified start and end dates) including banking transactions, which are a combination of bank transaction detail records and investment transaction detail records.
Open orders - current open trading orders that a user has at a brokerage.This is stored in OpenOrders.
Positions - positions a user has at a brokerage. Each statement response must contain a complete set of position records, even if no transactions occurred in the requested statement period for a particular holding.This is stored in Positions.
Account balances - current balances typically reported on an FI statement, such as cash balance or buying power. They can also convey other numbers of interest, such as current interest rates.This is stored in Balances.
Available Cash Balance (AvailableCash).
Short Balance (ShortBalance)
Margin Balance (MarginBalance).
Marketing message (MarketingInfo).
List of securities - any security referenced in either transactions, positions, open orders or explicitly requested. This is stored in Securities.

For a full list of all read-only properties that are populated as a result of parsing the statement response, please look at OFXDataFile method remarks.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ReadOFXDataFile Method (InvStatement Class)

Reads an OFX response from a file.

Syntax

ANSI (Cross Platform)
int ReadOFXDataFile(const char* lpszFileName);

Unicode (Windows)
INT ReadOFXDataFile(LPCWSTR lpszFileName);
int inebank_invstatement_readofxdatafile(void* lpObj, const char* lpszFileName);
int ReadOFXDataFile(const QString& qsFileName);

Remarks

This method reads a previously recorded OFX response from a file, including HTTP and OFX headers.

The following read-only properties are populated as a result of parsing the data file:

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Reset Method (InvStatement Class)

Reset the internal state of the class and all properties to their default values.

Syntax

ANSI (Cross Platform)
int Reset();

Unicode (Windows)
INT Reset();
int inebank_invstatement_reset(void* lpObj);
int Reset();

Remarks

The Reset method does not have any parameters and does not return any value.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

WriteOFXDataFile Method (InvStatement Class)

Writes the OFX response sent by the server to a file.

Syntax

ANSI (Cross Platform)
int WriteOFXDataFile(const char* lpszFileName);

Unicode (Windows)
INT WriteOFXDataFile(LPCWSTR lpszFileName);
int inebank_invstatement_writeofxdatafile(void* lpObj, const char* lpszFileName);
int WriteOFXDataFile(const QString& qsFileName);

Remarks

This method records the entire OFX response, including HTTP and OFX headers to a file. This file can later be read and parsed by the ReadOFXDataFile method as though it were a live response.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ConnectionStatus Event (InvStatement Class)

This event is fired to indicate changes in the connection state.

Syntax

ANSI (Cross Platform)
virtual int FireConnectionStatus(InvStatementConnectionStatusEventParams *e);
typedef struct {
const char *ConnectionEvent;
int StatusCode;
const char *Description; int reserved; } InvStatementConnectionStatusEventParams;
Unicode (Windows) virtual INT FireConnectionStatus(InvStatementConnectionStatusEventParams *e);
typedef struct {
LPCWSTR ConnectionEvent;
INT StatusCode;
LPCWSTR Description; INT reserved; } InvStatementConnectionStatusEventParams;
#define EID_INVSTATEMENT_CONNECTIONSTATUS 1

virtual INT INEBANK_CALL FireConnectionStatus(LPSTR &lpszConnectionEvent, INT &iStatusCode, LPSTR &lpszDescription);
class InvStatementConnectionStatusEventParams {
public:
  const QString &ConnectionEvent();

  int StatusCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void ConnectionStatus(InvStatementConnectionStatusEventParams *e);
// Or, subclass InvStatement and override this emitter function. virtual int FireConnectionStatus(InvStatementConnectionStatusEventParams *e) {...}

Remarks

The ConnectionStatus event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.

The ConnectionEvent parameter indicates the type of connection event. Values may include the following:

Firewall connection complete.
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.

StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Error Event (InvStatement Class)

Information about errors during data delivery.

Syntax

ANSI (Cross Platform)
virtual int FireError(InvStatementErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } InvStatementErrorEventParams;
Unicode (Windows) virtual INT FireError(InvStatementErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } InvStatementErrorEventParams;
#define EID_INVSTATEMENT_ERROR 2

virtual INT INEBANK_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class InvStatementErrorEventParams {
public:
  int ErrorCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Error(InvStatementErrorEventParams *e);
// Or, subclass InvStatement and override this emitter function. virtual int FireError(InvStatementErrorEventParams *e) {...}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

SSLServerAuthentication Event (InvStatement Class)

Fired after the server presents its certificate to the client.

Syntax

ANSI (Cross Platform)
virtual int FireSSLServerAuthentication(InvStatementSSLServerAuthenticationEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } InvStatementSSLServerAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSLServerAuthentication(InvStatementSSLServerAuthenticationEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } InvStatementSSLServerAuthenticationEventParams;
#define EID_INVSTATEMENT_SSLSERVERAUTHENTICATION 3

virtual INT INEBANK_CALL FireSSLServerAuthentication(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class InvStatementSSLServerAuthenticationEventParams {
public:
  const QByteArray &CertEncoded();

  const QString &CertSubject();

  const QString &CertIssuer();

  const QString &Status();

  bool Accept();
  void SetAccept(bool bAccept);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SSLServerAuthentication(InvStatementSSLServerAuthenticationEventParams *e);
// Or, subclass InvStatement and override this emitter function. virtual int FireSSLServerAuthentication(InvStatementSSLServerAuthenticationEventParams *e) {...}

Remarks

This event is where the client can decide whether to continue with the connection process or not. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK"). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (InvStatement Class)

Shows the progress of the secure connection.

Syntax

ANSI (Cross Platform)
virtual int FireSSLStatus(InvStatementSSLStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } InvStatementSSLStatusEventParams;
Unicode (Windows) virtual INT FireSSLStatus(InvStatementSSLStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } InvStatementSSLStatusEventParams;
#define EID_INVSTATEMENT_SSLSTATUS 4

virtual INT INEBANK_CALL FireSSLStatus(LPSTR &lpszMessage);
class InvStatementSSLStatusEventParams {
public:
  const QString &Message();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SSLStatus(InvStatementSSLStatusEventParams *e);
// Or, subclass InvStatement and override this emitter function. virtual int FireSSLStatus(InvStatementSSLStatusEventParams *e) {...}

Remarks

The event is fired for informational and logging purposes only. Used to track the progress of the connection.

Config Settings (InvStatement Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

OFX Config Settings

AuthToken:   Authentication token required for this signon session only.

This credential is provided to the user out of band.

In the profile response, if SignOnAuthTokenFirst is True, then AuthToken should be sent in the very first signon.

ClientUId:   Unique ID identifying OFX Client.

In the profile response, if SignOnClientUIdReq is True, then ClientUId should be set and included in all future requests.

CorrectAction[i]:   The action taken to a previously sent transaction corrected by the current one.

If present in the list of transactions response, this represents the action taken to a previously sent transaction that is corrected by this record. Possible values are: REPLACE or DELETE. REPLACE replaces the transaction that it corrects referenced by CorrectFITID[i];. DELETE deletes it. This is applicable to statement download components only.

CorrectFITID[i]:   The FITID of a previously sent transaction corrected by the current one.

If present in the list of transactions response, this represents the FITID of a previously sent transaction that is corrected by this record. Based on the value of CorrectAction[i];, this transaction replaces or deletes the transaction that it corrects. This is applicable to statement download components only.

CurrencyFormat:   The format to be used for returning currency values.

If this is set to a non-empty string, the class will attempt to use the value as a pattern to format all currency strings returned from the server. You may use any of the system's default number formatting strings.

DateFormat:   The format to be used for input and output dates.

This format is used for input and output dates. You may use any of the system's default date formatting strings.

When submitting the request: all your input dates should be entered in a format specified by DateFormat and the class will convert those to OFXDateFormat right before sending the request.

For example, if you set a date to '2000.01.01' (by first setting the DateFormat to 'yyyy.MM.dd'), for a EST timezone, the class will convert it to '20000101000000.000[-5:EST]' (format specified by OFXDateFormat).

When parsing the response: if DateFormat is set to a non-empty string, the class will attempt to use the value as a pattern to format all date strings as they are returned. Otherwise, the system's default value will be used for formatting.

If the DateFormat is set to the special value "OFXDATE": During input:, any values you supply to date properties are passed to the server directly with no changes; During output: all dates will be returned in the OFX format as it was provided by the server without performing any modifications.

GetResponseVar:   Parses additional information out of the response.

Any additional response information contained within the OFX response that is not available via the Response fields, may be retrieved with this GetResponseVar config.

To obtain a response value, pass the XPath to the value you wish to receive. For instance, if the OFX response contains: "<OFX><SIGNONMSGSRSV1><SONRS><STATUS><CODE>0<SEVERITY>INFO</STATUS><DTSERVER>20120104223836.575<LANGUAGE>ENG"

Then calling GetResponseVar("/OFX/SIGNONMSGSRVSV1/LANGUAGE") will return "ENG".

NewPassword:   New password for the current OFX user.

Setting NewPassword to a non-empty value will cause the class to issue a password change request during sign-on along with the regular current OFX request. After the request is sent, this value will be cleared.

The correct current password is needed as well during signon request and must be supplied through the OFXPassword. Upon successful reply from the server, the NewPassword used becomes the new password.

OFXDateFormat:   The date format as required by OFX FI server.

Most of OFX FI servers, accept the default format, where the offset (G) and timezone (Z) are specified. However, there might still be some servers that do not accept that part. In such cases, you will have to set the OFXDateFormat to "YYYYMMddHHmmss.xxx" and GMT will be assumed as the default value.

Your input dates should be entered in a format specified by DateFormat and the class will convert those to OFXDateFormat (format that OFX FI server recognizes) right before sending the request.

For example, if you set a date to '2000.01.01' (by first setting the DateFormat to 'yyyy.MM.dd'), for a EST timezone, the class will convert it to '20000101000000.000[-5:EST]' (format specified by OFXDateFormat).

OFXLog:   Log file for the OFX transaction.

This setting records the OFX communication, but without including HTTP headers, to a file.

Please note that ReadOFXDataFile will not be able to parse this file because of the OFX request content present. If only the response of the server is required, please look at the WriteOFXDataFile method instead.

ServerMessage:   Server message if a warning or other information returned.

When sending a transaction request to a FI, their server with return either a successful reply or an error. However, even when a transaction is successful, a warning or other server messages might still be returned and are to be treated as informational notes only.

UserCred1A:   Additional user credential required by server.

In the profile response, if SignOnUserCred1Q is present, then UserCred1A should be set (as the answer to question identified by SignOnUserCred1Q) and it should be included in all future requests as part of the signon.

UserCred2A:   Additional user credential required by server.

In the profile response, if SignOnUserCred2Q is present, then UserCred2A should be set (as the answer to question identified by SignOnUserCred2Q) and it should be included in all future requests as part of the signon.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the class adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The class only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the class will accept compressed data. It then will uncompress the data it has received. The class will handle data compressed by both gzip and deflate compression algorithms.

When True, the class adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when HTTPVersion is set to "2.0".

If set to True (default), the class will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the class fails with an error if the server does not support HTTP/2.

The default value is True.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to LocalFile. When set to True, downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is applicable only when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the Transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the class.

If set to True, the URL passed to the class will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the class fails with an error.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the class fails with an error instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the class will perform a GET on the new location.

The default value is False. If set to True, the class will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the class.

This property specifies the HTTP version used by the class. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the class will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If True, the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. You also may explicitly add the Keep-Alive header to the request headers by setting OtherHeaders to Connection: Keep-Alive. If False, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is False.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the Log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value other than frNever, the class will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When HTTPVersion is set to "2.0" (if the server does not support "2.0"), then the class will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the class beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If ProxyUser and ProxyPassword are specified, this value is calculated using the algorithm specified by ProxyAuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the class.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the class.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the class will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the class will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001. In the C++ Edition for Windows, the *W version of the class must be used. For instance, DNSW or HTTPW.

UsePlatformHTTPClient:   Whether or not to use the platform HTTP client.

When using this configuration setting, if True, the component will use the default HTTP client for the platform (URLConnection in Java, WebRequest in .NET, or CFHTTPMessage in Mac/iOS) instead of the internal HTTP implementation. This is important for environments in which direct access to sockets is limited or not allowed (e.g., in the Google AppEngine).

Note: This setting is applicable only to Mac/iOS editions.

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the class will attempt to use the Proxy auto-config URL when establishing a connection and ProxyAutoDetect is set to True.

When True (default), the class will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveRetryCount:   The number of keep-alive packets to be sent before the remotehost is considered disconnected.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the number of times that the keep-alive packets will be sent before the remote host is considered disconnected. The system default if this value is not specified here is 9.

Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated ciphersuite.

Returns the ciphersuite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated ciphersuite strength.

Returns the strength of the ciphersuite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated ciphersuite.

Returns the ciphersuite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class fails with an error.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8

The following is a list of valid code page identifiers for Mac OS only:

IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when DoEvents is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseInternalSecurityAPI:   Tells the class whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this setting to true tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

Trappable Errors (InvStatement Class)

Error Handling (C++)

Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

OFX Errors

2000   Required field missing from server response.
2001   OFX server error. Description follows.
2002   Invalid OFX response.
2003   OFX response contains unknown element tags.

The class may also return one of the following error codes, which are inherited from other classes.

XML Errors

101   Invalid attribute index.
102   No attributes available.
103   Invalid namespace index.
104   No namespaces available.
105   Invalid element index.
106   No elements available.
107   Attribute does not exist.
201   Unbalanced element tag.
202   Unknown element prefix (can't find namespace).
203   Unknown attribute prefix (can't find namespace).
204   Invalid XML markup.
205   Invalid end state for parser.
206   Document contains unbalanced elements.
207   Invalid XPath.
208   No such child.
209   Top element does not match start of path.
210   DOM tree unavailable (set BuildDOM to true and reparse).
302   Can't open file.
401   Invalid XML would be generated.
402   An invalid XML name has been specified.

HTTP Errors

118   Firewall Error. Error description contains detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in URL
153   Specified URLScheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Can't open AttachedFile.

The class may also return one of the following error codes, which are inherited from other classes.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).

Copyright (c) 2023 4D Payments Inc.
4D E-Banking SDK 2022 C++ Edition - Version 22.0 [Build 8593]